रैखिक समय-अपरिवर्तनीय प्रणाली: Difference between revisions

From Vigyanwiki
Line 220: Line 220:


प्रणाली परिबद्ध-इनपुट, परिबद्ध-आउटपुट स्थिरता (बीआईबीओ (BIBO) स्थिरता) होती है, यदि प्रत्येक परिबद्ध इनपुट के लिए, आउटपुट परिमित है।<math display="block">\ \|x(t)\|_{\infty} < \infty</math>आउटपुट संतोषजनक की ओर अग्रसर है<math display="block">\ \|y(t)\|_{\infty} < \infty</math>(अर्थात्, <math>x(t)</math> का परिमित अधिकतम निरपेक्ष मान <math>y(t)</math> का परिमित अधिकतम निरपेक्ष मान दर्शाता है), तब प्रणाली स्थिर होती है। आवश्यक और पर्याप्त शर्त यह है कि <math>h(t)</math>, आवेग प्रतिक्रिया, L<sup>1</sup> (सीमित L<sup>1</sup> मानक है) में है-  <math display="block">\|h(t)\|_1 = \int_{-\infty}^\infty |h(t)| \, \mathrm{d}t < \infty.</math>आवृत्ति क्षेत्र में, अभिसरण के क्षेत्र में काल्पनिक अक्ष <math>s = j\omega</math> सम्मिलित होना चाहिए।
प्रणाली परिबद्ध-इनपुट, परिबद्ध-आउटपुट स्थिरता (बीआईबीओ (BIBO) स्थिरता) होती है, यदि प्रत्येक परिबद्ध इनपुट के लिए, आउटपुट परिमित है।<math display="block">\ \|x(t)\|_{\infty} < \infty</math>आउटपुट संतोषजनक की ओर अग्रसर है<math display="block">\ \|y(t)\|_{\infty} < \infty</math>(अर्थात्, <math>x(t)</math> का परिमित अधिकतम निरपेक्ष मान <math>y(t)</math> का परिमित अधिकतम निरपेक्ष मान दर्शाता है), तब प्रणाली स्थिर होती है। आवश्यक और पर्याप्त शर्त यह है कि <math>h(t)</math>, आवेग प्रतिक्रिया, L<sup>1</sup> (सीमित L<sup>1</sup> मानक है) में है-  <math display="block">\|h(t)\|_1 = \int_{-\infty}^\infty |h(t)| \, \mathrm{d}t < \infty.</math>आवृत्ति क्षेत्र में, अभिसरण के क्षेत्र में काल्पनिक अक्ष <math>s = j\omega</math> सम्मिलित होना चाहिए।


उदाहरण के रूप में, सिंक (sinc) फलन के बराबर आवेग प्रतिक्रिया वाला आदर्श निम्नपारक निस्यंदक बीआईबीओ (BIBO) स्थिर नहीं है, क्योंकि सिंक (sinc) फलन में सीमित L<sup>1</sup> मानक नहीं है। इस प्रकार, कुछ बंधे हुए इनपुट के लिए, आदर्श निम्नपारक निस्यंदक का आउटपुट असीमित होता है। विशेष रूप से, यदि इनपुट <math>t<0</math> के लिए शून्य है और <math>t > 0</math> के लिए कट-ऑफ आवृत्ति पर ज्यावक्र के बराबर है, तो आउटपुट शून्य रेखण के अलावा अन्य सभी समयों के लिए असीमित होगा।<sup>{{dubious|date=September 2020}}
उदाहरण के रूप में, सिंक (sinc) फलन के बराबर आवेग प्रतिक्रिया वाला आदर्श निम्नपारक निस्यंदक बीआईबीओ (BIBO) स्थिर नहीं है, क्योंकि सिंक (sinc) फलन में सीमित L<sup>1</sup> मानक नहीं है। इस प्रकार, कुछ बंधे हुए इनपुट के लिए, आदर्श निम्नपारक निस्यंदक का आउटपुट असीमित होता है। विशेष रूप से, यदि इनपुट <math>t<0</math> के लिए शून्य है और <math>t > 0</math> के लिए कट-ऑफ आवृत्ति पर ज्यावक्र के बराबर है, तो आउटपुट शून्य रेखण के अलावा अन्य सभी समयों के लिए असीमित होगा।<sup>{{dubious|date=September 2020}}

Revision as of 16:14, 22 February 2023

नियतात्मक सतत-समय एकल-इनपुट एकल-आउटपुट प्रणाली के लिए अध्यारोपण सिद्धांत और समय के व्युत्क्रम को दर्शाता हुआ ब्लॉक आरेख। प्रणाली अध्यारोपण सिद्धांत को संतुष्ट करता है और समय-अपरिवर्तनीय है यदि और केवल अगर y3(t) = a1y1(tt0) + a2y2(tt0) सभी समय t के लिए, सभी वास्तविक स्थिरांक a1, a2, t0 के लिए और सभी इनपुट के लिए x1(t), x2(t)[1] इसे विस्तृत करने के लिए छवि पर क्लिक करें।

