बिंदु स्रोत: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Single, negligibly-sized object from which light, sound, energy, etc. eminates}} {{other uses}} {{More citations needed|date=September 2014}} एक बि...")
 
No edit summary
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Single, negligibly-sized object from which light, sound, energy, etc. eminates}}
{{Short description|Single, negligibly-sized object from which light, sound, energy, etc. eminates}}
{{other uses}}
{{other uses}}
{{More citations needed|date=September 2014}}
बिंदु स्रोत किसी वस्तु के एकल पहचान योग्य का स्थानीयकृत स्रोत होता है। जिससे बिंदु स्रोत का विस्तार नगण्य माना जाता है, जो इसे अन्य स्रोत ज्यामिति से पृथक करता है। इन सूत्रों को '''बिंदु स्रोत''' कहा जाता है। चूँकि गणितीय मान के विश्लेषण को सरल बनाने के लिए इन स्रोतों को गणितीय [[बिंदु (ज्यामिति)]] के रूप में अनुमानित किया जाता है।
एक बिंदु स्रोत किसी चीज़ का एकल पहचान योग्य ''स्थानीयकृत'' स्रोत है। एक बिंदु स्रोत का नगण्य विस्तार होता है, जो इसे अन्य स्रोत ज्यामिति से अलग करता है। सूत्रों को बिंदु स्रोत कहा जाता है क्योंकि गणितीय मॉडल में, विश्लेषण को सरल बनाने के लिए इन स्रोतों को आमतौर पर गणितीय [[बिंदु (ज्यामिति)]] के रूप में अनुमानित किया जा सकता है।


वास्तविक स्रोत को भौतिक रूप से छोटा होने की आवश्यकता नहीं है, यदि समस्या में अन्य लंबाई के पैमाने के सापेक्ष इसका आकार नगण्य है। उदाहरण के लिए, [[खगोल]] विज्ञान में, सितारों को नियमित रूप से बिंदु स्रोत माना जाता है, भले ही वे वास्तव में पृथ्वी से बहुत बड़े हों।
वास्तविक स्रोत को भौतिक रूप से छोटा होने की आवश्यकता नहीं होती है, यदि ऐसी स्थिति में अन्य लंबाई के माप के सापेक्ष इसका आकार नगण्य होता है। उदाहरण के लिए, [[खगोल|खगोलीय]] विज्ञान में, सितारों को नियमित रूप से बिंदु स्रोत माना जाता है, यदि वे वास्तव में पृथ्वी से बहुत बड़े होते है।


त्रि-आयामी अंतरिक्ष में, बिंदु स्रोत से निकलने वाली किसी चीज़ का घनत्व स्रोत से [[दूरी]] के व्युत्क्रम वर्ग के अनुपात में घटता है, यदि वितरण [[समदैशिक]] है, और कोई [[अवशोषण (विद्युत चुम्बकीय विकिरण)]] या अन्य हानि नहीं है।
त्रि-आयामी अंतरिक्ष में, बिंदु स्रोत से निकलने वाली किसी वस्तु का घनत्व स्रोत से [[दूरी]] के व्युत्क्रम वर्ग के अनुपात में घटता है, यदि वितरण [[समदैशिक]] है और कोई [[अवशोषण (विद्युत चुम्बकीय विकिरण)]] या अन्य हानि नहीं है।


== गणित ==
== गणित ==
गणित में, एक बिंदु स्रोत एक [[गणितीय विलक्षणता]] है जिससे प्रवाह या प्रवाह निकल रहा है। हालांकि इस तरह की विलक्षणताएं देखने योग्य ब्रह्मांड में मौजूद नहीं हैं, <!--NB black holes are not in the observable universe as they have an event horizon --> गणितीय बिंदु स्रोत अक्सर भौतिकी और अन्य क्षेत्रों में वास्तविकता के सन्निकटन के रूप में उपयोग किए जाते हैं।
गणित में, बिंदु स्रोत वह [[गणितीय विलक्षणता]] है जिससे प्रवाह निकलता है। चूंकि इस प्रकार की विलक्षणताएं देखने योग्य ब्रह्मांड में उपस्तिथ नहीं हैं, गणितीय बिंदु स्रोत अधिकांशतः भौतिकी और अन्य क्षेत्रों में वास्तविकता के सन्निकटन के रूप में उपयोग किए जाते हैं।


