परावैद्युत क्षति: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:
== [[विद्युत चुम्बकीय]] क्षेत्र परिप्रेक्ष्य ==
== [[विद्युत चुम्बकीय]] क्षेत्र परिप्रेक्ष्य ==


समय-भिन्न विद्युत चुम्बकीय क्षेत्रों के लिए, विद्युत चुम्बकीय ऊर्जा को सामान्यतः  तरंगों के प्रसार के रूप में या तो [[मुक्त स्थान]] के माध्यम से, एक [[संचरण लाइन|संचरण तार]]  में, एक  [[microstrip|सूक्ष्म संचरण]]  तार  में, या एक  [[वेवगाइड|तरंग पथक]] के माध्यम से प्रचारित तरंगों के रूप में देखा जाता है। इन सभी वातावरणों में विद्युत चालकों को यांत्रिक रूप से समर्थन देने और उन्हें एक निश्चित अलगाव पर रखने के लिए, या विभिन्न गैस दबावों के बीच एक बाधा प्रदान करने के लिए विद्युत चुम्बकीय शक्ति संचारित करने के लिए अक्सर डाइलेक्ट्रिक्स का उपयोग किया जाता है। मैक्सवेल के समीकरण [[विद्युत क्षेत्र]] और प्रसार तरंगों के [[चुंबकीय क्षेत्र]] घटकों के लिए हल किए जाते हैं जो विशिष्ट पर्यावरण की ज्यामिति की सीमा स्थितियों को पूरा करते हैं।<ref>{{cite book|first1=S. |last1=Ramo |first2=J.R. |last2=Whinnery |first3=T. |last3=Van Duzer |title=Fields and Waves in Communication Electronics |edition=3rd |publisher=John Wiley and Sons |location=New York |date=1994 |isbn=0-471-58551-3}}</ref> इस तरह के विद्युत चुम्बकीय विश्लेषण में, पैरामीटर [[परावैद्युतांक]] {{mvar|ε}}, [[पारगम्यता (विद्युत चुंबकत्व)]] {{mvar|μ}}, और विद्युत चालकता {{mvar|σ}} [[ऑप्टिकल माध्यम]] के गुणों का प्रतिनिधित्व करता है जिसके माध्यम से तरंगें फैलती हैं। पारगम्यता में [[वास्तविक संख्या]] और [[काल्पनिक संख्या]] घटक हो सकते हैं (बाद वाले को छोड़कर {{mvar|σ}} प्रभाव, नीचे देखें) ऐसा है
समय-भिन्न विद्युत चुम्बकीय क्षेत्रों के लिए, विद्युत चुम्बकीय ऊर्जा को सामान्यतः  तरंगों के प्रसार के रूप में या तो [[मुक्त स्थान]] के माध्यम से, एक [[संचरण लाइन|संचरण तार]]  में, एक  [[microstrip|सूक्ष्म संचरण]]  तार  में, या एक  [[वेवगाइड|तरंग पथक]] के माध्यम से प्रचारित तरंगों के रूप में देखा जाता है। इन सभी वातावरणों में विद्युत चालकों को यांत्रिक रूप से समर्थन देने और उन्हें एक निश्चित वियोजन पर रखने के लिए, या विभिन्न गैस दबावों के बीच एक बाधा प्रदान करने के लिए विद्युत चुम्बकीय शक्ति संचारित करने के लिए प्रायः  परावैद्युत का उपयोग किया जाता है। मैक्सवेल के समीकरण [[विद्युत क्षेत्र]] और प्रसार तरंगों के [[चुंबकीय क्षेत्र]] घटकों के लिए हल किए जाते हैं जो विशिष्ट पर्यावरण की ज्यामिति की सीमा स्थितियों को पूरा करते हैं।<ref>{{cite book|first1=S. |last1=Ramo |first2=J.R. |last2=Whinnery |first3=T. |last3=Van Duzer |title=Fields and Waves in Communication Electronics |edition=3rd |publisher=John Wiley and Sons |location=New York |date=1994 |isbn=0-471-58551-3}}</ref> इस प्रकार के विद्युत चुम्बकीय विश्लेषण में, पैरामीटर [[परावैद्युतांक]] {{mvar|ε}}, [[पारगम्यता (विद्युत चुंबकत्व)]] {{mvar|μ}}, और विद्युत चालकता {{mvar|σ}} [[ऑप्टिकल माध्यम|प्रकाशिक माध्यम]] के गुणों का प्रतिनिधित्व करता है जिसके माध्यम से तरंगें फैलती हैं। पारगम्यता में [[वास्तविक संख्या]] और [[काल्पनिक संख्या]] घटक हो सकते हैं (बाद वाले {{mvar|σ}} प्रभावों को छोड़कर, नीचे देखें) जैसे कि


