फेनोटाइप: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 7: Line 7:
[[विल्हेम जोहानसन]] ने 1911 में जीव की आनुवंशिकता और उस वंशानुगत सामग्री के उत्पादन के बीच अंतर को स्पष्ट करने के लिए जीनोटाइप-फेनोटाइप भेद का प्रस्ताव रखा।<ref>{{cite journal | vauthors = Churchill FB | title = William Johannsen and the genotype concept | journal = Journal of the History of Biology | volume = 7 | issue = 1 | pages = 5–30 | year = 1974 | pmid = 11610096 | doi = 10.1007/BF00179291 | s2cid = 38649212 }}</ref><ref>{{cite journal | vauthors = Johannsen W | title = The genotype conception of heredity. 1911 | journal = International Journal of Epidemiology | volume = 43 | issue = 4 | pages = 989–1000 | date = August 2014 | pmid = 24691957 | pmc = 4258772 | doi = 10.1086/279202 | jstor = 2455747 }}</ref> अगस्त वेइसमैन (1834-1914) द्वारा प्रस्तावित अंतर जैसा दिखता है, जो [[जर्म प्लाज़्म]] आनुवंशिकता) और [[दैहिक कोशिका]]ओं (शरीर) के बीच अंतर करता है। अभी जल्दी ही में, द सेल्फिश जीन (1976) में, डॉकिंस ने इन अवधारणाओं को रेप्लिकेटर और वाहन के रूप में प्रतिष्ठित किया।
[[विल्हेम जोहानसन]] ने 1911 में जीव की आनुवंशिकता और उस वंशानुगत सामग्री के उत्पादन के बीच अंतर को स्पष्ट करने के लिए जीनोटाइप-फेनोटाइप भेद का प्रस्ताव रखा।<ref>{{cite journal | vauthors = Churchill FB | title = William Johannsen and the genotype concept | journal = Journal of the History of Biology | volume = 7 | issue = 1 | pages = 5–30 | year = 1974 | pmid = 11610096 | doi = 10.1007/BF00179291 | s2cid = 38649212 }}</ref><ref>{{cite journal | vauthors = Johannsen W | title = The genotype conception of heredity. 1911 | journal = International Journal of Epidemiology | volume = 43 | issue = 4 | pages = 989–1000 | date = August 2014 | pmid = 24691957 | pmc = 4258772 | doi = 10.1086/279202 | jstor = 2455747 }}</ref> अगस्त वेइसमैन (1834-1914) द्वारा प्रस्तावित अंतर जैसा दिखता है, जो [[जर्म प्लाज़्म]] आनुवंशिकता) और [[दैहिक कोशिका]]ओं (शरीर) के बीच अंतर करता है। अभी जल्दी ही में, द सेल्फिश जीन (1976) में, डॉकिंस ने इन अवधारणाओं को रेप्लिकेटर और वाहन के रूप में प्रतिष्ठित किया।


जीनोटाइप-फेनोटाइप भेद को आणविक जीव विज्ञान के [[फ्रांसिस क्रिक]] के केंद्रीय हठधर्मिता के साथ भ्रमित नहीं होना चाहिए, [[डीएनए]] से [[प्रोटीन]] तक बहने वाली आणविक अनुक्रमिक जानकारी की दिशात्मकता के बारे में एक बयान, और रिवर्स नहीं है। '''जीनोटाइप-फेनोटाइप भेद को आणविक जीव विज्ञान के [[फ्रांसिस क्रिक]] के केंद्रीय हठधर्मिता के साथ भ्रमित नहीं होना चाहिए, [[डीएनए]] से [[प्रोटीन]] तक बहने वाली आणविक अनुक्रमिक जानकारी की दिशात्मकता के बारे में एक बयान, और रिवर्स नहीं है।'''
जीनोटाइप-फेनोटाइप भेद को आणविक जीव विज्ञान के [[फ्रांसिस क्रिक]] के केंद्रीय हठधर्मिता के साथ भ्रमित नहीं होना चाहिए, [[डीएनए]] से [[प्रोटीन]] तक बहने वाली आणविक अनुक्रमिक जानकारी की दिशात्मकता के बारे में एक बयान, और रिवर्स नहीं है। '''जीनोटाइप-फेनोटाइप भेद को आणविक जीव विज्ञान के [[फ्रांसिस क्रिक]] के केंद्रीय हठधर्मिता के साथ भ्रमित नहीं होना चाहिए, [[डीएनए]] से [[प्रोटीन]]'''  


