रोबोट अंत प्रभावक: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 2: | Line 2: | ||
[[रोबोटिक]] और प्रेरक रोबोटिक बांह के अंत में उपकरण है, जिसे पर्यावरण के साथ संवाद करने के लिए रचना किया गया है। इस उपकरण की सटीक प्रकृति रोबोट के अनुप्रयोग पर निर्भर करती है। | [[रोबोटिक]] और प्रेरक रोबोटिक बांह के अंत में उपकरण है, जिसे पर्यावरण के साथ संवाद करने के लिए रचना किया गया है। इस उपकरण की सटीक प्रकृति रोबोट के अनुप्रयोग पर निर्भर करती है। | ||
सख्त परिभाषा में, जो धारावाहिक रोबोटिक [[जोड़तोड़ (उपकरण)]] से उत्पन्न होता है। | सख्त परिभाषा में, जो धारावाहिक रोबोटिक [[जोड़तोड़ (उपकरण)]] से उत्पन्न होता है। अंत प्रेरक का अर्थ रोबोट का अंतिम संपर्क होता है। इस समापन बिंदु पर उपकरण जुड़े हुए हैं। व्यापक अर्थ में अंतिम प्रभावक को रोबोट के भाग के रूप में देखा जा सकता है जो कार्य के वातावरण के साथ संपर्क करता है। यह [[मोबाइल रोबोट]] के पहियों या [[ह्यूमनॉइड रोबोट]] के पैरों को संदर्भित नहीं करता है, जो अंतिम प्रभावकारक नहीं हैं, जबकि रोबोट की गतिशीलता का भाग हैं। | ||
अंतिम प्रभावकों में उपकरण | अंतिम प्रभावकों में उपकरण युक्त हो सकता है। रोबोटिक परिग्रहण का संकेत करते समय रोबोट परिग्रहण की चार सामान्य श्रेणियां होती हैं।<ref>{{cite book |last1=Monkman |first1=G. J. |last2=Hesse |first2=S. |last3=Steinmann |first3=R. |last4=Schunk |first4=H. |title=Robot Grippers |publisher=Wiley-VCH |year=2007 |isbn=978-3-527-40619-7 |page=62}}</ref> | ||
# प्रभावी जबड़े या पंजे जो वस्तु पर सीधे प्रभाव से भौतिक रूप से पकड़ लेते हैं। | # प्रभावी जबड़े या पंजे जो वस्तु पर सीधे प्रभाव से भौतिक रूप से पकड़ लेते हैं। | ||
# आक्रामक पिन, सुई जो भौतिक रूप से वस्तु की सतह में प्रवेश करते हैं (कपड़ा, कार्बन और ग्लास फाइबर व्यवहार में प्रयुक्त)। | # आक्रामक पिन, सुई जो भौतिक रूप से वस्तु की सतह में प्रवेश करते हैं (कपड़ा, कार्बन और ग्लास फाइबर व्यवहार में प्रयुक्त)। | ||
# प्रतिबंधात्मक वस्तु की सतह पर लागू आकर्षक बल | # प्रतिबंधात्मक वस्तु की सतह पर लागू आकर्षक बल निर्वात , मैग्नेटो या [[विद्युत आसंजन]] द्वारा। | ||
# संगत चिपकने के लिए सीधे संपर्क की आवश्यकता होती है (जैसे गोंद, [[सतह तनाव]], या ठंड)। | # संगत चिपकने के लिए सीधे संपर्क की आवश्यकता होती है (जैसे गोंद, [[सतह तनाव]], या ठंड)। | ||
Line 25: | Line 25: | ||
=== किसी वस्तु को पकड़ने के लिए आवश्यक बल === | === किसी वस्तु को पकड़ने के लिए आवश्यक बल === | ||