== दर्शनीय विद्युत चुम्बकीय विकिरण (प्रकाश) ==
== दर्शनीय विद्युत चुम्बकीय विकिरण (प्रकाश) ==
आम तौर पर, एक [[प्रकाश स्रोत]] को बिंदु स्रोत माना जा सकता है यदि इमेजिंग उपकरण का संकल्प स्रोत के स्पष्ट आकार को हल करने के लिए बहुत कम है। प्रकाश के दो प्रकार और स्रोत हैं: एक बिंदु स्रोत और एक विस्तारित स्रोत।
सामान्यतः [[प्रकाश स्रोत]] को बिंदु स्रोत माना जाता है यदि दर्शनीय उपकरण का संकल्प स्रोत के स्पष्ट आकार को हल करने के लिए बहुत कम होता है। प्रकाश के दो प्रकार और स्रोत हैं - बिंदु स्रोत और विस्तारित स्रोत।
 
गणितीय रूप से किसी वस्तु को बिंदु स्रोत माना जाता है यदि उसका [[कोणीय संकल्प]], <math>\theta</math>, टेलीस्कोप की विभेदन क्षमता से बहुत छोटा होता है।<br />


गणितीय रूप से किसी वस्तु को बिंदु स्रोत माना जा सकता है यदि उसका [[कोणीय संकल्प]], <math>\theta</math>, टेलीस्कोप की विभेदन क्षमता से बहुत छोटा है:<br />
<math>\theta << \lambda / D</math>,<br /> जहां <math>\lambda</math> प्रकाश की तरंग दैर्ध्य है और <math>D</math> दूरबीन का व्यास है।
<math>\theta << \lambda / D</math>,<br /> जहां <math>\lambda</math> प्रकाश की तरंग दैर्ध्य है और <math>D</math> दूरबीन का व्यास है।


उदाहरण:
उदाहरण:
* दूर के तारे का [[प्रकाश]] एक छोटे टेलीस्कोप से देखा जा सकता है
* दूर स्थित तारे का [[प्रकाश]] छोटे टेलीस्कोप से देखा जा सकता है।
* एक [[पिनहोल]] या अन्य छोटे छिद्र से गुजरने वाला प्रकाश, छेद के आकार से बहुत बड़ी दूरी से देखा जाता है
* [[पिनहोल]] या अन्य छोटे छिद्र से गुजरने वाला प्रकाश, छिद्र के आकार से बहुत बड़ी दूरी से देखा जाता है।
* [[प्रकाश प्रदूषण]] या [[स्ट्रीट लाईट]]िंग के बड़े पैमाने पर अध्ययन में स्ट्रीट लाइट से प्रकाश
* [[प्रकाश प्रदूषण]] या [[स्ट्रीट लाईट|स्ट्रीट(सड़क) लाइट]] के बड़े माप पर अध्ययन में स्ट्रीट(सड़क) लाइट से प्रकाश ग्रहण होता है।


== अन्य विद्युत चुम्बकीय [[विकिरण]] ==
== अन्य विद्युत चुम्बकीय [[विकिरण]] ==
[[रेडियो तरंग]] स्रोत जो एक रेडियो [[तरंग दैर्ध्य]] से छोटे होते हैं, उन्हें भी आमतौर पर बिंदु स्रोत के रूप में माना जाता है। एक निश्चित विद्युत सर्किट द्वारा उत्पन्न रेडियो उत्सर्जन आमतौर पर ध्रुवीकरण (तरंगें) होते हैं, जो [[एनिस्ट्रोपिक]] विकिरण का उत्पादन करते हैं। यदि प्रसार माध्यम दोषरहित है, हालांकि, किसी निश्चित दूरी पर रेडियो तरंगों में दीप्तिमान शक्ति अभी भी दूरी के व्युत्क्रम वर्ग के रूप में भिन्न होगी यदि कोण स्रोत ध्रुवीकरण के लिए स्थिर रहता है।
[[रेडियो तरंग]] स्रोत जो रेडियो [[तरंग दैर्ध्य]] से छोटे होते हैं, उन्हें भी सामान्यतः बिंदु स्रोत के रूप में माना जाता है। निश्चित विद्युत परिपथ द्वारा उत्पन्न रेडियो उत्सर्जन सामान्यतः ध्रुवीकरण (तरंगें) होते हैं, जो [[एनिस्ट्रोपिक]] विकिरण का उत्पादन करते हैं। यदि प्रसार माध्यम दोषरहित होता है, तब किसी निश्चित दूरी पर रेडियो तरंगों में दीप्तिमान शक्ति अभी भी दूरी के व्युत्क्रम वर्ग के रूप में भिन्न होगी चूँकि कोण स्रोत ध्रुवीकरण के लिए स्थिर रहता है।