== '''परिभाषा में कठिनाइयाँ''' ==
== '''परिभाषा में कठिनाइयाँ''' ==

Revision as of 23:30, 19 February 2023

द्विकपाटी मोलस्का प्रजाति डोनाक्स चर के भीतर व्यक्तियों के मोलस्क खोल उनके फेनोटाइप में प्रकृति में विविध पशु रंग और पैटर्न दिखाते हैं।
यहाँ मटर के पौधों में पंखुड़ी के रंग के चरित्र के लिए, पुनेट वर्ग का उपयोग करके जीनोटाइप और फेनोटाइप के बीच संबंध को चित्रित किया गया है। अक्षर बी और बी रंग के लिए जीन का प्रतिनिधित्व करते हैं, और चित्र परिणामी फेनोटाइप दिखाते हैं। इससे पता चलता है कि कैसे कई जीनोटाइप (बीबी और बीबी) एक ही फेनोटाइप (बैंगनी पंखुड़ी) पैदा कर सकते हैं।

आनुवंशिकी में, फेनोटाइप (प्राचीन ग्रीक सेfrom Ancient Greek φαίνω (phaínō) 'to appear, show, shine', and τύπος (túpos) 'mark, type') किसी जीव की अवलोकन योग्य विशेषताओं या फेनोटाइपिक विशेषता का समूह है।[1][2] यह शब्द जीव के आकारिकी (जीव विज्ञान) (भौतिक रूप और संरचना), इसकी विकासात्मक जैविक प्रक्रियाओं, इसके जैव रासायनिक और शारीरिक गुणों, इसके व्यवहार और व्यवहार के उत्पादों को सम्मिलित करता है। एक जीव का फेनोटाइप दो बुनियादी कारकों से उत्पन्न होता है: एक जीव के आनुवंशिक कोड (इसका जीनोटाइप) की जीन अभिव्यक्ति और पर्यावरणीय कारकों का प्रभाव है। दोनों कारक परस्पर क्रिया कर सकते हैं, आगे चलकर फेनोटाइप को प्रभावित कर सकते हैं। जब एक प्रजाति की एक ही आबादी में दो या दो से अधिक स्पष्ट रूप से भिन्न फेनोटाइप उपस्थित होते हैं, तो प्रजाति को बहुरूपता (जीव विज्ञान) कहा जाता है। बहुरूपता का अच्छी तरह से प्रलेखित उदाहरण लैब्राडोर रेट्रिवर कोट रंग जेनेटिक्स है; जबकि कोट का रंग कई जीनों पर निर्भर करता है, यह पर्यावरण में पीले, काले और भूरे रंग के रूप में स्पष्ट रूप से देखा जाता है। 1978 में रिचर्ड डॉकिन्स[3] और फिर अपनी 1982 की पुस्तक द एक्सटेंडेड फेनोटाइप में सुझाव दिया कि कोई भी पक्षी के घोंसले और अन्य निर्मित संरचनाओं जैसे कि केड्डीस फ्लै लार्वा स्थितियों और बीवर बांधों को विस्तारित फेनोटाइप के रूप में मान सकता है।

विल्हेम जोहानसन ने 1911 में जीव की आनुवंशिकता और उस वंशानुगत सामग्री के उत्पादन के बीच अंतर को स्पष्ट करने के लिए जीनोटाइप-फेनोटाइप भेद का प्रस्ताव रखा।[4][5] अगस्त वेइसमैन (1834-1914) द्वारा प्रस्तावित अंतर जैसा दिखता है, जो जर्म प्लाज़्म आनुवंशिकता) और दैहिक कोशिकाओं (शरीर) के बीच अंतर करता है। अभी जल्दी ही में, द सेल्फिश जीन (1976) में, डॉकिंस ने इन अवधारणाओं को रेप्लिकेटर और वाहन के रूप में प्रतिष्ठित किया।