:<math> \varepsilon = \varepsilon' - j \varepsilon'' .</math>
:<math> \varepsilon = \varepsilon' - j \varepsilon'' .</math>
Line 27: Line 27:
*{{mvar|λ}} परावैद्युत सामग्री में तरंग दैर्ध्य है।
*{{mvar|λ}} परावैद्युत सामग्री में तरंग दैर्ध्य है।


छोटे क्षति के साथ डाइलेक्ट्रिक्स के लिए, द्विपद विस्तार के केवल शून्य और पहले क्रम की शर्तों का उपयोग करके वर्गमूल का अनुमान लगाया जा सकता है। भी, {{math|tan ''δ'' ≈ ''δ''}} छोटे के लिए {{mvar|δ}}.  
छोटे क्षति के साथ परावैद्युत के लिए, द्विपद विस्तार के केवल शून्य और पहले क्रम की शर्तों का उपयोग करके वर्गमूल का अनुमान लगाया जा सकता है। भी, {{math|tan ''δ'' ≈ ''δ''}} छोटे के लिए {{mvar|δ}}.  


:<math>E = E_o e^{- j k \left(1 - j \frac{\tan \delta}{2}\right) z} = E_o e^{-k\frac{\tan \delta}{2} z} e^{-j k z},</math>
:<math>E = E_o e^{- j k \left(1 - j \frac{\tan \delta}{2}\right) z} = E_o e^{-k\frac{\tan \delta}{2} z} e^{-j k z},</math>
Line 35: Line 35:
*{{mvar|P<sub>o</sub>}} प्रारंभिक शक्ति है
*{{mvar|P<sub>o</sub>}} प्रारंभिक शक्ति है


विद्युत चुम्बकीय तरंगों के लिए अक्सर अन्य योगदान होते हैं जो इस अभिव्यक्ति में शामिल नहीं होते हैं, जैसे कि ट्रांसमिशन तार  या  तरंग पथक के कंडक्टरों की दीवार धाराओं के कारण। इसके अलावा, चुंबकीय पारगम्यता के लिए एक समान विश्लेषण लागू किया जा सकता है
विद्युत चुम्बकीय तरंगों के लिए प्रायः  अन्य योगदान होते हैं जो इस अभिव्यक्ति में शामिल नहीं होते हैं, जैसे कि ट्रांसमिशन तार  या  तरंग पथक के कंडक्टरों की दीवार धाराओं के कारण। इसके अलावा, चुंबकीय पारगम्यता के लिए एक समान विश्लेषण लागू किया जा सकता है


:<math> \mu = \mu' - j \mu'' ,</math>
:<math> \mu = \mu' - j \mu'' ,</math>

Revision as of 20:32, 11 February 2023

विद्युत अभियन्त्रण में, परावैद्युत क्षति विद्युत चुम्बकीय ऊर्जा (जैसे गर्मी) के एक परावैद्युत पदार्थ के अंतर्निहित अपव्यय को मापता है।[1] इसे क्षति कोण δ या संबंधित क्षति स्पर्शरेखा tan(δ) के संदर्भ में पैरामीटर किया जा सकता है। दोनों जटिल समतल में चरण को संदर्भित करते हैं जिनके वास्तविक और काल्पनिक भाग विद्युत चुम्बकीय क्षेत्र के विद्युत प्रतिरोध (क्षतिपूर्ण) घटक और इसके प्रतिक्रियाशील (दोषरहित) समकक्ष हैं।