पर्याप्त रूप से छोटा होने पर [[गामा किरण]] और [[एक्स-रे]] स्रोतों को बिंदु स्रोत के रूप में माना जा सकता है। [[रेडियोलॉजिकल संदूषण]] और परमाणु स्रोत अक्सर बिंदु स्रोत होते हैं। [[स्वास्थ्य भौतिकी]] और [[विकिरण सुरक्षा]] में इसका महत्व है।
पर्याप्त रूप से छोटा होने पर [[गामा किरण]] और [[एक्स-रे]] स्रोतों को बिंदु स्रोत के रूप में माना जाता है। [[रेडियोलॉजिकल संदूषण|रेडियोलॉजिकल(विकिरण-चिकित्सात्मक किरण) संदूषण]] और परमाणु स्रोत अधिकांशतः बिंदु स्रोत होते हैं। [[स्वास्थ्य भौतिकी]] और [[विकिरण सुरक्षा]] में इसका अधिक महत्व होता है।


उदाहरण:
उदाहरण:
*[[एंटीना (रेडियो)]] अक्सर एक वेवलेंथ से छोटे होते हैं, भले ही वे कई मीटर व्यास के हों
*[[एंटीना (रेडियो)]] अधिकांशतः तरंग दैर्ध्य से छोटे होते हैं, यदि वे कई मीटर व्यास के होते है।
*[[रेडियो दूरबीन]] का उपयोग करते हुए देखे जाने पर [[पल्सर]] को बिंदु स्रोत के रूप में माना जाता है
*[[रेडियो दूरबीन]] का उपयोग करते हुए देखे जाने पर [[पल्सर]] को बिंदु स्रोत के रूप में माना जाता है।
*परमाणु भौतिकी में, एक गर्म स्थान विकिरण का एक बिंदु स्रोत है
*परमाणु भौतिकी में, गर्म स्थान विकिरण का बिंदु स्रोत होता है।


== ध्वनि ==
== ध्वनि ==
<!--[[Audio point source]] redirects here-->
ध्वनि वह दोलनशील [[दबाव]] तरंग है। जिससे कि दबाव ऊपर और नीचे दोलन करता है। ऑडियो बिंदु स्रोत द्रव बिंदु स्रोत के रूप में कार्य करता है और फिर द्रव बिंदु मूल्य में कमी आने लगती है। (ऐसी वस्तु भौतिक रूप से उपस्तिथ नहीं होती है, किन्तु अधिकांशतः गणना के लिए उचित सरलीकृत मान है।)
{{Unreferenced section|date=September 2015}}
ध्वनि एक दोलनशील [[दबाव]] तरंग है। जैसा कि दबाव ऊपर और नीचे दोलन करता है, एक ऑडियो बिंदु स्रोत द्रव बिंदु स्रोत के रूप में कार्य करता है और फिर एक द्रव बिंदु सिंक होता है। (ऐसी वस्तु भौतिक रूप से मौजूद नहीं है, लेकिन अक्सर गणना के लिए एक अच्छा सरलीकृत मॉडल है।)