प्रणाली विश्लेषण में, अध्ययन के अन्य क्षेत्रों के बीच, रेखीय समय-अपरिवर्तनीय (एलटीआई) प्रणाली एक ऐसी प्रणाली है जो किसी भी इनपुट संकेत से रैखिकता और समय-अपरिवर्तनीयता की बाधाओं के अधीन आउटपुट संकेत उत्पन्न करती है, इन शब्दों को संक्षिप्त रूप से नीचे परिभाषित किया गया है। ये गुण कई महत्वपूर्ण भौतिक प्रणालियों पर (बिल्कुल या लगभग) लागू होते हैं, इस स्थिति में प्रणाली की प्रतिक्रिया y(t) स्वैच्छिक इनपुट x(t) के लिए संवलन y(t) = (xh)(t) का उपयोग करके सीधे पाई जा सकती है- जहाँ h(t) को प्रणाली की आवेग प्रतिक्रिया कहा जाता है और ∗ संवलन का प्रतिनिधित्व करता है (गुणन के साथ भ्रमित नहीं होना चाहिए, जैसा कि प्रायः कंप्यूटर भाषाओं में प्रतीक द्वारा नियोजित किया जाता है)। इसके अलावा, ऐसी किसी भी प्रणाली (h(t) का निर्धारण), को हल करने के लिए व्यवस्थित तरीके हैं जबकि दोनों गुणों को पूरा नहीं करने वाली प्रणाली विश्लेषणात्मक रूप से हल करने के लिए प्रायः अधिक कठिन (या असंभव) हैं। एलटीआई (LTI) प्रणाली का एक अच्छा उदाहरण कोई भी विद्युत परिपथ है जिसमें प्रतिरोधक, संधारित्र, प्रेरक और रैखिक प्रवर्धक सम्मिलित हैं।[2]

रैखिक समय-अपरिवर्तनीय प्रणाली सिद्धांत का उपयोग छवि प्रसंस्करण में भी किया जाता है, जहां प्रणाली में अस्थायी आयाम के स्थान पर या इसके अतिरिक्त स्थानिक आयाम होते हैं। शब्दावली को सबसे सामान्य पहुंच देने के लिए इन प्रणालियों को रैखिक अनुवाद-अपरिवर्तनीय के रूप में संदर्भित किया जा सकता है। सामान्य असतत-समय (अर्थात्, प्रतिरूप) प्रणालियों की स्थिति में, रैखिक स्थानान्तरण-अपरिवर्तनीय समरूपी शब्द है। एलटीआई (LTI) प्रणाली सिद्धांत अनुप्रयुक्त गणित का एक क्षेत्र है जिसमें विद्युत परिपथ विश्लेषण और डिजाइन, संकेत प्रसंस्करण और फिल्टर डिजाइन, नियंत्रण सिद्धांत, मैकेनिकल अभियांत्रिकी, छवि प्रसंस्करण, कई प्रकार के उपकरणों को मापने के डिजाइन, एनएमआर (NMR) स्पेक्ट्रोस्कोपी में प्रत्यक्ष अनुप्रयोग हैं[citation needed], और कई अन्य तकनीकी क्षेत्र जहां सामान्य अवकल समीकरणों की प्रणालियां स्वयं को प्रस्तुत करती हैं।

अवलोकन

किसी भी एलटीआई (LTI) प्रणाली के परिभाषित गुण रैखिकता और समय के व्युत्क्रम हैं।

  • रैखिकता का अर्थ है कि इनपुट और आउटपुट के बीच संबंध, दोनों को फलनों के रूप में माना जाता है, एक रैखिक मानचित्रण है- यदि स्थिर है तो के लिए प्रणाली आउटपुट है, यदि प्रणाली आउटपुट के साथ एक अतिरिक्त इनपुट है तो के लिए प्रणाली का आउटपुट है, यह ,, के सभी विकल्पों के लिए लागू होता है। बाद की स्थिति को प्रायः अध्यारोपण सिद्धांत के रूप में जाना जाता है।
  • समय अपरिवर्तनीय का अर्थ है कि चाहे हम प्रणाली में अभी इनपुट लागू करें या अब से T सेकंड, आउटपुट T सेकंड के समय विलंब को छोड़कर समान होगा। अर्थात्, यदि इनपुट के कारण आउटपुट है, तो इनपुट के कारण आउटपुट होगा। इसलिए, प्रणाली समय अपरिवर्तनीय है क्योंकि आउटपुट उस विशेष समय पर निर्भर नहीं करता है जब इनपुट लागू किया जाता है।