विद्युत चुम्बकीय क्षेत्र परिप्रेक्ष्य

समय-भिन्न विद्युत चुम्बकीय क्षेत्रों के लिए, विद्युत चुम्बकीय ऊर्जा को सामान्यतः तरंगों के प्रसार के रूप में या तो मुक्त स्थान के माध्यम से, एक संचरण तार में, एक सूक्ष्म संचरण तार में, या एक तरंग पथक के माध्यम से प्रचारित तरंगों के रूप में देखा जाता है। इन सभी वातावरणों में विद्युत चालकों को यांत्रिक रूप से समर्थन देने और उन्हें एक निश्चित वियोजन पर रखने के लिए, या विभिन्न गैस दबावों के बीच एक बाधा प्रदान करने के लिए विद्युत चुम्बकीय शक्ति संचारित करने के लिए प्रायः परावैद्युत का उपयोग किया जाता है। मैक्सवेल के समीकरण विद्युत क्षेत्र और प्रसार तरंगों के चुंबकीय क्षेत्र घटकों के लिए हल किए जाते हैं जो विशिष्ट पर्यावरण की ज्यामिति की सीमा स्थितियों को पूरा करते हैं।[2] इस प्रकार के विद्युत चुम्बकीय विश्लेषण में, पैरामीटर परावैद्युतांक ε, पारगम्यता (विद्युत चुंबकत्व) μ, और विद्युत चालकता σ प्रकाशिक माध्यम के गुणों का प्रतिनिधित्व करता है जिसके माध्यम से तरंगें फैलती हैं। पारगम्यता में वास्तविक संख्या और काल्पनिक संख्या घटक हो सकते हैं (बाद वाले σ प्रभावों को छोड़कर, नीचे देखें) जैसे कि

अगर हम मान लें कि हमारे पास एक तरंग कार्य है जैसे कि

तब चुंबकीय क्षेत्र के लिए मैक्सवेल का कर्ल (गणित) समीकरण इस प्रकार लिखा जा सकता है:

कहाँ ε′′ पारगम्यता का काल्पनिक घटक है जो बाउंड चार्ज और द्विध्रुवीय विश्राम घटना के लिए जिम्मेदार है, जो ऊर्जा क्षति को जन्म देता है जो मुक्त चार्ज चालन के कारण होने वाले क्षति से अप्रभेद्य है जो कि परिमाणित है σ. घटक ε′मुक्त स्थान परमिटिटिविटी और सापेक्ष वास्तविक/पूर्ण परमिटिटिविटी के उत्पाद द्वारा दी गई परिचित दोषरहित परमिटिटिविटी का प्रतिनिधित्व करता है, या


क्षति स्पर्शरेखा

क्षति स्पर्शरेखा को तब विद्युत क्षेत्र में क्षतिकारक प्रतिक्रिया के अनुपात (या जटिल समतल में कोण) के रूप में परिभाषित किया जाता है E दोषरहित प्रतिक्रिया के कर्ल समीकरण में:

विद्युत चुम्बकीय तरंग के विद्युत क्षेत्र का समाधान है

कहाँ:

  • ω तरंग की कोणीय आवृत्ति है, और
  • λ परावैद्युत सामग्री में तरंग दैर्ध्य है।

छोटे क्षति के साथ परावैद्युत के लिए, द्विपद विस्तार के केवल शून्य और पहले क्रम की शर्तों का उपयोग करके वर्गमूल का अनुमान लगाया जा सकता है। भी, tan δδ छोटे के लिए δ.

चूँकि शक्ति विद्युत क्षेत्र की तीव्रता का वर्ग है, यह पता चलता है कि शक्ति का प्रसार दूरी के साथ क्षय होता है z जैसा

कहाँ:

  • Po प्रारंभिक शक्ति है

विद्युत चुम्बकीय तरंगों के लिए प्रायः अन्य योगदान होते हैं जो इस अभिव्यक्ति में शामिल नहीं होते हैं, जैसे कि ट्रांसमिशन तार या तरंग पथक के कंडक्टरों की दीवार धाराओं के कारण। इसके अलावा, चुंबकीय पारगम्यता के लिए एक समान विश्लेषण लागू किया जा सकता है

एक चुंबकीय क्षति स्पर्शरेखा की बाद की परिभाषा के साथ

विद्युत क्षति स्पर्शरेखा को समान रूप से परिभाषित किया जा सकता है:[3]

एक प्रभावी परावैद्युत चालकता की शुरूआत पर (सापेक्ष पारगम्यता # क्षतिपूर्ण माध्यम देखें)।