उदाहरण:
उदाहरण:
* तेल की खोज करने वाले एक स्थानीय भूकंपीय प्रयोग से [[भूकंप विज्ञान]]
* तेल की खोज करने वाले स्थानीय भूकंपीय प्रयोग से [[भूकंप विज्ञान]] माना जाता है।
* [[ध्वनि प्रदूषण]] के बड़े पैमाने पर अध्ययन में एक [[जेट इंजिन]] से ध्वनि प्रदूषण
* [[ध्वनि प्रदूषण]] के बड़े माप पर अध्ययन में [[जेट इंजिन]] से ध्वनि प्रदूषण होता है।
* हवाई अड्डे की घोषणाओं की ध्वनिकी के अध्ययन में एक [[ध्वनि-विस्तारक यंत्र]] को बिंदु स्रोत माना जा सकता है
* हवाई अड्डे की घोषणाओं की ध्वनि के अध्ययन में [[ध्वनि-विस्तारक यंत्र]] को बिंदु स्रोत माना जा सकता है।


एक [[समाक्षीय लाउडस्पीकर]] को सुनने के लिए एक व्यापक क्षेत्र की अनुमति देने के लिए बिंदु स्रोत के रूप में काम करने के लिए डिज़ाइन किया गया है।
[[समाक्षीय लाउडस्पीकर|समाक्षीय ध्वनि-विस्तारक यंत्र]] को सुनने के लिए व्यापक क्षेत्र की अनुमति देने पर बिंदु स्रोत के रूप में कार्य करने के लिए रचना की जाती है।


== आयनीकरण विकिरण ==
== आयनीकरण विकिरण ==
{{Unreferenced section|date=September 2015}}
[[File:Geiger counter in use.jpg|thumb|बिंदु स्रोत को मापने के लिए दोहरी गणना / खुराक दर प्रदर्शन के साथ गीजर-मुलर काउंटर।]]बिंदु स्रोतों का उपयोग आयनीकरण विकिरण उपकरणों के व्यास मापने के साधन के रूप में किया जाता है। वे सामान्यतः सीलबंद कैप्सूल होते हैं और सामान्यतः गामा, एक्स-रे और बीटा मापने वाले यंत्रों के लिए उपयोग किए जाते हैं।
[[File:Geiger counter in use.jpg|thumb|एक बिंदु स्रोत को मापने के लिए दोहरी गणना / खुराक दर प्रदर्शन के साथ गीजर-मुलर काउंटर।]]बिंदु स्रोतों का उपयोग आयनीकरण विकिरण उपकरणों को कैलिब्रेट करने के साधन के रूप में किया जाता है। वे आम तौर पर एक सीलबंद कैप्सूल होते हैं और आमतौर पर गामा, एक्स-रे और बीटा मापने वाले यंत्रों के लिए उपयोग किए जाते हैं।


== गर्मी ==
== ऊष्मा ==
[[Image:Nagasakibomb.jpg|thumb|right|थर्मल प्लम के उदाहरण के रूप में [[मशरूम बादल]] बादल। बड़े पैमाने पर वायुमंडलीय सिमुलेशन में एक परमाणु विस्फोट को थर्मल बिंदु स्रोत के रूप में माना जा सकता है।]]निर्वात में ऊष्मा विकिरण के रूप में समदैशिक रूप से निकल जाती है। यदि स्रोत हवा जैसे संपीड़ित तरल पदार्थ में स्थिर रहता है, तो संवहन के कारण स्रोत के चारों ओर प्रवाह पैटर्न बन सकता है, जिससे गर्मी के नुकसान का [[असमदिग्वर्ती होने की दशा]] पैटर्न हो सकता है। अनिसोट्रॉपी का सबसे आम रूप ऊष्मा स्रोत के ऊपर एक थर्मल प्लम (हाइड्रोडायनामिक्स) का निर्माण है।
[[Image:Nagasakibomb.jpg|thumb|right|थर्मल प्लम के उदाहरण के रूप में [[मशरूम बादल]] की भाति प्रतीत होता है। जिससे बड़े माप पर वायुमंडलीय सतत अनुकरण में परमाणु विस्फोट को थर्मल बिंदु स्रोत के रूप में माना जा सकता है।]]निर्वात में ऊष्मा विकिरण के रूप में समदैशिक रूप से निकल जाती है। यदि स्रोत हवा जैसे संपीड़ित तरल पदार्थ में स्थिर रहता है, तो संवहन के कारण स्रोत के चारों ओर प्रवाह प्रतिरूप बन सकता है, जिससे ऊष्मा की हानि का [[असमदिग्वर्ती होने की दशा]] का प्रतिरूप होता है। अनिसोट्रॉपी का सबसे सामान्य रूप ऊष्मा स्रोत के ऊपर थर्मल प्लम (हाइड्रोडायनामिक्स) का निर्माण करता है।
उदाहरण:
उदाहरण:
*पृथ्वी की सतह पर भूगर्भीय आकर्षण के केंद्र जो पृथ्वी के अंदर गहरे से उठने वाले थर्मल प्लम के शीर्ष पर स्थित हैं
*पृथ्वी की सतह पर भूगर्भीय आकर्षण के केंद्र पर पृथ्वी के अंदर गहरे से उठने वाले थर्मल प्लम के शीर्ष पर स्थित होता हैं।
*[[ऊष्मीय प्रदूषण]] ट्रैकिंग में हीट के प्लुम्स का अध्ययन किया गया।
*[[ऊष्मीय प्रदूषण]] ट्रैकिंग में ऊष्मा के प्लुम्स का अध्ययन किया गया है।