एलटीआई (LTI) प्रणाली सिद्धांत में मौलिक परिणाम यह है कि किसी भी एलटीआई (LTI) प्रणाली को पूरी तरह से एक ही फलन द्वारा वर्णित किया जा सकता है जिसे प्रणाली की आवेग प्रतिक्रिया कहा जाता है। प्रणाली का आउटपुट प्रणाली के आवेग प्रतिक्रिया के साथ प्रणाली के इनपुट का संवलन है। इसे एक सतत समय प्रणाली कहा जाता है। इसी तरह, एक असतत-समय रैखिक समय-अपरिवर्तनीय (या, अधिक प्रायः, "स्थानान्तरण-अपरिवर्तनीय") प्रणाली को असतत समय में परिचालन के रूप में परिभाषित किया गया है। जहाँ y, x, और h अनुक्रम हैं और असतत समय में संवलन, समाकलन के स्थान पर असतत योग का उपयोग करता है।

एलटीआई (LTI) प्रणाली को प्रणाली के स्थानांतरण फलन द्वारा आवृत्ति क्षेत्र में भी चित्रित किया जा सकता है, जो प्रणाली के आवेग प्रतिक्रिया (या असतत-समय प्रणाली की स्थिति में Z रूपांतर) का लाप्लास रूपांतर है। इन परिवर्तनों के गुणों के परिणामस्वरूप, आवृत्ति क्षेत्र में प्रणाली का आउटपुट स्थानांतरण फलन और इनपुट के रूपांतर का उत्पाद है। दूसरे शब्दों में, समय क्षेत्र में संवलन आवृत्ति क्षेत्र में गुणन के बराबर होता है।

सभी एलटीआई (LTI) प्रणालियों के लिए, अभिलक्षणिक फलन और रूपांतरण के आधार फलन सम्मिश्र घातांकी हैं। ऐसा तब होता है, यदि किसी प्रणाली का इनपुट कुछ सम्मिश्र आयाम और सम्मिश्र आवृत्ति के लिए सम्मिश्र तरंग होता है, तो आउटपुट कुछ सम्मिश्र स्थिर समय इनपुट होगा, कुछ नए सम्मिश्र आयाम के लिए कहते हैं। अनुपात आवृत्ति पर स्थानांतरण फलन है।

चूंकि ज्यावक्र सम्मिश्र-संयुग्म आवृत्तियों के साथ सम्मिश्र घातांक का एक योग है, यदि प्रणाली में इनपुट ज्यावक्र है, तो प्रणाली का आउटपुट भी ज्यावक्र होगा, संभवतः एक अलग आयाम और अलग चरण के साथ, लेकिन हमेशा स्थिर-अवस्था में पहुंचने पर समान आवृत्ति के साथ। एलटीआई (LTI) प्रणालियाँ उन आवृत्ति घटकों का उत्पादन नहीं कर सकतीं जो इनपुट में नहीं हैं।

एलटीआई (LTI) प्रणाली सिद्धांत कई महत्वपूर्ण प्रणालियों का वर्णन करने में अच्छा है। अधिकांश एलटीआई (LTI) प्रणालियों को विश्लेषण के लिए "आसान" माना जाता है, कम से कम समय-भिन्न और/या अरैखिक मामले की तुलना में। कोई भी प्रणाली जिसे स्थिर गुणांक के साथ रेखीय अवकल समीकरण के रूप में तैयार किया जा सकता है, एक एलटीआई (LTI) प्रणाली है। ऐसी प्रणालियों के उदाहरण विद्युत परिपथ हैं जो प्रतिरोधों, प्रेरकों और संधारित्रों (आरएलसी (RLC) परिपथों) से बने होते हैं। आदर्श स्प्रिंग-द्रव्यमान-अवमंदक प्रणाली भी एलटीआई (LTI) प्रणाली हैं, और गणितीय रूप से आरएलसी (RLC) परिपथ के समकक्ष हैं।

अधिकांश एलटीआई (LTI) प्रणाली अवधारणाएँ सतत-समय और असतत-समय (रैखिक स्थानान्तरण-अपरिवर्तनीय) स्थितियों के बीच समान होती हैं। छवि प्रसंस्करण में, समय चर को दो समष्टि चरों से बदल दिया जाता है, और समय अपरिवर्तनीयता की धारणा को द्वि-आयामी स्थानान्तरण अपरिवर्तनीयता द्वारा बदल दिया जाता है। फ़िल्टर बैंकों और एमआईएमओ (MIMO) प्रणाली का विश्लेषण करते समय, संकेतों के सदिश पर विचार करना प्रायः उपयोगी होता है।

रेखीय प्रणाली जो समय-अपरिवर्तनीय नहीं है, उसे ग्रीन फलन विधि जैसे अन्य दृष्टिकोणों का उपयोग करके हल किया जा सकता है।