जीनोटाइप-फेनोटाइप भेद को आणविक जीव विज्ञान के फ्रांसिस क्रिक के केंद्रीय हठधर्मिता के साथ भ्रमित नहीं होना चाहिए, डीएनए से प्रोटीन तक बहने वाली आणविक अनुक्रमिक जानकारी की दिशात्मकता के बारे में एक बयान, और रिवर्स नहीं है। जीनोटाइप-फेनोटाइप भेद को आणविक जीव विज्ञान के फ्रांसिस क्रिक के केंद्रीय हठधर्मिता के साथ भ्रमित नहीं होना चाहिए, डीएनए से प्रोटीन

परिभाषा में कठिनाइयाँ

इसकी प्रतीत होने वाली सीधी-सादी परिभाषा के अतिरिक्त , फेनोटाइप की अवधारणा में सूक्ष्मताएँ छिपी हुई हैं। ऐसा लग सकता है कि जीनोटाइप पर निर्भर कुछ भी फेनोटाइप है, जिसमें आरएनए और प्रोटीन जैसे अणु सम्मिलित हैं। आनुवंशिक सामग्री द्वारा कोडित अधिकांश अणु और संरचनाएं जीव की उपस्थिति में दिखाई नहीं देती हैं, फिर भी वे देखने योग्य हैं (उदाहरण के लिए पश्चिमी ब्लॉटग द्वारा) और इस प्रकार फ़िनोटाइप का भाग हैं; मानव मानव रक्त समूह प्रणाली एक उदाहरण हैं। ऐसा लग सकता है कि यह अपने आप में (जीवित) जीव पर ध्यान केंद्रित करने के साथ अवधारणा के मूल लक्ष्य से परे है। किसी भी तरह से, फेनोटाइप शब्द में निहित लक्षण या विशेषताएँ सम्मिलित हैं जो देखने योग्य हैं या ऐसे लक्षण जिन्हें कुछ तकनीकी प्रक्रिया द्वारा दृश्यमान बनाया जा सकता है। इस विचार का उल्लेखनीय विस्तार कार्बनिक अणुओं या मेटाबोलाइट्स की उपस्थिति है जो जीवों द्वारा एंजाइमों की रासायनिक प्रतिक्रियाओं से उत्पन्न होते हैं।

ABO रक्त समूह एक पुनेट वर्ग के माध्यम से निर्धारित किया जाता है और फेनोटाइप और जीनोटाइप प्रदर्शित करता है

फेनोटाइप शब्द को कभी-कभी उत्परिवर्ती और उसके जंगली प्रकार के बीच फेनोटाइपिक अंतर के लिए शॉर्टहैंड के रूप में गलत तरीके से उपयोग किया गया है, जो (यदि महत्वपूर्ण नहीं है) इस कथन की ओर जाता है ।

उत्परिवर्तन का कोई फेनोटाइप नहीं है।[6]

एक और एक्सटेंशन फ़िनोटाइप में व्यवहार जोड़ता है, क्योंकि व्यवहार देखने योग्य विशेषताएँ हैं। व्यवहार संबंधी फेनोटाइप में संज्ञानात्मक, व्यक्तित्व और व्यवहारिक पैटर्न सम्मिलित हैं। कुछ व्यवहार संबंधी फेनोटाइप मनोरोग विकारों की विशेषता हो सकते हैं[7] या सिंड्रोम।[8][9]

बिस्टन बेटुलरिया मोर्फा टाइपिका, मानक हल्के रंग का काली मिर्च वाला कीट
B.betularia morpha Carbonaria, melanic रूप, विच्छिन्न भिन्नता को दर्शाता है

फेनोटाइपिक भिन्नता

फेनोटाइपिक भिन्नता (अंतर्निहित आनुवांशिक विविधता के कारण) प्राकृतिक चयन द्वारा विकास के लिए एक मूलभूत शर्त है। यह पूरी तरह से जीवित जीव है जो अगली पीढ़ी के लिए योगदान (या नहीं) करता है, इसलिए प्राकृतिक चयन फेनोटाइप के योगदान के माध्यम से अप्रत्यक्ष रूप से आबादी की अनुवांशिक संरचना को प्रभावित करता है। फेनोटाइपिक भिन्नता के बिना, प्राकृतिक चयन द्वारा कोई विकास नहीं होगा।[10]