यद्यपि शरीर पर कई बल कार्य कर रहे हैं ,जिन्हें रोबोटिक भुजा द्वारा उठाया गया है, मुख्य बल घर्षण बल है। ग्रिपिंग सतह को घर्षण के उच्च गुणांक के साथ नरम सामग्री से बनाया जा सकता है, इसलिये वस्तु की सतह क्षतिग्रस्त न हो। रोबोटिक परिग्रहण को न केवल वस्तु के वजन का सामना करना पड़ता है, | यद्यपि शरीर पर कई बल कार्य कर रहे हैं ,जिन्हें रोबोटिक भुजा द्वारा उठाया गया है, मुख्य बल घर्षण बल है। ग्रिपिंग सतह को घर्षण के उच्च गुणांक के साथ नरम सामग्री से बनाया जा सकता है, इसलिये वस्तु की सतह क्षतिग्रस्त न हो। रोबोटिक परिग्रहण को न केवल वस्तु के वजन का सामना करना पड़ता है, जबकि त्वरण और वस्तु की लगातार गति के कारण होने वाली गति का भी सामना करना पड़ता है। वस्तु को जकड़ने के लिए आवश्यक बल ज्ञात करने के लिए निम्न सूत्र का प्रयोग किया जाता है | ||
<math display="block">F= \frac{ma}{\mu n}</math> | <math display="block">F= \frac{ma}{\mu n}</math> | ||
जहाँ | जहाँ | ||
Line 32: | Line 32: | ||
|- | |- | ||
| <math>\,F</math> | | <math>\,F</math> | ||
| | |वस्तु को पकड़ने के लिए आवश्यक बल है, | ||
|- | |- | ||
| <math>\,m</math> | | <math>\,m</math> | ||
| | |वस्तु का द्रव्यमान है | ||
|- | |- | ||
| <math>\,a</math> | | <math>\,a</math> | ||
| | |वस्तु का त्वरण है, | ||
|- | |- | ||
| <math>\,\mu</math> | | <math>\,\mu</math> | ||
| | |घर्षण का गुणांक है और | ||
|- | |- | ||
| <math>\,n</math> | | <math>\,n</math> | ||
| | |ग्रिपर में उंगलियों की संख्या है। | ||
|} | |} | ||
आंदोलन की दिशा के लिए और पूर्ण समीकरण होगा। उदाहरण के लिए, जब पिंड को गुरुत्वाकर्षण बल के विरुद्ध ऊपर की ओर ले जाया जाता है, तो आवश्यक बल गुरुत्वाकर्षण बल की तुलना में अधिक होगा। इसलिए, और शब्द पेश किया जाता है और सूत्र बन जाता है | आंदोलन की दिशा के लिए और पूर्ण समीकरण होगा। उदाहरण के लिए, जब पिंड को गुरुत्वाकर्षण बल के विरुद्ध ऊपर की ओर ले जाया जाता है, तो आवश्यक बल गुरुत्वाकर्षण बल की तुलना में अधिक होगा। इसलिए, और शब्द पेश किया जाता है और सूत्र बन जाता है | ||
<math display="block">F= \frac{m(a+g)}{\mu n}</math> | <math display="block">F= \frac{m(a+g)}{\mu n}</math> | ||
यहाँ, मूल्य <math>\,g</math> गुरुत्वाकर्षण के कारण त्वरण के रूप में लिया जाना चाहिए और <math>\,a</math> आंदोलन के कारण | यहाँ, मूल्य <math>\,g</math> गुरुत्वाकर्षण के कारण त्वरण के रूप में लिया जाना चाहिए और <math>\,a</math> आंदोलन के कारण त्वरण है। | ||
कई शारीरिक रूप से चालाकी कार्यों के लिए, जैसे कि पेचकस को लिखना और संभालना, विशिष्ट कार्य आवश्यकताओं को पूरा करने के लिए सबसे उपयुक्त पकड़ चुनने के लिए कार्य से संबंधित कसौटी को लागू किया जा सकता है। कई कार्य-उन्मुख गुणवत्ता मेट्रिक्स को समझते हैं<ref>{{cite journal |title=Grasp planning to maximize task coverage |journal=The International Journal of Robotics