दोष सुरक्षा नियंत्रण: Difference between revisions

From Vigyanwiki
(No difference)

Revision as of 09:38, 1 March 2023

अभियांत्रिकी में, दोष सुरक्षा नियंत्रण एक प्रारुप सुविधा या अभ्यास है, जो किसी विशिष्ट प्रकार की विफलता के कारणों की स्थिति में स्वाभाविक रूप से इस तरह से प्रतिक्रिया करता है जिससे पर्यावरण या लोगों को अन्य उपकरणों को न्यूनतम या कोई नुकसान नहीं होगा। किसी विशेष खतरे के लिए अंतर्निहित सुरक्षा के विपरीत, एक प्रणाली के "दोष सुरक्षा नियंत्रण" होने का अर्थ यह नहीं है कि विफलता असंभव है, बल्कि यह है कि प्रणाली का प्रारुप प्रणाली की विफलता के असुरक्षित परिणामों को रोकता है या कम करता है। यही है, अगर और जब दोष सुरक्षा नियंत्रण प्रणाली विफल हो जाती है, तो यह कम से कम उतना ही सुरक्षित रहता है जितना कि विफलता से पहले था।[1][2] चूंकि कई प्रकार की विफलताएं संभव हैं, विफलता मोड और प्रभाव विश्लेषण का उपयोग विफलता स्थितियों की जांच करने और सुरक्षा प्रारुप और प्रक्रियाओं की सिफारिश करने के लिए किया जाता है।

कुछ प्रणालियों को कभी भी दोष सुरक्षा नियंत्रण नहीं बनाया जा सकता, क्योंकि निरंतर उपलब्धता की आवश्यकता होती है। अतिरेक (इंजीनियरिंग), दोष सहिष्णुता, या आकस्मिक योजनाओं का उपयोग इन स्थितियों के लिए किया जाता है (उदाहरण के लिए कई स्वतंत्र रूप से नियंत्रित और ईंधन से चलने वाले इंजन)।[3]


उदाहरण

यांत्रिक या भौतिक

वायवीय मध्‍यच्‍छद प्रवर्तक के साथ ग्लोब कंट्रोल वाल्व। इस तरह के वाल्व को वसंत दबाव का उपयोग करके सुरक्षा में विफल होने के लिए रूपांकित किया जा सकता है यदि सक्रिय हवा खो जाती है।

उदाहरणों में शामिल:

  • रोलर-शटर अग्नि दरवाजे जो अलार्म प्रणाली या स्थानीय स्मोक संसूचक के निर्माण से सक्रिय होते हैं, उन्हें बिजली की परवाह किए बिना संकेत दिए जाने पर स्वचालित रूप से बंद हो जाना चाहिए। पावर आउटेज (बिजली जाने) के मामले में कुंडलीदार अग्नि दरवाजे को बंद करने की आवश्यकता नहीं है, लेकिन बिल्डिंग अलार्म प्रणाली या स्मोक संसूचक से संकेत मिलने पर स्वचालित रूप से बंद होने में सक्षम होना चाहिए। गुरुत्वाकर्षण या समापन वसंत के खिलाफ आग के दरवाजे खुले रखने के लिए तापमान-संवेदनशील गलनीय शृंखला नियोजित किया जा सकता है। आग लगने की स्थिति में, कड़ी पिघल जाती है और दरवाजे खुल जाते हैं, और वे बंद हो जाते हैं।
  • कुछ एयरपोर्ट सामान कार्ट के लिए आवश्यक है कि व्यक्ति किसी दिए गए कार्ट के हैंडब्रेक स्विच को हर समय दबाए रखे; यदि हैंडब्रेक स्विच को छोड़ दिया जाता है, तो ब्रेक सक्रिय हो जाएगा, और यह मानते हुए कि ब्रेकिंग प्रणाली के अन्य सभी हिस्से ठीक से काम कर रहे हैं, गाड़ी रुक जाएगी। हैंडब्रेक-होल्डिंग की आवश्यकता इस प्रकार दोनों विफल-सुरक्षा के सिद्धांतों के अनुसार संचालित होती है और प्रणाली की "दोष सुरक्षा नियंत्रण" में योगदान देती है (लेकिन यह सुनिश्चित नहीं करती है)। यह डेड मैन स्विच का एक उदाहरण है।
  • लॉन की घास काटने वाली मशीन और बर्फ हटाने की मशीन में एक हाथ से बंद लीवर होता है जिसे हर समय नीचे रखना चाहिए। यदि इसे छोड़ दिया जाता है, तो यह ब्लेड या रोटर के घूमने को रोक देता है। यह डेड मैन स्वि के रूप में भी कार्य करता है।
  • रेलवे रेलगाड़ियों पर एयर ब्रेक (रेल) और ट्रकों पर एयर ब्रेक (सड़क वाहन)। ब्रेक प्रणाली में बने हवा के दबाव से ब्रेक को "ऑफ" स्थिति में रखा जाता है। यदि ब्रेक लाइन टूट जाती है, या गाड़ी डी-युग्मित हो जाती है, तो ट्रकों के मामले में स्प्रिंग्स द्वारा, या रेलगाड़ीों में स्थानीय वायु जलाशय द्वारा, हवा का दबाव खो जाएगा और ब्रेक लगाए जाएंगे। एयर ब्रेक प्रणाली में गंभीर रिसाव वाले ट्रक को चलाना असंभव है। (ट्रक कम हवा के दबाव को इंगित करने के लिए विग वैग (ट्रक ब्रेकिंग प्रणाली) भी लगा सकते हैं।)
  • मोटर चालित गेट - बिजली आउटेज के मामले में गेट को बिना किसी वक्रोक्ति या चाबी की आवश्यकता के हाथ से खोला जा सकता है। हालाँकि, चूंकि यह वास्तव में किसी को भी गेट के माध्यम से जाने की अनुमति देगा, इसलिए यहाँ दोष सुरक्षा नियंत्रण प्रारुप का उपयोग किया जाता है: बिजली आउटेज में, गेट केवल एक हाथ की क्रैंक द्वारा खोला जा सकता है जिसे आमतौर पर सुरक्षित क्षेत्र में या ताला और चाबी के नीचे रखा जाता है। जब इस तरह का गेट वाहनों को घरों तक पहुंच प्रदान करता है, तो दोष सुरक्षा नियंत्रण प्रणाली का उपयोग किया जाता है, जहां अग्निशमन विभाग की पहुंच की अनुमति देने के लिए दरवाजा खुलता है।
  • सुरक्षा वाल्व - विभिन्न उपकरण जो तरल पदार्थ के साथ काम करते हैं, फ़्यूज़ (हाइड्रोलिक) या सुरक्षा वाल्व का उपयोग दोष सुरक्षा नियंत्रण तंत्र के रूप में करते हैं।
रेलवे सेमाफोर सूचक। "रोकें" या "सावधानी" क्षैतिज भुजा है, आगे बढ़ने के लिए स्पष्ट 45 डिग्री ऊपर की ओर है, इसलिए सक्रिय केबल की विफलता सिग्नल आर्म को गुरुत्वाकर्षण के तहत सुरक्षा के लिए जारी करती है।

*रेलवे सेमाफोर सिग्नल को विशेष रूप से प्रारुप किया गया है ताकि सिग्नल ब्रेक को नियंत्रित करने वाली केबल को हाथ खतरे की स्थिति में वापस आ जाए, जिससे किसी भी रेलगाड़ी को निष्क्रिय सिग्नल से गुजरने से रोका जा सके।