जीनोटाइप और फेनोटाइप के बीच की बातचीत को अधिकांशतः निम्नलिखित संबंधों द्वारा अवधारणाबद्ध किया गया है:

जीनोटाइप (जी) + पर्यावरण (ई) → फेनोटाइप (पी)

रिश्ते का एक और सूक्ष्म संस्करण है:

जीनोटाइप (जी) + पर्यावरण (ई) + जीनोटाइप और पर्यावरण इंटरैक्शन (जीई) → फेनोटाइप (पी)

फेनोटाइप्स के संशोधन और अभिव्यक्ति में जीनोटाइप में अधिकांशतः बहुत लचीलापन होता है; कई जीवों में ये फेनोटाइप अलग-अलग पर्यावरणीय परिस्थितियों में बहुत भिन्न होते हैं। हिएरेशियम अम्बेलाटम पौधा स्वीडन में दो अलग-अलग आवासों में पाया जाता है। एक निवास स्थान चट्टानी, समुद्र के किनारे की चट्टानें हैं, जहाँ पौधे चौड़ी पत्तियों और विस्तारित पुष्पक्रमों के साथ झाड़ीदार होते हैं; दूसरा टिब्बा के बीच है जहां पौधे संकीर्ण पत्तियों और कॉम्पैक्ट पुष्पक्रमों के साथ आगे बढ़ते हैं। ये निवास स्थान स्वीडन के तट के साथ वैकल्पिक हैं और निवास स्थान जहां हिएरेशियम गर्भनाल के बीज उगते हैं, बढ़ने वाले फेनोटाइप को निर्धारित करते हैं।[11]

ड्रोसोफिला मक्खियों में यादृच्छिक भिन्नता का एक उदाहरण उम्मतीद की संख्या है, जो एक ही व्यक्ति में बाईं और दाईं आंखों के बीच भिन्न (यादृच्छिक रूप से) भिन्न हो सकती है, जितना कि वे विभिन्न जीनोटाइप के बीच, या विभिन्न वातावरणों में क्लोनिंग के बीच करते हैं।

फेनोटाइप की अवधारणा को जीन के स्तर से नीचे की विविधताओं तक बढ़ाया जा सकता है जो किसी जीव की फिटनेस को प्रभावित करते हैं। उदाहरण के लिए, मूक उत्परिवर्तन जो जीन के संबंधित अमीनो एसिड अनुक्रम को नहीं बदलते हैं, ग्वानिन-साइटोसिन बेस जोड़े (जीसी सामग्री) की आवृत्ति को बदल सकते हैं। इन आधार युग्मों में एडेनिन-थाइमिन की तुलना में एक उच्च तापीय स्थिरता (गलनांक) है, एक संपत्ति जो उच्च तापमान वातावरण में रहने वाले जीवों के बीच, जीसी सामग्री में समृद्ध प्रकार पर एक चयनात्मक लाभ प्रदान कर सकती है।



विस्तारित फेनोटाइप

रिचर्ड डॉकिन्स ने फेनोटाइप का वर्णन किया जिसमें जीन के आसपास के सभी प्रभाव सम्मिलित थे, अन्य जीवों सहित, एक विस्तारित फेनोटाइप के रूप में, यह तर्क देते हुए कि जानवर का व्यवहार उस व्यवहार के लिए जीन के अस्तित्व को अधिकतम करने की प्रवृत्ति रखता है, चाहे वे जीन हों या नहीं। ऐसा करने वाले विशेष जानवर के शरीर में होता है।[3] उदाहरण के लिए, एक ऊदबिलाव जैसा जीव एक ऊदबिलाव बांध बनाकर अपने पर्यावरण को संशोधित करता है; इसे जीन अभिव्यक्ति माना जा सकता है, ठीक वैसे ही जैसे इसके कृंतक दांत होते हैं—जिसका उपयोग यह अपने पर्यावरण को संशोधित करने के लिए करता है। इसी तरह, जब पक्षी एक कोयल जैसे परजीवी को खिलाता है, तो वह अनजाने में अपने फेनोटाइप का विस्तार कर रहा होता है; और जब आर्किड में जीन परागण बढ़ाने के लिए ऑर्किड मधुमक्खी के व्यवहार को प्रभावित करते हैं, या जब मोर में जीन मोरनी के मैथुन संबंधी निर्णयों को प्रभावित करते हैं, तो फिर से, फेनोटाइप को बढ़ाया जा रहा है। डॉकिन्स के विचार में, जीन्स को उनके फेनोटाइपिक प्रभावों द्वारा चुना जाता है।[12]