Research|volume=34|issue=9|pages=1195–1210|doi=10.1177/0278364915583880|year=2015 |last1=Lin |first1=Yun |last2=Sun|first2=Yu}}</ref> अच्छी पकड़ के चयन का मार्गदर्शन करने के लिए प्रस्तावित किया गया था जो कार्य आवश्यकताओं को पूरा | कई शारीरिक रूप से चालाकी कार्यों के लिए, जैसे कि पेचकस को लिखना और संभालना, विशिष्ट कार्य आवश्यकताओं को पूरा करने के लिए सबसे उपयुक्त पकड़ चुनने के लिए कार्य से संबंधित कसौटी को लागू किया जा सकता है। कई कार्य-उन्मुख गुणवत्ता मेट्रिक्स को समझते हैं<ref>{{cite journal |title=Grasp planning to maximize task coverage |journal=The International Journal of Robotics Research|volume=34|issue=9|pages=1195–1210|doi=10.1177/0278364915583880|year=2015 |last1=Lin |first1=Yun |last2=Sun|first2=Yu}}</ref> अच्छी पकड़ के चयन का मार्गदर्शन करने के लिए प्रस्तावित किया गया था जो कार्य आवश्यकताओं को पूरा करेगा है। | ||
== उदाहरण == | == उदाहरण == | ||
सभा-रेखा रोबोट का अंतिम प्रभाव सामान्यतःपर [[वेल्डिंग]] या [[स्प्रे पेंटिंग|फुहार रंगाई]] होगा। [[सर्जिकल रोबोट|शल्यक रोबोट]] का अंतिम प्रभावक [[छुरी]] में प्रयोग होने वाला अन्य उपकरण हो सकता है। अन्य संभावित अंत प्रभावक मशीन टूल्स जैसे [[छेद करना]] या [[मिलिंग कटर]] हो सकते हैं। कैनाडर्म पर अंतिम प्रभावक अंतरिक्ष शटल की रोबोटिक भुजा तारों के स्वरूप का उपयोग करती है, जो अन्य लोभी बिंदु के आस-पास कैमरे के छिद्र की तरह बंद होती है। | सभा-रेखा रोबोट का अंतिम प्रभाव सामान्यतःपर [[वेल्डिंग]] या [[स्प्रे पेंटिंग|फुहार रंगाई]] होगा। [[सर्जिकल रोबोट|शल्यक रोबोट]] का अंतिम प्रभावक [[छुरी]] में प्रयोग होने वाला अन्य उपकरण हो सकता है। अन्य संभावित अंत प्रभावक मशीन टूल्स जैसे [[छेद करना]] या [[मिलिंग कटर]] हो सकते हैं। कैनाडर्म पर अंतिम प्रभावक अंतरिक्ष शटल की रोबोटिक भुजा तारों के स्वरूप का उपयोग करती है, जो अन्य लोभी बिंदु के आस-पास कैमरे के छिद्र की तरह बंद होती है। | ||
Line 78: | Line 71: | ||
* [[चिमटा]] | * [[चिमटा]] | ||
* [[छाया हाथ]] | * [[छाया हाथ]] | ||
==संदर्भ== | ==संदर्भ== | ||
{{Reflist}} | {{Reflist}} | ||
[[Category: | [[Category:All articles with unsourced statements]] | ||
[[Category:Articles with invalid date parameter in template]] | |||
[[Category:Articles with unsourced statements from July 2013]] | |||
[[Category:Articles with unsourced statements from March 2014]] | |||
[[Category:Created On 15/02/2023]] | [[Category:Created On 15/02/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Template documentation pages|Short description/doc]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:रोबोटिक हेरफेर]] | |||