  • विलगन वाल्व, और नियंत्रण वाल्व, जो उदाहरण के लिए खतरनाक पदार्थों वाले प्रणाली में उपयोग किए जाते हैं, को बिजली के नुकसान पर बंद करने के लिए प्रारुप किया जा सकता है, उदाहरण के लिए वसंत बल द्वारा। इसे पावर के नुकसान पर फेल-क्लोज्ड के रूप में जाना जाता है।
  • एक लिफ्ट में ब्रेक होते हैं जो लिफ्ट केबल के तनाव से ब्रेक पैड को रोकते हैं। यदि केबल टूट जाती है, तो तनाव खत्म हो जाता है और शाफ्ट में रेल पर ब्रेक लग जाते हैं, ताकि लिफ्ट केबिन गिर न जाए।
  • वाहन एयर कंडीशनिंग - डीफ़्रॉस्ट नियंत्रण को डीफ़्रॉस्ट को छोड़कर सभी कार्यों के लिए डायवर्टर डैम्पर ऑपरेशन के लिए वैक्यूम की आवश्यकता होती है। यदि वैक्यूम विफल हो जाता है, तो डीफ़्रॉस्ट अभी भी उपलब्ध है।

इलेक्ट्रिकल या इलेक्ट्रॉनिक

उदाहरणों में शामिल:

  • कई उपकरणों को फ़्यूज़ (विद्युत)इलेक्ट्रिकल), परिपथ वियोजक, या वर्तमान सीमित विद्युत परिपथ द्वारा शार्ट विद्युत परिपथ से सुरक्षित किया जाता है। अधिभार स्थितियों के तहत विद्युत रुकावट अधितापन के कारण वायरिंग या विद्युत परिपथ उपकरणों के नुकसान या विनाश को रोकेगी।
  • वैमानिकी तीन अलग-अलग प्रणालियों का उपयोग करके समान गणना करने के लिए अनावश्यक प्रणालियों का उपयोग कर रही है। अलग-अलग परिणाम प्रणाली में खराबी का संकेत देते हैं।[4]
  • ड्राइव बाय वायर और फ्लाई बाय वायर नियंत्रण जैसे 'एक्सीलरेटर पोजिशन सेंसर' में आमतौर पर दो विभवमापी होते हैं जो विपरीत दिशाओं में पढ़ते हैं, जैसे कि नियंत्रण को स्थानांतरित करने से एक रीडिंग अधिक हो जाएगी, और दूसरी आम तौर पर समान रूप से कम हो जाएगी। दो रीडिंग के बीच बेमेल प्रणाली में खराबी का संकेत देता है, और इंजन नियंत्रण इकाई अक्सर यह अनुमान लगा सकती है कि दोनों में से कौन सी रीडिंग दोषपूर्ण है।[5]
  • यातायात प्रकाश नियंत्रक दोषों या परस्पर विरोधी संकेतों का पता लगाने के लिए संघर्ष मॉनिटर यूनिट का उपयोग करते हैं और संभावित खतरनाक परस्पर विरोधी संकेतों को प्रदर्शित करने के बजाय एक चौराहे को सभी चमकती त्रुटि संकेतों पर स्विच करते हैं, उदाहरण सभी दिशाओं में हरा दिखा रहा है।[6]
  • कंप्यूटर प्रणाली में कंप्यूटर हार्डवेयर या सॉफ़्टवेयर विफलता का पता चलने पर प्रोग्राम और/या प्रसारण केंद्र प्रणाली की स्वचालित सुरक्षा। एक उत्कृष्ट उदाहरण निगरानी घड़ी है। दोष सुरक्षा नियंत्रण (कंप्यूटर) देखें।
  • नियंत्रण संचालन या कार्य जो [[विद्युत परिपथ]] की खराबी या संचालक त्रुटि की स्थिति में अनुचित प्रणाली के कामकाज या भयावह विफलता को रोकता है; उदाहरण के लिए, रेलवे सिग्नलिंग को नियंत्रित करने के लिए दोष सुरक्षा ट्रैक विद्युत परिपथ का उपयोग किया जाता है। तथ्य यह है कि एक चमकता तृणमणि रंग कई रेलवे लाइनों पर ठोस अम्बर की तुलना में अधिक अनुमेय है, असफल होने का संकेत है, क्योंकि प्रसारण केंद्र, यदि काम नहीं कर रहा है, तो अधिक प्रतिबंधात्मक सेटिंग पर वापस आ जाएगा।
  • पनडुब्बी को चढ़ने की अनुमति देने के लिए बाथिसकैप पर लोहे की गोली गिट्टी गिरा दी जाती है। गिट्टी को विद्युत चुम्बक द्वारा जगह में रखा जाता है। यदि विद्युत शक्ति विफल हो जाती है, तो गिट्टी छोड़ दी जाती है, और पनडुब्बी फिर सुरक्षा के लिए चढ़ जाती है।
  • कई परमाणु रिएक्टर प्रारुपों में विद्युत चुम्बकों द्वारा निलंबित न्यूट्रॉन अवशोषक नियंत्रण छड़ें होती हैं। यदि शक्ति विफल हो जाती है, तो वे गुरुत्वाकर्षण के तहत कोर में गिर जाते हैं और विखंडन को जारी रखने के लिए आवश्यक न्यूट्रॉन को अवशोषित करके सेकंड में श्रृंखला प्रतिक्रिया को बंद कर देते हैं।
  • औद्योगिक स्वचालन में, अलार्म विद्युत परिपथ आमतौर पर सामान्य रूप से बंद होते हैं। यह सुनिश्चित करता है कि तार टूटने की स्थिति में अलार्म चालू हो जाएगा। यदि विद्युत परिपथ सामान्य रूप से खुला होता, तो वास्तविक अलार्म संकेतों को अवरुद्ध करते हुए, तार की विफलता का पता नहीं चल पाता।
  • समधर्मी संवेदक और मॉडुलिक प्रवर्तक को आमतौर पर स्थापित और तारित किया जा सकता है जैसे कि विद्युत परिपथ की विफलता के परिणामस्वरूप निषिद्ध रीडिंग होती है - वर्तमान परिपथ देखें। उदाहरण के लिए, पैडल की स्थिति का संकेत देने वाला विभवमापी अपनी पूरी सीमा के केवल 20% से 80% तक ही यात्रा कर सकता है, जैसे कि केबल टूटना या 0% या 100% रीडिंग में छोटा परिणाम।
  • नियंत्रण प्रणालियों में, अत्यधिक महत्वपूर्ण संकेतों को तारों की पूरक जोड़ी द्वारा ले जाया जा सकता है। केवल वे स्थिति जहां दो संकेत विपरीत हैं (एक उच्च है, अन्य निम्न) मान्य हैं। यदि दोनों उच्च हैं या दोनों निम्न हैं तो नियंत्रण प्रणाली जानती है कि संवेदक या संयोजी तारक्रम में कुछ गड़बड़ है। सरल विफलता मोड (मृत संवेदक, कट या अनप्लग तार) का पता लगाया जाता है। उदाहरण एक SPDT चयनकर्ता स्विच के सामान्य रूप से खुले (NO) और सामान्य रूप से बंद (NC) ध्रुवों को पढ़ने वाली नियंत्रण प्रणाली होगी, और इनपुट पर प्रतिक्रिया करने से पहले उन्हें सुसंगतता के लिए जांचना होगा।
  • HVAC नियंत्रण प्रणालियों में, अवमंदक और वाल्वों को नियंत्रित करने वाले प्रवर्तक दोष सुरक्षा नियंत्रण हो सकते हैं, उदाहरण के लिए, वक्र को जमने से या कमरों को ज़्यादा गरम होने से रोकने के लिए। पुराने वायवीय प्रेरक स्वाभाविक रूप से दोष सुरक्षा नियंत्रण थे क्योंकि अगर आंतरिक मध्‍यच्‍छद के खिलाफ हवा का दबाव विफल हो जाता है, तो अंतर्निर्मित स्प्रिंग प्रवर्तक को उसके मूल स्थिति में धकेल देगा - निश्चित रूप से मूल स्थिति को "सुरक्षित" स्थिति होना आवश्यकता होता है। नए इलेक्ट्रिकल और इलेक्ट्रॉनिक प्रवर्तक को अतिरिक्त घटकों (स्प्रिंग्स या संधारित्र) की आवश्यकता होती है ताकि विद्युत शक्ति के नुकसान पर प्रवर्तक को मूल स्थिति में स्वचालित रूप से चलाया जा सके।[7]
  • निर्देशयोग्य तर्क नियंत्रक (PLC)। PLC को दोष सुरक्षा नियंत्रण बनाने के लिए प्रणाली को संबंधित कर्मशक्ति को रोकने के लिए ऊर्जाकरण की आवश्यकता नहीं होती है। उदाहरण के लिए, आमतौर पर, आपातकालीन स्टॉप सामान्य रूप से बंद संपर्क में होता है। बिजली की विफलता की स्थिति में यह वक्र से सीधे बिजली और PLC निवेश को भी हटा देगा। इसलिए, यह एक दोष सुरक्षा नियंत्रण प्रणाली।
  • यदि विद्युत् दाब नियामक विफल हो जाता है, तो यह उससे जुड़े उपकरणों को भी नष्ट कर सकता है। एक अधिपारक (विद्युत परिपथ) बिजली की आपूर्ति को लघुपथित करके क्षति को रोकता है, जैसे ही यह अधिवोल्टता का पता लगाता है।