अन्य जीव विज्ञानी सामान्यतः सहमत हैं कि विस्तारित फेनोटाइप अवधारणा प्रासंगिक है, लेकिन विचार करें कि प्रायोगिक परीक्षणों के डिजाइन में सहायता करने के अतिरिक्त इसकी भूमिका काफी अधिक तक व्याख्यात्मक है।[13]


जीन और फेनोटाइप्स

फीनोटाइप का निर्धारण जीन और पर्यावरण के द्वारा और अंतःक्रिया द्वारा किया जाता है, लेकिन प्रत्येक जीन और फीनोटाइप के लिए तंत्र अलग होता है। उदाहरण के लिए, जीन एन्कोडिंग टायरोसिनेस में उत्परिवर्तन के कारण रंगहीनता फेनोटाइप हो सकता है जो मेलेनिन गठन में एक महत्वपूर्ण एंजाइम है। चूंकि, पराबैंगनी के संपर्क में मेलेनिन उत्पादन में वृद्धि हो सकती है, इसलिए पर्यावरण इस फेनोटाइप में भी भूमिका निभाता है। अधिकांश जटिल फेनोटाइप्स के लिए सटीक आनुवंशिक तंत्र अज्ञात रहता है। उदाहरण के लिए, यह काफी सीमा तक स्पष्ट नहीं है कि कैसे जीन हड्डियों या मानव कान के आकार का निर्धारण करते हैं।

जीवों के फेनोटाइप निर्धारित करने में जीन अभिव्यक्ति महत्वपूर्ण भूमिका निभाती है। जीन अभिव्यक्ति का स्तर जीव के फेनोटाइप को प्रभावित कर सकता है। उदाहरण के लिए, यदि जीन जो किसी विशेष एंजाइम के लिए कोड करता है, उच्च स्तर पर व्यक्त किया जाता है, तो जीव उस एंजाइम का अधिक उत्पादन कर सकता है और परिणामस्वरूप एक विशेष लक्षण प्रदर्शित कर सकता है। दूसरी ओर, यदि जीन निम्न स्तरों पर व्यक्त किया जाता है, तो जीव कम एंजाइम का उत्पादन कर सकता है और एक अलग लक्षण प्रदर्शित कर सकता है।[14]

Diagram of Extended Central Dogma With Enzymes
आणविक जीव विज्ञान के विस्तारित केंद्रीय हठधर्मिता में आनुवंशिक जानकारी के प्रवाह में सम्मिलित सभी सेलुलर प्रक्रियाएं सम्मिलित हैं

जीन अभिव्यक्ति को विभिन्न स्तरों पर विनियमित किया जाता है और इस प्रकार प्रत्येक स्तर कुछ फेनोटाइप्स को प्रभावित कर सकता है, जिसमें प्रतिलेखन (जीव विज्ञान)जीव विज्ञान) और पोस्ट-ट्रांसक्रिप्शनल विनियमन सम्मिलित हैं।

tortoiseshell cat
कछुआ बिल्ली के धब्बेदार रंग त्वचा के विभिन्न क्षेत्रों में रंजकता जीन की अभिव्यक्ति के विभिन्न स्तरों का परिणाम हैं।