समय क्षेत्र और आवृत्ति क्षेत्र के बीच संबंध

सतत-समय प्रणाली

आवेग प्रतिक्रिया और संवलन

इनपुट संकेत x(t) और आउटपुट संकेत y(t) के साथ एक रैखिक, सतत-समय, समय-अपरिवर्तनीय प्रणाली का व्यवहार संवलन समाकलन द्वारा वर्णित किया गया है-[3]

      (क्रम विनिमेयता का उपयोग करके)

जहाँ आवेग के लिए प्रणाली की प्रतिक्रिया है। इसलिए इनपुट फलन के भारित औसत के समानुपाती है। भारण फलन है, केवल राशि द्वारा स्थानांतरित किया गया है। जैसे ही परिवर्तन है, भारण फलन इनपुट फलन के विभिन्न भागों पर महत्तव देता है। जब सभी ऋणात्मक के लिए शून्य होता है, तो केवल समय से पहले के मानों पर निर्भर करता है, और प्रणाली को कारणात्मक कहा जाता है।

यह समझने के लिए कि संवलन एक एलटीआई (LTI) प्रणाली का आउटपुट क्यों उत्पन्न करता है, मान लीजिए फलन को चर और सतत के साथ प्रदर्शित करता है। और छोटे अंकन को का प्रतिनिधित्व करने दें। फिर सतत-समय प्रणाली एक इनपुट फलन को आउटपुट फलन में रूपांतरित कर देती है। और सामान्य तौर पर, आउटपुट का प्रत्येक मान इनपुट के प्रत्येक मान पर निर्भर हो सकता है। इस अवधारणा का प्रतिनिधित्व निम्नलिखित द्वारा किया जाता है-

जहाँ समय के लिए रूपांतरण संचालक है एक विशिष्ट प्रणाली में, सबसे अधिक के मानों पर निर्भर करता है जो समय के निकट हुआ था। जब तक रूपांतर स्वयं के साथ नहीं परिवर्तित होता है, तब तक आउटपुट फलन स्थिर रहता है, और प्रणाली निर्बाध होता है।


एक रेखीय प्रणाली के लिए, को Eq.1 को संतुष्ट करना चाहिए-

(Eq.2)

और समय-अपरिवर्तनीय आवश्यकता है-

(Eq.3)

इस संकेतन में, हम आवेग प्रतिक्रिया को के रूप में लिख सकते हैं।

उसी प्रकार-

(Eq.3 का उपयोग करते हुए)

इस परिणाम को संवलन समाकलन में प्रतिस्थापित करना-

जो स्थिति और के लिए Eq.2 के दाईं ओर का रूप है।

Eq.2 फिर इस निरंतरता की अनुमति देता है-

संक्षेप में, इनपुट फलन, , समय-स्थानांतरित आवेग फलनों की निरंतरता द्वारा प्रदर्शित किया जा सकता है, जो "रैखिक रूप से" संयुक्त है, जैसा कि Eq.1 में दिखाया गया है। प्रणाली का रैखिकता गुण प्रणाली की प्रतिक्रिया को उसी तरह से संयुक्त आवेग प्रतिक्रियाओं के संगत निरंतरता द्वारा प्रदर्शित करने की अनुमति देता है। और समय-अपरिवर्तनीय गुण उस संयोजन को संवलन समाकलन द्वारा प्रदर्शित करने की अनुमति देता है।

उपरोक्त गणितीय संक्रियाओं में सरल ग्राफिकल अनुकरण है।

अभिलक्षणिक फलन के रूप में घातांक

अभिलक्षणिक फलन एक ऐसा फलन है जिसके लिए संकारक का आउटपुट उसी फलन का माप किया गया संस्करण है। अर्थात्,

जहाँ f अभिलक्षणिक फलन है और अभिलक्षणिक मान है, स्थिरांक हैं।

घातीय फलन , जहां , रेखीय, समय-अपरिवर्तनीय संकारक का अभिलक्षणिक फलन हैं। साधारण प्रमाण इस अवधारणा को दर्शाता है। मान लीजिए कि इनपुट है। आवेग प्रतिक्रिया के साथ प्रणाली का आउटपुट तब है

जो संवलन के क्रमविनिमेय गुण के बराबर होता है

जहाँ अदिश है

केवल पैरामीटर s पर निर्भर है।

तो प्रणाली की प्रतिक्रिया इनपुट का एक छोटा संस्करण है। विशेष रूप से, किसी भी के लिए, प्रणाली आउटपुट इनपुट और स्थिर का गुणनफल होता है। इसलिए, एलटीआई (LTI) प्रणाली का अभिलक्षणिक फलन है, और संबंधित अभिलक्षणिक मान है।

प्रत्यक्ष प्रमाण

एलटीआई (LTI) प्रणाली के अभिलक्षणिक फलनों के रूप में सीधे सम्मिश्र घातांकों को प्राप्त करना भी संभव है।