== द्रव ==
== द्रव ==
द्रव बिंदु स्रोत आमतौर पर द्रव गतिकी और [[वायुगतिकी]] में उपयोग किए जाते हैं। द्रव का एक बिंदु स्रोत एक द्रव बिंदु सिंक का व्युत्क्रम होता है (एक बिंदु जहां द्रव निकाला जाता है)। जबकि द्रव सिंक जटिल तेजी से बदलते व्यवहार को प्रदर्शित करता है जैसे कि [[भंवर]] में देखा जाता है (उदाहरण के लिए पानी प्लग-होल में बहता है या [[बवंडर]] उन बिंदुओं पर उत्पन्न होता है जहां हवा बढ़ रही है), द्रव स्रोत आम तौर पर सरल प्रवाह पैटर्न उत्पन्न करते हैं, स्थिर आइसोट्रोपिक बिंदु स्रोत उत्पन्न करते हैं। नए द्रव का विस्तार क्षेत्र। यदि द्रव चल रहा है (जैसे कि हवा में हवा या पानी में धाराएं) बिंदु स्रोत से एक प्लूम (हाइड्रोडायनामिक्स) उत्पन्न होता है।
द्रव बिंदु स्रोत सामान्यतः द्रव गतिकी और [[वायुगतिकी]] में उपयोग किए जाते हैं। द्रव का बिंदु स्रोत द्रव बिंदु मूल्य में कमी आने का व्युत्क्रम होता है। ( बिंदु जहां द्रव प्रवाह किया जाता है)। चूँकि द्रव सिंक जटिल तेजी से परिवर्तित व्यवहार को प्रदर्शित करता है जैसे कि [[भंवर]] में देखा जाता है (उदाहरण के लिए जल प्लग-होल में प्रवाहित होता है या [[बवंडर]] उन बिंदुओं पर उत्पन्न होता है जहां वायु बढ़ रही है), द्रव स्रोत सामान्यतः सरल प्रवाह प्रतिरूप उत्पन्न करते है और स्थिर समदैशिक बिंदु स्रोत उत्पन्न करता है जो नए द्रव का विस्तार क्षेत्र होता है। यदि द्रव प्रवाहित हो रहा है (जैसे कि वायु में वायु या जल में धाराएं) बिंदु स्रोत से प्लूम (हाइड्रोडायनामिक्स) उत्पन्न होता है।