जीन अभिव्यक्ति के स्तरों में परिवर्तन विभिन्न प्रकार के कारकों से प्रभावित हो सकते हैं, जैसे कि पर्यावरण की स्थिति, आनुवंशिक भिन्नता और एपिजेनेटिक्स संशोधन। ये संशोधन पर्यावरणीय कारकों जैसे कि आहार, तनाव और विषाक्त पदार्थों के संपर्क से प्रभावित हो सकते हैं और किसी व्यक्ति के फेनोटाइप पर महत्वपूर्ण प्रभाव डाल सकते हैं। कुछ फीनोटाइप जीनोटाइप में परिवर्तन के अतिरिक्त इन कारकों के कारण जीन अभिव्यक्ति में परिवर्तन का परिणाम हो सकते हैं। आरएनए अनुक्रमण से मापी गई जीन अभिव्यक्ति का उपयोग करने वाली मशीन सीखने के तरीकों से जुड़े एक प्रयोग में फेनोटाइप भविष्यवाणी के संदर्भ में अलग-अलग व्यक्तियों के लिए पर्याप्त संकेत हो सकते हैं।[15]


घटना और घटना विज्ञान

यद्यपि एक फेनोटाइप एक जीव द्वारा प्रदर्शित अवलोकन योग्य विशेषताओं का पहनावा है, फ़िनोम शब्द का उपयोग कभी-कभी लक्षणों के संग्रह को संदर्भित करने के लिए किया जाता है, जबकि इस तरह के संग्रह के साथ-साथ अध्ययन को फेनोमिक्स कहा जाता है।[16][17] फेनोमिक्स अध्ययन का एक महत्वपूर्ण क्षेत्र है क्योंकि इसका उपयोग यह पता लगाने के लिए किया जा सकता है कि कौन से जीनोमिक संस्करण फेनोटाइप्स को प्रभावित करते हैं जिनका उपयोग तब स्वास्थ्य, रोग और विकासवादी फिटनेस जैसी चीजों को समझाने के लिए किया जा सकता है।[18] फेनोमिक्स मानव जीनोम परियोजना का एक बड़ा भाग है।[19]

फेनोमिक्स का कृषि में अनुप्रयोग है। उदाहरण के लिए, अधिक टिकाऊ जीएमओ बनाने के लिए फेनोमिक्स के माध्यम से सूखे और गर्मी प्रतिरोध जैसे जीनोमिक विविधताओं की पहचान की जा सकती है।[20][21]

फेनोमिक्स व्यक्तिगत चिकित्सा, विशेष रूप से दवाई से उपचार की दिशा में एक महत्वपूर्ण कदम हो सकता है।[22] एक बार फेनोमिक डेटाबेस ने अधिक डेटा प्राप्त कर लिया है, एक व्यक्ति की फेनोमिक जानकारी का उपयोग किसी व्यक्ति के अनुरूप विशिष्ट दवाओं का चयन करने के लिए किया जा सकता है।[22]


बड़े पैमाने पर फेनोटाइपिंग और जेनेटिक स्क्रीन

बड़े पैमाने पर अनुवांशिक स्क्रीन जीन या उत्परिवर्तन की पहचान कर सकते हैं जो किसी जीव के फेनोटाइप को प्रभावित करते हैं। उत्परिवर्तित जीनों के फीनोटाइप का विश्लेषण करने से भी जीन प्रकार्य निर्धारित करने में सहायता मिल सकती है।[23] अधिकांश जेनेटिक स्क्रीन में सूक्ष्मजीवों का उपयोग किया गया है, जिसमें जीन को आसानी से हटाया जा सकता है। उदाहरण के लिए, एस्चेरिचिया कोलाईई में लगभग सभी जीन हटा दिए गए हैं। कोलाई[24] और कई अन्य जीवाणु, लेकिन बेकर के खमीर जैसे कई यूकेरियोटिक मॉडल जीवों में भी[25] और स्किज़ोसैक्रोमाइसेस पोम्बे[26] अन्य खोजों में, ऐसे अध्ययनों से आवश्यक जीनों की सूची का पता चला है।

हाल ही में, जानवरों में बड़े पैमाने पर फेनोटाइपिक स्क्रीनिंग का भी उपयोग किया गया है, उदा। व्यवहार आनुवंशिकी जैसे कम समझे जाने वाले फेनोटाइप का अध्ययन करने के लिए। एक स्क्रीन में, चूहों में उत्परिवर्तन की भूमिका सीखने और स्मृति, सर्कडियन लयबद्धता, दृष्टि, तनाव के प्रति प्रतिक्रिया और उत्तेजक के प्रति प्रतिक्रिया जैसे क्षेत्रों में अध्ययन की गई थी।