[[Category:वीडियो क्लिप वाले लेख]] |
Latest revision as of 11:14, 24 February 2023
रोबोटिक और प्रेरक रोबोटिक बांह के अंत में उपकरण है, जिसे पर्यावरण के साथ संवाद करने के लिए रचना किया गया है। इस उपकरण की सटीक प्रकृति रोबोट के अनुप्रयोग पर निर्भर करती है।
सख्त परिभाषा में, जो धारावाहिक रोबोटिक जोड़तोड़ (उपकरण) से उत्पन्न होता है। अंत प्रेरक का अर्थ रोबोट का अंतिम संपर्क होता है। इस समापन बिंदु पर उपकरण जुड़े हुए हैं। व्यापक अर्थ में अंतिम प्रभावक को रोबोट के भाग के रूप में देखा जा सकता है जो कार्य के वातावरण के साथ संपर्क करता है। यह मोबाइल रोबोट के पहियों या ह्यूमनॉइड रोबोट के पैरों को संदर्भित नहीं करता है, जो अंतिम प्रभावकारक नहीं हैं, जबकि रोबोट की गतिशीलता का भाग हैं।
अंतिम प्रभावकों में उपकरण युक्त हो सकता है। रोबोटिक परिग्रहण का संकेत करते समय रोबोट परिग्रहण की चार सामान्य श्रेणियां होती हैं।[1]
- प्रभावी जबड़े या पंजे जो वस्तु पर सीधे प्रभाव से भौतिक रूप से पकड़ लेते हैं।
- आक्रामक पिन, सुई जो भौतिक रूप से वस्तु की सतह में प्रवेश करते हैं (कपड़ा, कार्बन और ग्लास फाइबर व्यवहार में प्रयुक्त)।
- प्रतिबंधात्मक वस्तु की सतह पर लागू आकर्षक बल निर्वात , मैग्नेटो या विद्युत आसंजन द्वारा।
- संगत चिपकने के लिए सीधे संपर्क की आवश्यकता होती है (जैसे गोंद, सतह तनाव, या ठंड)।
ये श्रेणियां परिग्रहण और पकड़ी जाने वाली वस्तु के बीच स्थिर पकड़ प्राप्त करें करने के लिए उपयोग किए जाने वाले भौतिक प्रभावों का वर्णन करती हैं।[2]औद्योगिक परिग्रहण्स यांत्रि चुंबकीय साधनों का उपयोग कर सकते हैं। निर्वात कप और विद्युत वैचित्र्य क्षेत्र और धातु की चादर व्यवहार पर हावी हैं। बर्नौली ग्रिप परिग्रहण और भाग के बीचवायु प्रवाह का उपयोग करती है, जिसमें उत्तोलक बल परिग्रहण और भाग को दूसरे के निकट लाता है (बर्नौली के सिद्धांत का उपयोग करके)। बर्नौली परिग्रहण प्रकार के संपर्क रहित परिग्रहण हैं। वस्तु सीधे संपर्क में आए बिना परिग्रहण द्वारा उत्पन्न बल क्षेत्र में ही सीमित रहती है। बर्नौली परिग्रहण्स को फोटोवोल्टिक सेल व्यवहार, सिलिकॉन बिस्किट व्यवहार और कपड़ा और चमड़ा उद्योगों में अपनाया गया है। सूक्ष्म पैमाना (भाग आकार> 5 मिमी) में अन्य सिद्धांतों का कम उपयोग किया जाता है। लेकिन पिछले दस वर्षों में, सूक्ष्म-व्यवहार में रोचक अनुप्रयोगों का प्रदर्शन किया है। अन्य स्वीकृत सिद्धांतों में युक्त हैं, इलेक्ट्रोस्टैटिक परिग्रहण्स और विद्युत बल के आधार पर वैन डेर वाल्स परिग्रहण्स अर्थात वैन डेर वाल्स बल केशिका परिग्रहण क्रायोजेनिक परिग्रहण्स तरल माध्यम पर आधारित अल्ट्रासोनिक परिग्रहण और लेज़र परिग्रहण्स बाद वाले दो संपर्क रहित-लोभी सिद्धांत हैं।