उदाहरण:
उदाहरण:
* [[वायु प्रदूषण]] के बड़े पैमाने पर विश्लेषण में एक [[बिजली संयंत्र]] से वायु प्रदूषण [[ग्रिप गैस स्टैक]]
* [[वायु प्रदूषण]] के बड़े माप पर विश्लेषण में [[बिजली संयंत्र]] से वायु प्रदूषण [[ग्रिप गैस स्टैक]] बनाया जा सकता है।
* [[जल प्रदूषण]] के बड़े पैमाने पर विश्लेषण में एक [[तेल शोधशाला]] [[अपशिष्ट]] जल निर्वहन आउटलेट से जल प्रदूषण
* [[जल प्रदूषण]] के बड़े माप पर विश्लेषण में [[तेल शोधशाला]] [[अपशिष्ट]] जल निर्वहन निर्गम मार्ग से जल प्रदूषण होता है।
* प्रयोगशाला में दाबित पाइप से गैस का निकलना
* प्रयोगशाला में दाबित पाइप से गैस को निकाला जाता है।
* धुआँ अक्सर एक पवन सुरंग में बिंदु स्रोतों से छोड़ा जाता है ताकि धुएं का एक पंख (हाइड्रोडायनामिक्स) बनाया जा सके जो किसी वस्तु पर हवा के प्रवाह को उजागर करता है
* धुआँ अधिकांशतः पवन सुरंग में बिंदु स्रोतों से छोड़ा जाता है जिससे कि धुएं का पंख (हाइड्रोडायनामिक्स) बनाया जा सके जो किसी वस्तु पर वायु के प्रवाह को उजागर करता है।
* स्थानीयकृत रासायनिक आग से निकलने वाले धुएं को हवा में उड़ाकर प्रदूषण का एक प्लूम (हाइड्रोडायनामिक्स) बनाया जा सकता है
* स्थानीयकृत रासायनिक अग्नि से निकलने वाले धुएं को हवा में उड़ाकर प्रदूषण का प्लूम (हाइड्रोडायनामिक्स) बनाया जा सकता है।


== प्रदूषण ==
== प्रदूषण ==
{{main article|Point source pollution}}
{{main article|बिंदु स्रोत प्रदूषण}}
प्रदूषण के बड़े पैमाने के अध्ययन में विभिन्न प्रकार के प्रदूषण के स्रोतों को अक्सर बिंदु स्रोत माना जाता है।<ref name=noaa_point>{{cite web|title=प्रदूषण की श्रेणियाँ: बिंदु स्रोत|url=http://oceanservice.noaa.gov/education/kits/pollution/03pointsource.html|website=oceanservice.noaa.gov/|publisher=NOAA|access-date=13 September 2014}}</रेफरी>
 
प्रदूषण के बड़े माप के अध्ययन में विभिन्न प्रकार के प्रदूषण के स्रोतों को अधिकांशतः बिंदु स्रोत माना जाता है।


== यह भी देखें ==
== यह भी देखे ==
* [[रेखा स्रोत]]
* [[रेखा स्रोत]]
* [[डिराक डेल्टा समारोह]]
* [[डिराक डेल्टा समारोह]]
Line 74: Line 72:
== संदर्भ ==
== संदर्भ ==
{{reflist}}
{{reflist}}
[[Category: प्रायोगिक भौतिकी]] [[Category: गणितीय भौतिकी]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 16/02/2023]]
[[Category:Created On 16/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:गणितीय भौतिकी]]
[[Category:प्रायोगिक भौतिकी]]

Latest revision as of 11:17, 24 February 2023

बिंदु स्रोत किसी वस्तु के एकल पहचान योग्य का स्थानीयकृत स्रोत होता है। जिससे बिंदु स्रोत का विस्तार नगण्य माना जाता है, जो इसे अन्य स्रोत ज्यामिति से पृथक करता है। इन सूत्रों को बिंदु स्रोत कहा जाता है। चूँकि गणितीय मान के विश्लेषण को सरल बनाने के लिए इन स्रोतों को गणितीय बिंदु (ज्यामिति) के रूप में अनुमानित किया जाता है।

वास्तविक स्रोत को भौतिक रूप से छोटा होने की आवश्यकता नहीं होती है, यदि ऐसी स्थिति में अन्य लंबाई के माप के सापेक्ष इसका आकार नगण्य होता है। उदाहरण के लिए, खगोलीय विज्ञान में, सितारों को नियमित रूप से बिंदु स्रोत माना जाता है, यदि वे वास्तव में पृथ्वी से बहुत बड़े होते है।

त्रि-आयामी अंतरिक्ष में, बिंदु स्रोत से निकलने वाली किसी वस्तु का घनत्व स्रोत से दूरी के व्युत्क्रम वर्ग के अनुपात में घटता है, यदि वितरण समदैशिक है और कोई अवशोषण (विद्युत चुम्बकीय विकिरण) या अन्य हानि नहीं है।