चूहों में तंत्रिका तंत्र और व्यवहार के लिए बड़े पैमाने पर उत्परिवर्तन और फेनोटाइपिक स्क्रीन
फेनोटाइपिक डोमेन परख टिप्पणियाँ सॉफ़्टवेयर पैकेज
सर्केडियन रिदम पहिया चलाने का व्यवहार क्लॉकलैब
सीखना और स्मृति डर कंडीशनिंग फ्रीजिंग का वीडियो-छवि-आधारित स्कोरिंग चौखट में जम जाना
प्रारंभिक आकलन खुले क्षेत्र की गतिविधि और उन्नत प्लस भूलभुलैया एक्सप्लोरेशन का वीडियो-इमेज-आधारित स्कोरिंग गैस का तीव्र प्रकाश
साइकोस्टिमुलेंट प्रतिक्रिया हाइपरलोकोमोशन व्यवहार लोकोमोशन की वीडियो-छवि-आधारित ट्रैकिंग बिग भाई
दृष्टि इलेक्ट्रोरेटिनोग्राम और फंडस फोटोग्राफी एल पिंटो और सहयोगियों

इस प्रयोग में ईएनयू, या एन-एथिल-एन-नाइट्रोसुरिया के साथ इलाज किए गए चूहों की संतान सम्मिलित थी, जो एक शक्तिशाली उत्परिवर्तन है जो बिंदु उत्परिवर्तन का कारण बनता है। पुटेटिव म्यूटेंट की संख्या का पता लगाने के लिए चूहों को अलग-अलग व्यवहार डोमेन में परिवर्तन के लिए फेनोटाइपिक रूप से जांचा गया था (विवरण के लिए तालिका देखें)। वंशानुक्रम पैटर्न को निर्धारित करने के साथ-साथ म्यूटेशन को मैप करने में सहायता करने के लिए पुटेटिव म्यूटेंट को फिर से आनुवंशिकता के लिए परीक्षण किया जाता है। एक बार जब उन्हें मैप किया गया, क्लोन किया गया और पहचाना गया, तो यह निर्धारित किया जा सकता है कि एक उत्परिवर्तन एक नए जीन का प्रतिनिधित्व करता है या नहीं।

फेनोटाइपिक डोमेन ईएनयू संतति की जांच की गई पुटेटिव म्यूटेंट संतान के साथ पुटीय उत्परिवर्ती रेखाएं पुष्टि किए गए म्यूटेंट
सामान्य आकलन 29860 80 38 14
सीखना और स्मृति 23123 165 106 19
साइकोस्टिमुलेंट प्रतिक्रिया 20997 168 86 9
तनाव के लिए न्यूरोएंडोक्राइन प्रतिक्रिया 13118 126 54 2
दृष्टि 15582 108 60 6

इन प्रयोगों से पता चला है कि rhodopsin जीन में परिवर्तन से दृष्टि प्रभावित होती है और यहां तक ​​कि चूहों में रेटिनल डिजनरेशन (रोडोप्सिन म्यूटेशन) भी हो सकता है।[27] वही एमिनो एसिड परिवर्तन अंधापन का कारण बनता है, यह दर्शाता है कि कैसे जानवरों में फेनोटाइपिंग चिकित्सा निदान और संभवतः चिकित्सा को सूचित कर सकता है।

फेनोटाइप की विकासवादी उत्पत्ति

आरएनए दुनिया पृथ्वी पर जीवन के विकासवादी इतिहास में परिकल्पित पूर्व-कोशिकीय चरण है, जिसमें डीएनए और प्रोटीन के विकास से पहले स्व-प्रतिकृति आरएनए अणुओं का प्रसार हुआ।[28] पहले आरएनए अणु की मुड़ी हुई त्रि-आयामी भौतिक संरचना जिसमें राइबोज़ाइम गतिविधि होती है जो विनाश से बचने के दौरान प्रतिकृति को बढ़ावा देती है, पहला फेनोटाइप होगा, और पहले स्व-प्रतिकृति आरएनए अणु का न्यूक्लिक एसिड अनुक्रम मूल जीनोटाइप होगा।[28]