प्रक्रियात्मक सुरक्षा

विमान वाहक पर विरामित अवतरण के दौरान पूरी शक्ति बनाए रखने के लिए विमान अपने अधिज्वालक को रोशन करता है। यदि विरामित अवतरण विफल हो जाती है, तो विमान सुरक्षित रूप से फिर से उड़ान भर सकता है।

साथ ही साथ भौतिक उपकरण और प्रणालियां दोष सुरक्षा नियंत्रण प्रक्रियाएं बनाई जा सकती हैं ताकि यदि कोई प्रक्रिया नहीं की जाती है या गलत तरीके से की जाती है तो कोई खतरनाक घटनाक्रम नहीं होती है।

उदाहरण के लिए:

  • अंतरिक्ष शिल्प प्रक्षेपवक्र - चंद्रमा के प्रारंभिक अपोलो कार्यक्रम अभियान के दौरान, अंतरिक्ष शिल्प को मुक्त वापसी प्रक्षेपवक्र पर रखा गया था—यदि चंद्र की कक्षा में प्रवेश करने पर इंजन विफल हो जाते, तो शिल्प सुरक्षित रूप से पृथ्वी पर वापस आ जाता।
  • विमानवाहक वाहक पर उतरने वाले विमान का पायलट अवतरण पर उपरोधक को पूरी शक्ति तक बढ़ा देता है। यदि अवरोधक तार विमान को पकड़ने में विफल रहते हैं, तो यह फिर से उड़ान भरने में सक्षम होता है; यह दोष सुरक्षा नियंत्रण अभ्यास का एक उदाहरण है।[8]
  • रेलवे संकेतन में जो संकेत रेलगाड़ी के लिए सक्रिय उपयोग में नहीं हैं, उन्हें 'खतरे' की स्थिति में रखना आवश्यक है। इसलिए प्रत्येक नियंत्रित निरपेक्ष संकेत की अनुपस्थिति स्थिति "खतरा" है, और इसलिए रेलगाड़ी के गुजरने से पहले एक सकारात्मक प्रक्रिया—संकेत को "स्पष्ट" निर्धारित करना— आवश्यक है। यह अभ्यास यह भी सुनिश्चित करता है कि, संकेतन प्रणाली में खराबी के मामले में, एक अक्षम संकेतकार, या रेलगाड़ी की अप्रत्याशित प्रविष्टि, कि रेलगाड़ी को कभी भी गलत "स्पष्ट" संकेत नहीं दिखाया जाएगा।
  • रेलरोड इंजीनियरों को निर्देश दिया जाता है कि भ्रमित करने वाला, विरोधाभासी या अपरिचित पहलू दिखाने वाला रेलवे संकेत (उदाहरण के लिए एक (रेलवे संकेतन) रंगीन लाइट सिग्नल जिसमें बिजली की खराबी हुई है और बिल्कुल भी रोशनी नहीं दिखा रहा है) को "खतरे" को दर्शाने वाला माना जाना चाहिए। इस तरह, ड्राइवर प्रणाली की दोष सुरक्षा नियंत्रण में योगदान देता है।