गणित

गणित में, बिंदु स्रोत वह गणितीय विलक्षणता है जिससे प्रवाह निकलता है। चूंकि इस प्रकार की विलक्षणताएं देखने योग्य ब्रह्मांड में उपस्तिथ नहीं हैं, गणितीय बिंदु स्रोत अधिकांशतः भौतिकी और अन्य क्षेत्रों में वास्तविकता के सन्निकटन के रूप में उपयोग किए जाते हैं।

दर्शनीय विद्युत चुम्बकीय विकिरण (प्रकाश)

सामान्यतः प्रकाश स्रोत को बिंदु स्रोत माना जाता है यदि दर्शनीय उपकरण का संकल्प स्रोत के स्पष्ट आकार को हल करने के लिए बहुत कम होता है। प्रकाश के दो प्रकार और स्रोत हैं - बिंदु स्रोत और विस्तारित स्रोत।

गणितीय रूप से किसी वस्तु को बिंदु स्रोत माना जाता है यदि उसका कोणीय संकल्प, , टेलीस्कोप की विभेदन क्षमता से बहुत छोटा होता है।

,
जहां प्रकाश की तरंग दैर्ध्य है और दूरबीन का व्यास है।

उदाहरण:

  • दूर स्थित तारे का प्रकाश छोटे टेलीस्कोप से देखा जा सकता है।
  • पिनहोल या अन्य छोटे छिद्र से गुजरने वाला प्रकाश, छिद्र के आकार से बहुत बड़ी दूरी से देखा जाता है।
  • प्रकाश प्रदूषण या स्ट्रीट(सड़क) लाइट के बड़े माप पर अध्ययन में स्ट्रीट(सड़क) लाइट से प्रकाश ग्रहण होता है।

अन्य विद्युत चुम्बकीय विकिरण

रेडियो तरंग स्रोत जो रेडियो तरंग दैर्ध्य से छोटे होते हैं, उन्हें भी सामान्यतः बिंदु स्रोत के रूप में माना जाता है। निश्चित विद्युत परिपथ द्वारा उत्पन्न रेडियो उत्सर्जन सामान्यतः ध्रुवीकरण (तरंगें) होते हैं, जो एनिस्ट्रोपिक विकिरण का उत्पादन करते हैं। यदि प्रसार माध्यम दोषरहित होता है, तब किसी निश्चित दूरी पर रेडियो तरंगों में दीप्तिमान शक्ति अभी भी दूरी के व्युत्क्रम वर्ग के रूप में भिन्न होगी चूँकि कोण स्रोत ध्रुवीकरण के लिए स्थिर रहता है।

पर्याप्त रूप से छोटा होने पर गामा किरण और एक्स-रे स्रोतों को बिंदु स्रोत के रूप में माना जाता है। रेडियोलॉजिकल(विकिरण-चिकित्सात्मक किरण) संदूषण और परमाणु स्रोत अधिकांशतः बिंदु स्रोत होते हैं। स्वास्थ्य भौतिकी और विकिरण सुरक्षा में इसका अधिक महत्व होता है।

उदाहरण:

  • एंटीना (रेडियो) अधिकांशतः तरंग दैर्ध्य से छोटे होते हैं, यदि वे कई मीटर व्यास के होते है।
  • रेडियो दूरबीन का उपयोग करते हुए देखे जाने पर पल्सर को बिंदु स्रोत के रूप में माना जाता है।
  • परमाणु भौतिकी में, गर्म स्थान विकिरण का बिंदु स्रोत होता है।

ध्वनि

ध्वनि वह दोलनशील दबाव तरंग है। जिससे कि दबाव ऊपर और नीचे दोलन करता है। ऑडियो बिंदु स्रोत द्रव बिंदु स्रोत के रूप में कार्य करता है और फिर द्रव बिंदु मूल्य में कमी आने लगती है। (ऐसी वस्तु भौतिक रूप से उपस्तिथ नहीं होती है, किन्तु अधिकांशतः गणना के लिए उचित सरलीकृत मान है।)

उदाहरण:

समाक्षीय ध्वनि-विस्तारक यंत्र को सुनने के लिए व्यापक क्षेत्र की अनुमति देने पर बिंदु स्रोत के रूप में कार्य करने के लिए रचना की जाती है।