यह भी देखें

संदर्भ

  1. "Phenotype adjective – Definition, pictures, pronunciation and usage notes". Oxford Advanced Learner's Dictionary at OxfordLearnersDictionaries.com. Retrieved 2020-04-29. the set of observable characteristics of an individual resulting from the interaction of its genotype with the environment.
  2. "Genotype versus phenotype". Understanding Evolution. Retrieved 2020-04-29. An organism's genotype is the set of genes that it carries. An organism's phenotype is all of its observable characteristics — which are influenced both by its genotype and by the environment.
  3. 3.0 3.1 Dawkins R (May 1978). "Replicator selection and the extended phenotype". Zeitschrift Fur Tierpsychologie. 47 (1): 61–76. doi:10.1111/j.1439-0310.1978.tb01823.x. PMID 696023.
  4. Churchill FB (1974). "William Johannsen and the genotype concept". Journal of the History of Biology. 7 (1): 5–30. doi:10.1007/BF00179291. PMID 11610096. S2CID 38649212.
  5. Johannsen W (August 2014). "The genotype conception of heredity. 1911". International Journal of Epidemiology. 43 (4): 989–1000. doi:10.1086/279202. JSTOR 2455747. PMC 4258772. PMID 24691957.
  6. Crusio WE (May 2002). "'My mouse has no phenotype'". Genes, Brain and Behavior. 1 (2): 71. doi:10.1034/j.1601-183X.2002.10201.x. PMID 12884976. S2CID 35382304.
  7. Cassidy SB, Morris CA (2002-01-01). "Behavioral phenotypes in genetic syndromes: genetic clues to human behavior". Advances in Pediatrics. 49: 59–86. PMID 12214780.
  8. O'Brien G, Yule W, eds. (1995). Behavioural Phenotype. Clinics in Developmental Medicine No.138. London: Mac Keith Press. ISBN 978-1-898683-06-3.
  9. Lua error: not enough memory.
  10. Lua error: Internal error: The interpreter exited with status 1.
  11. Lua error: Internal error: The interpreter exited with status 1.
  12. Lua error: Internal error: The interpreter exited with status 1.
  13. Lua error: Internal error: The interpreter exited with status 1.
  14. Anika Oellrich, Sanger Mouse Genetics Project, Damian Smedley, Linking tissues to phenotypes using gene expression profiles, Database, Volume 2014, 2014, bau017, https://doi.org/10.1093/database/bau017
  15. Nussinov, R., Tsai, C.-J., & Jang, H. (2019). Protein ensembles link genotype to phenotype. PLOS Computational Biology, 15(6). https://doi.org/10.1371/journal.pcbi.1006648
  16. Lua error: Internal error: The interpreter exited with status 1.
  17. Lua error: Internal error: The interpreter exited with status 1.
  18. Lua error: Internal error: The interpreter exited with status 1.
  19. Lua error: Internal error: The interpreter exited with status 1.
  20. Lua error: Internal error: The interpreter exited with status 1.
  21. Lua error: Internal error: The interpreter exited with status 1.
  22. 22.0 22.1 Lua error: Internal error: The interpreter exited with status 1.
  23. Lua error: Internal error: The interpreter exited with status 1.
  24. Lua error: Internal error: The interpreter exited with status 1.
  25. Lua error: Internal error: The interpreter exited with status 1.
  26. Lua error: Internal error: The interpreter exited with status 1.
  27. Lua error: Internal error: The interpreter exited with status 1.
  28. 28.0 28.1 Lua error: Internal error: The interpreter exited with status 1.

Lua error: Internal error: The interpreter exited with status 1.


बाहरी संबंध

Lua error: Internal error: The interpreter exited with status 1. Lua error: Internal error: The interpreter exited with status 1.

Lua error: Internal error: The interpreter exited with status 1.

Lua error: Internal error: The interpreter exited with status 1.