अन्य शब्दावली

दोष सुरक्षा (सुस्पष्ट) उपकरण को पोकर विकर्षक (पोका-योक) उपकरण के रूप में भी जाना जाता है। पोका-योक, जापानी भाषा का शब्द, गुणवत्ता विशेषज्ञ, शिगियो शिंगो द्वारा गढ़ा गया था।[9][10] "सेफ टू फेल" सिविल इंजीनियरिंग प्रारुपों को संदर्भित करता है जैसे रूम फॉर द रिवर (नीदरलैंड्स) और थेम्स इस्ट्यूरी 2100 प्लान[11][12] जो नम्य अनुकूलन रणनीतियों या जलवायु परिवर्तन अनुकूलन को शामिल करता है जो 500 साल की बाढ़ जैसी गंभीर घटनाओं के लिए क्षति प्रदान करता है और उन्हें सीमित करता है।[13]

दोष सुरक्षा और सुरक्षित विफल

दोष सुरक्षा और सुरक्षित विफल अलग-अलग अवधारणाएँ हैं। दोष सुरक्षा नियंत्रण का अर्थ है कि कोई उपकरण विफल होने पर जीवन या संपत्ति को खतरे में नहीं डालेगा। सुरक्षित विफल नियंत्रण, जिसे विफल-बंद (फेल-क्लोज्ड) भी कहा जाता है, का अर्थ है कि सुरक्षा विफलता में प्रवेश या आँकड़े गलत हाथों में नहीं पड़ेगा। कभी-कभी दृष्टिकोण विपरीत समाधान सुझाते हैं। उदाहरण के लिए, यदि किसी भवन में आग लग जाती है, तो दोष सुरक्षा नियंत्रण प्रणालियाँ त्वरित बचाव सुनिश्चित करने के लिए दरवाजे खोल देती हैं और अग्निशामकों को अंदर आने देती हैं, जबकि विफल-सुरक्षित नियंत्रण प्रणाली इमारत में अनधिकृत पहुँच को रोकने के लिए दरवाजों को बंद कर देती है।

"फेल-क्लोज्ड" के विपरीत को "फेल-ओपन" कहा जाता है।

विफल सक्रिय संचालन

विफल सक्रिय संचालन को उन प्रणाली पर स्थापित किया जा सकता है जिसमें उच्च स्तर की अतिरिक्तता होती है ताकि प्रणाली के किसी भी हिस्से की विफलता को सहन किया जा सकता है (सक्रिय संचालन में विफल) और दूसरी विफलता का पता लगाया जा सकता है - जिस बिंदु पर प्रणाली स्वयं "ऑफ" हो जाएगा (अयुग्मित, विफल निष्क्रीय)। इसे पूरा करने का एक तरीका तीन समान प्रणालियों को स्थापित करना है, और एक नियंत्रण तर्क है जो विसंगतियों का पता लगाता है। इसके लिए उदाहरण कई विमान प्रणालियां हैं, जिनमें जड़त्वीय नेविगेशन प्रणाली और पीटोनली शामिल हैं।