इलेक्ट्रोस्टैटिक परिग्रहण्स परिग्रहण और भाग इलेक्ट्रोस्टैटिक बल के बीच आवेश-अंतर का उपयोग करते हैं। जो परिग्रहण द्वारा ही सक्रिय होता है, जबकि वैन डेर वाल्स परिग्रहण्स परिग्रहण के अणुओं और उन लोगों के बीच परमाणु आकर्षण के कम बल अभी भी इलेक्ट्रोस्टैटिक पर आधारित होते हैं। वस्तु केशिका परिग्रहण्स परिग्रहण और केंद्र के भाग के बीच तरल नवचंद्रक के सतह तनाव का उपयोग करते हैं, भाग को संरेखित और पकड़ते हैं। क्रायोजेनिक परिग्रहण्स तरल की छोटी मात्रा को ठंडा करते हैं, जिसके परिणामस्वरूप बर्फ वस्तु को उठाने और संभालने के लिए आवश्यक बल की आपूर्ति करता है। यह सिद्धांत भोजन से निपटने और कपड़ा पकड़ने में भी प्रयोग किया जाता है। इससे भी अधिक जटिल अल्ट्रासाउंड परिग्रहण्स हैं, जहां भाग को ऊपर उठाने और इसे निश्चित स्तर पर फँसाने के लिए दबाव खड़ी तरंगों का उपयोग किया जाता है। उत्तोलन का उदाहरण सूक्ष्म स्तर पर, पेच-और अवरोधक सूक्ष्म पैमाना पर दोनों हैं, सौर सेल या सिलिकॉन-वेफर व्यवहार में लेजर स्रोत जो तरल माध्यम मुख्य रूप से कोशिकाओं में सूक्ष्मपार्ट्स को फंसाने और स्थानांतरित करने के लिए पर्याप्त दबाव उत्तपन करता है। लेजर परिग्रहण को लेजर चिमटी के रूप में भी जाना जाता है।
घर्षण/जबड़ा पकड़ने वालों की विशेष श्रेणी सुई पकड़ने वालों की होती है। इन्हें हस्तक्षेप देने वाले परिग्रहण्स कहा जाता है, जो मानक यांत्रिक परिग्रहण्स के रूप में घर्षण और रूप-बंद दोनों का शोषण करते हैं।
सबसे प्रसिद्ध यांत्रिक परिग्रहण दो, तीन या पांच उंगलियों का भी हो सकता है।
उपकरण के रूप में उपयोग किए जाने वाले अंतिम प्रभावक विभिन्न उद्देश्यों की पूर्ति करते हैं। जिसमें सभा में स्पॉट-वेल्डिंग, फुहार रंगाई जहां रंगाई की रूपता आवश्यक है, और अन्य उद्देश्य जहां कार्य करने की स्थिति मनुष्य के लिए खतरनाक है। शल्यक रोबोट में अंत प्रभावक होते हैं जो विशेष रूप से इस उद्देश्य के लिए निर्मित होते हैं।
परिग्रहण तंत्र
रोबोटिक का सामान्य रूप रोबोट बल बंद है।[3]सामान्यतः पर जकड़न तंत्र परिग्रहण्स या यांत्रिक उंगलियों द्वारा किया जाता है। कम जटिल अनुप्रयोगों में विशिष्ट कार्य करने वाले औद्योगिक रोबोटों के लिए दो उंगलियों परिग्रहण का उपयोग किया जाता है।[citation needed] उंगलियां बदली जा सकती हैं।[citation needed]सतह के आकार और वस्तु को पकड़ने के लिए आवश्यक बल के लिए दो अंगुलियों से पकड़ने खाते में दो प्रकार के तंत्र का उपयोग किया जाता है।
चालाकी की जाने वाली वस्तुओं के आकार के अनुसार उंगलियों की मनोरंजक सतह का आकार चुना जा सकता है। उदाहरण के लिए, यदि रोबोट को गोल वस्तु को उठाने के लिए रचना किया गया है। तो परिग्रहण की सतह का आकार को कुशल बनाने के लिए इसका अवतल प्रभाव हो सकता है। चौकोर आकार के लिए सतह समतल हो सकती है।
किसी वस्तु को पकड़ने के लिए आवश्यक बल