माना कुछ सम्मिश्र घातांक और इसका समय-स्थानांतरित संस्करण समुच्चय हैं।

स्थिर के संबंध में रैखिकता द्वारा

के समय के अनुसार।

तो सेट करने और नाम बदलने से हमें प्राप्त होता है-

अर्थात् इनपुट के रूप में सम्मिश्र घातांक आउटपुट के समान आवृत्ति का सम्मिश्र घातांक देगा।

फूरियर और लाप्लास रूपांतरण

एलटीआई (LTI) प्रणाली में विश्लेषण और अंतर्दृष्टि दोनों के लिए घातांकों का अभिलक्षणिक फलन गुण बहुत उपयोगी है। एकपक्षीय लाप्लास रूपांतरण

आवेग प्रतिक्रिया से अभिलक्षणिक मान ​​प्राप्त करने का सटीक तरीका है। विशेष रुचि शुद्ध ज्यावक्रीय (अर्थात्, रूप के घातीय फलन जहां और ) हैं। फूरियर रूपांतरण शुद्ध सम्मिश्र ज्यावक्रीय के लिए अभिलक्षणिक मान ​​देता है। और दोनों को प्रणाली फलन, प्रणाली प्रतिक्रिया या स्थानांतरण फलन कहा जाता है।

लाप्लास रूपांतरण का उपयोग प्रायः एकपक्षीय संकेतों के संदर्भ में किया जाता है, अर्थात ऐसे संकेत जो कुछ मान से कम t के सभी मानों के लिए शून्य होते हैं। प्रायः, यह "प्रारंभ समय" सुविधा के लिए और सामान्यता के हानि के बिना शून्य पर सेट किया जाता है, जिसमें परिवर्तन समाकलन शून्य से अनंत (ऋणात्मक अनंत के एकीकरण की निचली सीमा के साथ ऊपर दिखाए गए रूपांतरण को औपचारिक रूप से द्विपक्षीय लाप्लास रूपांतरण के रूप में जाना जाता है) तक ले जाया जाता है।

फूरियर रूपांतरण का उपयोग उन प्रणालियों के विश्लेषण के लिए किया जाता है जो संकेतों को प्रसंस्करण करते हैं जो सीमा में अनंत होते हैं, जैसे मॉडुलेटेड ज्यावक्रीय, भले ही इसे सीधे इनपुट और आउटपुट संकेत पर लागू नहीं किया जा सकता है जो वर्ग समाकलनीय नहीं हैं। लाप्लास रूपांतरण वास्तव में इन संकेतों के लिए सीधे काम करता है यदि वे प्रारंभ समय से पहले शून्य हैं, भले ही वे स्थिर प्रणालियों के लिए वर्ग पूर्णांक न हों। फूरियर रूपांतरण प्रायः वीनर-खिनचिन प्रमेय के माध्यम से अनंत संकेतों के स्पेक्ट्रा पर लागू होता है, भले ही संकेतों के फूरियर रूपांतरण मौजूद न हों।

इन दोनों रूपांतरणों की संवलन गुण के कारण, प्रणाली का आउटपुट देने वाले संवलन को रूपांतरण क्षेत्र में गुणन में बदला जा सकता है, दिए गए संकेत जिसके लिए रूपांतरण उपस्थित हैं

प्रणाली प्रतिक्रिया का उपयोग सीधे यह निर्धारित करने के लिए किया जा सकता है कि लाप्लास रूपांतरण के साथ प्रणाली द्वारा किसी विशेष आवृत्ति घटक को कैसे नियंत्रित किया जाता है। यदि हम सम्मिश्र आवृत्ति s = , जहां ω = 2πf पर प्रणाली प्रतिक्रिया (आवेग प्रतिक्रिया का लाप्लास रूपांतरण) का मूल्यांकन करते हैं, तो हम |H(s)| प्राप्त करते हैं जो आवृत्ति f के लिए प्रणाली लाभ है। उस आवृत्ति घटक के लिए आउटपुट और इनपुट के बीच सापेक्ष चरण बदलाव इसी तरह arg(H(s)) द्वारा दिया जाता है।

उदाहरण

  • एलटीआई (LTI) संकारक का एक सरल उदाहरण व्युत्पन्न है।
  • (अर्थात, यह रेखीय है)
  • (अर्थात, यह समय अपरिवर्तनीय है)

जब व्युत्पन्न का लाप्लास रूपांतरण लिया जाता है, तो यह लाप्लास चर s द्वारा सरल गुणन में रूपांतरित हो जाता है।

कि व्युत्पन्न में इतना सरल लाप्लास रूपांतरण है जो आंशिक रूप से रूपांतरण की उपयोगिता की व्याख्या करता है।

  • अन्य साधारण एलटीआई (LTI) संकारक एक औसत संकारक है

समाकलन की रैखिकता द्वारा,

यह रैखिक है। इसके अतिरिक्त, क्योंकि

यह समय अपरिवर्तनीय है। वास्तव में, को बॉक्सकार फलन के साथ संवलन के रूप में लिखा जा सकता है। अर्थात्,