दोष सुरक्षा बिंदु

शीत युद्ध के दौरान, सोवियत हवाई क्षेत्र के ठीक बाहर, अमेरिकी सामरिक वायु कमान के परमाणु बमवर्षकों के लिए "दोष सुरक्षा बिंदु" शब्द का इस्तेमाल किया गया था। हमले का आदेश प्राप्त होने की स्थिति में, बमवर्षकों को "दोष सुरक्षा बिंदु" पर रुकना पड़ता था और दूसरे पुष्टिकरण आदेश की प्रतीक्षा करनी पड़ती थी; जब तक आदेश प्राप्त नहीं हो जाता, तब तक वे अपने बम नहीं रखेंगे या आगे नहीं बढ़ेंगे।[14] यह प्रारुप परमाणु युद्ध के कारण अमेरिकी कमांड प्रणाली की किसी विफलता को रोकने के लिए था। अमेरिकी लोकप्रिय शब्दकोश में शब्द का यह अर्थ 1962 के उपन्यास 'दोष सुरक्षा' (उपन्यास) के प्रकाशन के साथ प्रवेश किया।

(अन्य परमाणु युद्ध कमान नियंत्रण प्रणालियों ने विपरीत योजना का उपयोग किया है, विफल-घातक, जिसके लिए निरंतर या नियमित प्रमाण कि दुश्मन का पहला हमला नहीं हुआ है की आवश्यकता होती है ताकि परमाणु हमले की शुरुआत को रोका जाए।)

यह भी देखें

संदर्भ

  1. "Fail-safe". AudioEnglich.net. Accessed 2009.12.31
  2. e.g., David B. Rutherford Jr., What Do You Mean It\'s Fail Safe? . 1990 Rapid Transit Conference
  3. Bornschlegl, Susanne (2012). Ready for SIL 4: Modular Computers for Safety-Critical Mobile Applications (pdf). MEN Mikro Elektronik. Retrieved 2015-09-21.
  4. Bornschlegl, Susanne (2012). Ready for SIL 4: Modular Computers for Safety-Critical Mobile Applications (pdf). MEN Mikro Elektronik. Retrieved 2015-09-21.
  5. "P2138 DTC Throttle/Pedal Pos Sensor/Switch D / E Voltage Correlation". www.obd-codes.com.
  6. Manual on Uniform Traffic Control Devices, Federal Highway Administration, 2003
  7. "When Failure Is Not an Option: The Evolution of Fail-Safe Actuators". KMC Controls. 29 October 2015. Retrieved 12 April 2021.
  8. Harris, Tom (29 August 2002). "How Aircraft Carriers Work". HowStuffWorks, Inc. Retrieved 2007-10-20.
  9. Shingo, Shigeo; Andrew P. Dillon (1989). A study of the Toyota production system from an industrial engineering viewpoint. Portland, Oregon: Productivity Press. p. 22. ISBN 0-915299-17-8. OCLC 19740349
  10. John R. Grout, Brian T. Downs. "A Brief Tutorial on Mistake-proofing, Poka-Yoke, and ZQC", MistakeProofing.com
  11. "Thames Estuary 2100 Plan" (PDF). UK Environment Agency. November 2012. Archived from the original (PDF) on 2012-12-10. Retrieved March 20, 2013.
  12. "Thames Estuary 2100 (TE2100)". UK Environment Agency. Retrieved March 20, 2013.
  13. Jennifer Weeks (March 20, 2013). "Adaptation expert Paul Kirshen proposes a new paradigm for civil engineers: 'safe to fail,' not 'fail safe'". The Daily Climate. Archived from the original on May 13, 2013. Retrieved March 20, 2013.
  14. "fail-safe". Dictionary.com. Retrieved November 7, 2021.