यद्यपि शरीर पर कई बल कार्य कर रहे हैं ,जिन्हें रोबोटिक भुजा द्वारा उठाया गया है, मुख्य बल घर्षण बल है। ग्रिपिंग सतह को घर्षण के उच्च गुणांक के साथ नरम सामग्री से बनाया जा सकता है, इसलिये वस्तु की सतह क्षतिग्रस्त न हो। रोबोटिक परिग्रहण को न केवल वस्तु के वजन का सामना करना पड़ता है, जबकि त्वरण और वस्तु की लगातार गति के कारण होने वाली गति का भी सामना करना पड़ता है। वस्तु को जकड़ने के लिए आवश्यक बल ज्ञात करने के लिए निम्न सूत्र का प्रयोग किया जाता है
वस्तु को पकड़ने के लिए आवश्यक बल है, | |
वस्तु का द्रव्यमान है | |
वस्तु का त्वरण है, | |
घर्षण का गुणांक है और | |
ग्रिपर में उंगलियों की संख्या है। |
आंदोलन की दिशा के लिए और पूर्ण समीकरण होगा। उदाहरण के लिए, जब पिंड को गुरुत्वाकर्षण बल के विरुद्ध ऊपर की ओर ले जाया जाता है, तो आवश्यक बल गुरुत्वाकर्षण बल की तुलना में अधिक होगा। इसलिए, और शब्द पेश किया जाता है और सूत्र बन जाता है
कई शारीरिक रूप से चालाकी कार्यों के लिए, जैसे कि पेचकस को लिखना और संभालना, विशिष्ट कार्य आवश्यकताओं को पूरा करने के लिए सबसे उपयुक्त पकड़ चुनने के लिए कार्य से संबंधित कसौटी को लागू किया जा सकता है। कई कार्य-उन्मुख गुणवत्ता मेट्रिक्स को समझते हैं[4] अच्छी पकड़ के चयन का मार्गदर्शन करने के लिए प्रस्तावित किया गया था जो कार्य आवश्यकताओं को पूरा करेगा है।
उदाहरण
सभा-रेखा रोबोट का अंतिम प्रभाव सामान्यतःपर वेल्डिंग या फुहार रंगाई होगा। शल्यक रोबोट का अंतिम प्रभावक छुरी में प्रयोग होने वाला अन्य उपकरण हो सकता है। अन्य संभावित अंत प्रभावक मशीन टूल्स जैसे छेद करना या मिलिंग कटर हो सकते हैं। कैनाडर्म पर अंतिम प्रभावक अंतरिक्ष शटल की रोबोटिक भुजा तारों के स्वरूप का उपयोग करती है, जो अन्य लोभी बिंदु के आस-पास कैमरे के छिद्र की तरह बंद होती है।
यह भी देखें
संदर्भ
- ↑ Monkman, G. J.; Hesse, S.; Steinmann, R.; Schunk, H. (2007). Robot Grippers. Wiley-VCH. p. 62. ISBN 978-3-527-40619-7.
- ↑ Fantoni, G.; Santochi, M.; Dini, G.; Tracht, K.; Scholz-Reiter, B.; Fleischer, J.; Lien, T.K.; Seliger, G.; Reinhart, G.; Franke, J.; Hansen, H.N.; Verl, A. (2014). "Grasping devices and methods in automated production processes". CIRP Annals - Manufacturing Technology. 63 (2): 679–701. doi:10.1016/j.cirp.2014.05.006.
- ↑
Lynch, Kevin (2017). Modern robotics : mechanics, planning, and control. Frank C. Park. Cambridge, United Kingdom. ISBN 1-107-15630-0. OCLC 983881868.
{{cite book}}
: CS1 maint: location missing publisher (link) - ↑ Lin, Yun; Sun, Yu (2015). "Grasp planning to maximize task coverage". The International Journal of Robotics Research. 34 (9): 1195–1210. doi:10.1177/0278364915583880.