जहां बॉक्सकार फलन

महत्वपूर्ण प्रणाली गुण

प्रणाली के महत्वपूर्ण गुण किसी प्रणाली के सबसे महत्वपूर्ण गुणों में से कुछ कारणवाद और स्थिरता हैं। भौतिक प्रणाली के लिए कारणवाद एक आवश्यकता है जिसका स्वतंत्र चर समय है, हालांकि यह प्रतिबंध छवि प्रसंस्करण जैसे अन्य स्थितियों में उपस्थित नहीं है।

कारणवाद

प्रणाली कारण है यदि आउटपुट केवल वर्तमान और भूतकाल पर निर्भर करता है, लेकिन भविष्य के इनपुट पर नहीं। कारणवाद के लिए एक आवश्यक और पर्याप्त शर्त है

जहाँ आवेग प्रतिक्रिया है। द्वि-पक्षीय लाप्लास रूपांतरण से कारणवाद का निर्धारण करना सामान्य रूप से संभव नहीं है। हालांकि समय क्षेत्र में काम करते समय प्रायः एकपक्षीय लाप्लास रूपांंतरण का उपयोग होता है जिसके लिए कारणवाद की आवश्यकता होती है।

स्थिरता

प्रणाली परिबद्ध-इनपुट, परिबद्ध-आउटपुट स्थिरता (बीआईबीओ (BIBO) स्थिरता) होती है, यदि प्रत्येक परिबद्ध इनपुट के लिए, आउटपुट परिमित है।

आउटपुट संतोषजनक की ओर अग्रसर है
(अर्थात्, का परिमित अधिकतम निरपेक्ष मान का परिमित अधिकतम निरपेक्ष मान दर्शाता है), तब प्रणाली स्थिर होती है। आवश्यक और पर्याप्त शर्त यह है कि , आवेग प्रतिक्रिया, L1 (सीमित L1 मानक है) में है-
आवृत्ति क्षेत्र में, अभिसरण के क्षेत्र में काल्पनिक अक्ष सम्मिलित होना चाहिए।

उदाहरण के रूप में, सिंक (sinc) फलन के बराबर आवेग प्रतिक्रिया वाला आदर्श निम्नपारक निस्यंदक बीआईबीओ (BIBO) स्थिर नहीं है, क्योंकि सिंक (sinc) फलन में सीमित L1 मानक नहीं है। इस प्रकार, कुछ बंधे हुए इनपुट के लिए, आदर्श निम्नपारक निस्यंदक का आउटपुट असीमित होता है। विशेष रूप से, यदि इनपुट के लिए शून्य है और के लिए कट-ऑफ आवृत्ति पर ज्यावक्र के बराबर है, तो आउटपुट शून्य रेखण के अलावा अन्य सभी समयों के लिए असीमित होगा।[dubious ]

असतत-समय प्रणाली

निरंतर-समय प्रणालियों में लगभग हर चीज का असतत-समय प्रणालियों में समकक्ष होता है।

असतत-समय प्रणाली निरंतर-समय प्रणाली से

कई संदर्भों में, असतत समय (डीटी) प्रणाली वास्तव में एक बड़े सतत समय (सीटी) प्रणाली का हिस्सा है। उदाहरण के लिए, एक डिजिटल रिकॉर्डिंग सिस्टम एक एनालॉग साउंड लेता है, इसे डिजिटाइज़ करता है, संभवतः डिजिटल सिग्नल को प्रोसेस करता है, और लोगों को सुनने के लिए एनालॉग साउंड को प्ले बैक करता है।

व्यावहारिक प्रणालियों में, प्राप्त डीटी सिग्नल आमतौर पर सीटी सिग्नल के समान रूप से सैंपल किए गए संस्करण होते हैं। अगर एक सीटी सिग्नल है, तो एनॉलॉग से डिजिटल परिवर्तित करने वाला उपकरण से पहले इस्तेमाल किया गया नमूना और पकड़ इसे डीटी सिग्नल में बदल देगा:

जहां टी नमूनाकरण आवृत्ति है। नमूना लेने से पहले, इनपुट सिग्नल आमतौर पर एक तथाकथित [[एंटी - एलियासिंग फ़िल्टर]] के माध्यम से चलाया जाता है जो तह आवृत्ति 1/(2T) से ऊपर की आवृत्तियों को हटा देता है; यह गारंटी देता है कि फ़िल्टर किए गए सिग्नल में कोई जानकारी गुम नहीं होगी। फ़िल्टरिंग के बिना, नमूनाचयन आवृत्ति (या निक्विस्ट आवृत्ति) के ऊपर कोई फ़्रीक्वेंसी कंपोनेंट एक अलग फ़्रीक्वेंसी (इस प्रकार मूल सिग्नल को विकृत करना) के लिए अलियासिंग है, क्योंकि डीटी सिग्नल केवल फ़ोल्डिंग फ़्रीक्वेंसी से कम फ़्रीक्वेंसी घटकों का समर्थन कर सकता है।