असतत सर्किट परिप्रेक्ष्य

एक संधारित्र एक असतत विद्युत परिपथ घटक होता है जो सामान्यतः कंडक्टरों के बीच रखे परावैद्युत से बना होता है। कैपेसिटर के गांठ वाले तत्व मॉडल में श्रृंखला में एक दोषरहित आदर्श कैपेसिटर शामिल होता है, जिसमें समतुल्य श्रृंखला प्रतिरोध (ईएसआर) कहा जाता है, जैसा कि नीचे की आकृति में दिखाया गया है।[4] ESR संधारित्र में क्षति का प्रतिनिधित्व करता है। एक लो-लॉस कैपेसिटर में ESR बहुत छोटा होता है (चालन कम प्रतिरोधकता के लिए उच्च होता है), और क्षतिपूर्ण कैपेसिटर में ESR बड़ा हो सकता है। ध्यान दें कि ESR केवल प्रतिरोध नहीं है जिसे एक ओहमीटर द्वारा एक संधारित्र में मापा जाएगा। ईएसआर एक व्युत्पन्न मात्रा है जो परावैद्युत चालन इलेक्ट्रॉनों और ऊपर उल्लिखित बाध्य द्विध्रुव विश्राम घटना दोनों के कारण होने वाली क्षति का प्रतिनिधित्व करता है। एक परावैद्युत में, चालन इलेक्ट्रॉनों में से एक या परावैद्युत स्पेक्ट्रोस्कोपी # द्विध्रुवीय विश्राम सामान्यतः एक विशेष परावैद्युत और निर्माण विधि में क्षति पर हावी होता है। चालन इलेक्ट्रॉनों के प्रमुख क्षति होने के मामले में, तब

जहाँ C दोषरहित समाई है।

एक वास्तविक संधारित्र में समतुल्य श्रृंखला प्रतिरोध (ESR) के साथ श्रृंखला में दोषरहित आदर्श संधारित्र का एक गांठ वाला तत्व मॉडल होता है। क्षति स्पर्शरेखा को संधारित्र के प्रतिबाधा वेक्टर और नकारात्मक प्रतिक्रियाशील अक्ष के बीच के कोण द्वारा परिभाषित किया गया है।

एक जटिल संख्या समतल में वैक्टर के रूप में विद्युत सर्किट मापदंडों का प्रतिनिधित्व करते समय, जिसे फेजर (साइन तरंग) के रूप में जाना जाता है, एक संधारित्र की क्षति स्पर्शरेखा संधारित्र के प्रतिबाधा वेक्टर और नकारात्मक प्रतिक्रियाशील अक्ष के बीच के कोण के स्पर्शरेखा (त्रिकोणमितीय फ़ंक्शन) के बराबर होती है, जैसा कि आसन्न आरेख में दिखाया गया है। क्षति स्पर्शरेखा तब है

.

चूँकि समान प्रत्यावर्ती धारा ESR और X दोनों से प्रवाहित होती हैc, क्षति स्पर्शरेखा भी संधारित्र में दोलन करने वाली प्रतिक्रिया (इलेक्ट्रॉनिक्स) शक्ति के लिए ESR में विद्युत प्रतिरोध शक्ति क्षति का अनुपात है। इस कारण से, एक संधारित्र की क्षति स्पर्शरेखा को कभी-कभी इसके अपव्यय कारक, या इसके गुणवत्ता कारक क्यू के पारस्परिक रूप से वर्णित किया जाता है, जैसा कि निम्नानुसार है


संदर्भ

  1. http://www.ece.rutgers.edu/~orfanidi/ewa/ch01.pdf[bare URL PDF]
  2. Ramo, S.; Whinnery, J.R.; Van Duzer, T. (1994). Fields and Waves in Communication Electronics (3rd ed.). New York: John Wiley and Sons. ISBN 0-471-58551-3.
  3. Chen, L. F.; Ong, C. K.; Neo, C. P.; Varadan, V. V.; Varadan, Vijay K. (19 November 2004). Microwave Electronics: Measurement and Materials Characterization. eq. (1.13). ISBN 9780470020456.
  4. "Considerations for a High Performance Capacitor". Archived from the original on 2008-11-19.


बाहरी संबंध