आयनीकरण विकिरण

बिंदु स्रोत को मापने के लिए दोहरी गणना / खुराक दर प्रदर्शन के साथ गीजर-मुलर काउंटर।

बिंदु स्रोतों का उपयोग आयनीकरण विकिरण उपकरणों के व्यास मापने के साधन के रूप में किया जाता है। वे सामान्यतः सीलबंद कैप्सूल होते हैं और सामान्यतः गामा, एक्स-रे और बीटा मापने वाले यंत्रों के लिए उपयोग किए जाते हैं।

ऊष्मा

थर्मल प्लम के उदाहरण के रूप में मशरूम बादल की भाति प्रतीत होता है। जिससे बड़े माप पर वायुमंडलीय सतत अनुकरण में परमाणु विस्फोट को थर्मल बिंदु स्रोत के रूप में माना जा सकता है।

निर्वात में ऊष्मा विकिरण के रूप में समदैशिक रूप से निकल जाती है। यदि स्रोत हवा जैसे संपीड़ित तरल पदार्थ में स्थिर रहता है, तो संवहन के कारण स्रोत के चारों ओर प्रवाह प्रतिरूप बन सकता है, जिससे ऊष्मा की हानि का असमदिग्वर्ती होने की दशा का प्रतिरूप होता है। अनिसोट्रॉपी का सबसे सामान्य रूप ऊष्मा स्रोत के ऊपर थर्मल प्लम (हाइड्रोडायनामिक्स) का निर्माण करता है।

उदाहरण:

  • पृथ्वी की सतह पर भूगर्भीय आकर्षण के केंद्र पर पृथ्वी के अंदर गहरे से उठने वाले थर्मल प्लम के शीर्ष पर स्थित होता हैं।
  • ऊष्मीय प्रदूषण ट्रैकिंग में ऊष्मा के प्लुम्स का अध्ययन किया गया है।

द्रव

द्रव बिंदु स्रोत सामान्यतः द्रव गतिकी और वायुगतिकी में उपयोग किए जाते हैं। द्रव का बिंदु स्रोत द्रव बिंदु मूल्य में कमी आने का व्युत्क्रम होता है। ( बिंदु जहां द्रव प्रवाह किया जाता है)। चूँकि द्रव सिंक जटिल तेजी से परिवर्तित व्यवहार को प्रदर्शित करता है जैसे कि भंवर में देखा जाता है (उदाहरण के लिए जल प्लग-होल में प्रवाहित होता है या बवंडर उन बिंदुओं पर उत्पन्न होता है जहां वायु बढ़ रही है), द्रव स्रोत सामान्यतः सरल प्रवाह प्रतिरूप उत्पन्न करते है और स्थिर समदैशिक बिंदु स्रोत उत्पन्न करता है जो नए द्रव का विस्तार क्षेत्र होता है। यदि द्रव प्रवाहित हो रहा है (जैसे कि वायु में वायु या जल में धाराएं) बिंदु स्रोत से प्लूम (हाइड्रोडायनामिक्स) उत्पन्न होता है।

उदाहरण:

  • वायु प्रदूषण के बड़े माप पर विश्लेषण में बिजली संयंत्र से वायु प्रदूषण ग्रिप गैस स्टैक बनाया जा सकता है।
  • जल प्रदूषण के बड़े माप पर विश्लेषण में तेल शोधशाला अपशिष्ट जल निर्वहन निर्गम मार्ग से जल प्रदूषण होता है।
  • प्रयोगशाला में दाबित पाइप से गैस को निकाला जाता है।
  • धुआँ अधिकांशतः पवन सुरंग में बिंदु स्रोतों से छोड़ा जाता है जिससे कि धुएं का पंख (हाइड्रोडायनामिक्स) बनाया जा सके जो किसी वस्तु पर वायु के प्रवाह को उजागर करता है।
  • स्थानीयकृत रासायनिक अग्नि से निकलने वाले धुएं को हवा में उड़ाकर प्रदूषण का प्लूम (हाइड्रोडायनामिक्स) बनाया जा सकता है।

प्रदूषण

प्रदूषण के बड़े माप के अध्ययन में विभिन्न प्रकार के प्रदूषण के स्रोतों को अधिकांशतः बिंदु स्रोत माना जाता है।

यह भी देखे

संदर्भ