आवेग प्रतिक्रिया और दृढ़ संकल्प

होने देना अनुक्रम का प्रतिनिधित्व करते हैं और छोटा नोटेशन दें प्रतिनिधित्व करना एक असतत प्रणाली एक इनपुट अनुक्रम को रूपांतरित करती है, एक आउटपुट अनुक्रम में, सामान्य तौर पर, आउटपुट का प्रत्येक तत्व इनपुट के प्रत्येक तत्व पर निर्भर हो सकता है। द्वारा परिवर्तन ऑपरेटर का प्रतिनिधित्व करना , हम लिख सकते हैं:

ध्यान दें कि जब तक परिवर्तन स्वयं n के साथ नहीं बदलता है, तब तक आउटपुट अनुक्रम स्थिर रहता है, और सिस्टम अरुचिकर है। (इस प्रकार सबस्क्रिप्ट, एन।) एक विशिष्ट प्रणाली में, वाई [एन] एक्स के तत्वों पर सबसे अधिक निर्भर करता है जिसका सूचकांक एन के पास है।

क्रोनकर डेल्टा समारोह के विशेष मामले के लिए, आउटपुट अनुक्रम आवेग प्रतिक्रिया है:

एक रैखिक प्रणाली के लिए, संतुष्ट होना चाहिए:

 

 

 

 

(Eq.4)

और समय-अपरिवर्तनीय आवश्यकता है:

 

 

 

 

(Eq.5)


ऐसी प्रणाली में, आवेग प्रतिक्रिया, , सिस्टम को पूरी तरह से चित्रित करता है। अर्थात्, किसी भी इनपुट अनुक्रम के लिए, आउटपुट अनुक्रम की गणना इनपुट और आवेग प्रतिक्रिया के संदर्भ में की जा सकती है। यह कैसे किया जाता है यह देखने के लिए, पहचान पर विचार करें:

जो व्यक्त करता है भारित डेल्टा कार्यों के योग के संदर्भ में।

इसलिए:

जहां हमने आह्वान किया है Eq.4 मामले के लिए और .

और के कारण Eq.5, हम लिख सकते हैं:

इसलिए:

      (commutativity)

जो परिचित असतत दृढ़ संकल्प सूत्र है। परिचालक इसलिए फ़ंक्शन x [k] के भारित औसत के समानुपाती के रूप में व्याख्या की जा सकती है। वेटिंग फ़ंक्शन h[−k] है, केवल राशि n द्वारा स्थानांतरित किया गया है। जैसे ही n बदलता है, वेटिंग फ़ंक्शन इनपुट फ़ंक्शन के विभिन्न भागों पर ज़ोर देता है। समतुल्य रूप से, n = 0 पर एक आवेग के लिए सिस्टम की प्रतिक्रिया अनशिफ्टेड वेटिंग फ़ंक्शन की एक समय उलटी प्रति है। जब h[k] सभी नकारात्मक k के लिए शून्य होता है, तो सिस्टम को कॉसल सिस्टम कहा जाता है।

=== ईजेनफंक्शन === के रूप में घातांक एक ईजेनफंक्शन एक ऐसा फ़ंक्शन है जिसके लिए ऑपरेटर का आउटपुट एक ही फ़ंक्शन होता है, जिसे कुछ स्थिरता से बढ़ाया जाता है। प्रतीकों में,

जहाँ f आइगेनफंक्शन है और eigenvalue है, एक स्थिरांक।

घातीय कार्य , कहाँ , एक रेखीय, समय-अपरिवर्तनीय ऑपरेटर के eigenfunctions हैं। नमूना अंतराल है, और . एक साधारण प्रमाण इस अवधारणा को दर्शाता है।

मान लीजिए इनपुट है . आवेग प्रतिक्रिया के साथ सिस्टम का आउटपुट तब है

जो दृढ़ संकल्प की क्रमविनिमेय संपत्ति द्वारा निम्नलिखित के बराबर है
कहाँ
केवल पैरामीटर z पर निर्भर है।

इसलिए एलटीआई प्रणाली का एक ईजेनफंक्शन है क्योंकि सिस्टम प्रतिक्रिया इनपुट समय स्थिरांक के समान है .

=== Z और असतत-समय फूरियर === रूपांतरित करता है एलटीआई सिस्टम में विश्लेषण और अंतर्दृष्टि दोनों के लिए एक्सपोनेंशियल की ईजेनफंक्शन संपत्ति बहुत उपयोगी है। Z परिवर्तन

आवेग प्रतिक्रिया से eigenvalues ​​​​प्राप्त करने का बिल्कुल तरीका है।[clarification needed] विशेष रुचि शुद्ध साइनसोइड हैं; यानी फॉर्म के एक्सपोनेंशियल्स , कहाँ . इन्हें इस रूप में भी लिखा जा सकता है साथ [clarification needed]. असतत-समय फूरियर रूपांतरण (DTFT) शुद्ध साइनसोइड्स के eigenvalues ​​​​देता है[clarification needed]. दोनों और सिस्टम फ़ंक्शन, सिस्टम प्रतिक्रिया या स्थानांतरण फ़ंक्शन कहा जाता है।

एक तरफा लाप्लास परिवर्तन की तरह, Z परिवर्तन आमतौर पर एक तरफा संकेतों के संदर्भ में उपयोग किया जाता है, अर्थात ऐसे संकेत जो t<0 के लिए शून्य होते हैं। असतत-समय फूरियर रूपांतरण फूरियर श्रृंखला का उपयोग आवधिक संकेतों के विश्लेषण के लिए किया जा सकता है।

इन दोनों रूपांतरणों की कनवल्शन प्रॉपर्टी के कारण, सिस्टम का आउटपुट देने वाले कनवल्शन को ट्रांसफ़ॉर्म डोमेन में गुणन में बदला जा सकता है। वह है,

निरंतर समय प्रणाली विश्लेषण में लाप्लास ट्रांसफॉर्म ट्रांसफर फ़ंक्शन के साथ ही, जेड ट्रांसफॉर्म सिस्टम का विश्लेषण करना और उनके व्यवहार में अंतर्दृष्टि प्राप्त करना आसान बनाता है।

उदाहरण

  • A simple example of an LTI operator is the delay operator .
    •   (i.e., it is linear)
    •   (i.e., it is time invariant)

    विलंब संचालिका का Z रूपांतरण z द्वारा सरल गुणा है-1. वह है,

  • एक अन्य साधारण एलटीआई ऑपरेटर औसत ऑपरेटर है
    राशियों की रैखिकता के कारण,
    और इसलिए यह रैखिक है। क्योंकि,
    यह समय अपरिवर्तनीय भी है।

महत्वपूर्ण प्रणाली गुण

डिस्क्रीट-टाइम LTI सिस्टम की इनपुट-आउटपुट विशेषताओं को पूरी तरह से इसके आवेग प्रतिक्रिया द्वारा वर्णित किया गया है . एक प्रणाली के सबसे महत्वपूर्ण गुणों में से दो कार्य-कारण और स्थिरता हैं। गैर-कारण (समय में) प्रणालियों को ऊपर के रूप में परिभाषित और विश्लेषण किया जा सकता है, लेकिन वास्तविक समय में महसूस नहीं किया जा सकता है। अस्थिर प्रणालियों का विश्लेषण और निर्माण भी किया जा सकता है, लेकिन वे केवल एक बड़ी प्रणाली के हिस्से के रूप में उपयोगी हैं, जिसका समग्र स्थानांतरण कार्य स्थिर है।

कारणता

असतत-समय एलटीआई प्रणाली कारण है यदि आउटपुट का वर्तमान मूल्य केवल वर्तमान मूल्य और इनपुट के पिछले मूल्यों पर निर्भर करता है।[4] कारणता के लिए एक आवश्यक और पर्याप्त शर्त है

कहाँ आवेग प्रतिक्रिया है। सामान्य रूप से Z रूपांतरण से कार्य-कारण का निर्धारण करना संभव नहीं है, क्योंकि व्युत्क्रम परिवर्तन अद्वितीय नहीं है[dubious ]. जब अभिसरण का एक क्षेत्र निर्दिष्ट किया जाता है, तब कार्य-कारण निर्धारित किया जा सकता है।

स्थिरता

एक सिस्टम बाउंडेड इनपुट, बाउंडेड आउटपुट स्टेबल (BIBO स्टेबल) है, यदि प्रत्येक बाउंडेड इनपुट के लिए, आउटपुट परिमित है। गणितीय रूप से, यदि

इसका आशय है
(अर्थात, यदि बाउंडेड इनपुट का तात्पर्य बाउंडेड आउटपुट से है, इस अर्थ में कि इन्फिनिटी मानदंड और परिमित हैं), तो सिस्टम स्थिर है। एक आवश्यक और पर्याप्त शर्त यह है कि , आवेग प्रतिक्रिया, संतुष्ट करता है
फ़्रीक्वेंसी डोमेन में, अभिसरण के क्षेत्र में यूनिट सर्कल होना चाहिए (यानी, लोकस (गणित) संतोषजनक जटिल जेड के लिए)।

टिप्पणियाँ

  1. Bessai, Horst J. (2005). MIMO सिग्नल और सिस्टम. Springer. pp. 27–28. ISBN 0-387-23488-8.
  2. Hespanha 2009, p. 78.
  3. Crutchfield, p. 1. Welcome!
  4. Phillips 2007, p. 508.


यह भी देखें

संदर्भ


अग्रिम पठन


बाहरी संबंध