युग्मन अभिगृहीत: Difference between revisions

From Vigyanwiki
No edit summary
Line 1: Line 1:
{{short description|Concept in axiomatic set theory}}
{{short description|Concept in axiomatic set theory}}
{{no footnotes|date=March 2013}}
{{no footnotes|date=March 2013}}
[[[[स्वयंसिद्ध]] समुच्चय सिद्धांत]] और इसका उपयोग करने वाले [[तर्क]], गणित और [[कंप्यूटर विज्ञान]] की शाखाओं में, युग्मन का स्वयंसिद्ध ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के स्वयंसिद्धों में से एक है। यह ज़र्मेलो (1908) द्वारा प्राथमिक समुच्चय के अपने स्वयंसिद्ध के एक विशेष मामले के रूप में प्रस्तावित किया गया था।
[[[[स्वयंसिद्ध|अभिगृहीत समुच्चय सिद्धांत]]]] और इसका उपयोग करने वाले [[तर्क]], [[गणित]] और [[कंप्यूटर विज्ञान]] की शाखाओं में, युग्मन का अभिगृहीत ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के अभिगृहीतों में से एक है। यह [[ज़र्मेलो (1908)]] द्वारा [[प्राथमिक समुच्चय के अपने स्वयंसिद्ध|प्राथमिक समुच्चय के अपने अभिगृहीत]] के एक विशेष मामले के रूप में प्रस्तावित किया गया था।


== औपचारिक वक्तव्य ==
== औपचारिक वक्तव्य ==
ज़र्मेलो-फ्रेंकेल स्वयंसिद्धों की [[औपचारिक भाषा]] में, स्वयंसिद्ध पढ़ता है:
ज़र्मेलो-फ्रेंकेल अभिगृहीतों की [[औपचारिक भाषा]] में, अभिगृहीत पढ़ता है:
:<math>\forall A \, \forall B \, \exists C \, \forall D \, [D \in C \iff (D = A \lor D = B)]</math>
:<math>\forall A \, \forall B \, \exists C \, \forall D \, [D \in C \iff (D = A \lor D = B)]</math>
शब्दों में:
शब्दों में:
: किसी भी वस्तु A और किसी भी वस्तु B को देखते हुए, एक समुच्चय C है जैसे कि, किसी भी वस्तु D को दिया गया है, D, C का सदस्य है यदि और केवल यदि D, A के बराबर है या D, B के बराबर है।
: [[किसी भी]] वस्तु A और किसी भी वस्तु B को देखते हुए, एक समुच्चय C है जैसे कि, किसी भी वस्तु D को दिया गया है, D, C का सदस्य है यदि और केवल यदि D, A के बराबर है या D, B के बराबर है।


या सरल शब्दों में:
या सरल शब्दों में:
Line 13: Line 13:


== परिणाम ==
== परिणाम ==
जैसा कि उल्लेख किया गया है, स्वयंसिद्ध क्या कह रहा है कि, दो वस्तुओं A और B को देखते हुए, हम एक समुच्चय C पा सकते हैं जिसका सदस्य बिल्कुल A और B हैं।
जैसा कि उल्लेख किया गया है, अभिगृहीत क्या कह रहा है कि, दो वस्तुओं A और B को देखते हुए, हम एक समुच्चय C पा सकते हैं जिसका सदस्य बिल्कुल A और B हैं।


हम विस्तृतता के अभिगृहीत का उपयोग यह सिद्ध करने के लिए कर सकते हैं कि यह समुच्चय C अद्वितीय है।
हम [[विस्तृतता के अभिगृहीत]] का उपयोग यह सिद्ध करने के लिए कर सकते हैं कि यह समुच्चय C अद्वितीय है।


हम समुच्चय C को A और B का युग्म कहते हैं, और इसे {A,B} निरूपित करते हैं।
हम समुच्चय C को A और B का युग्म कहते हैं, और इसे {A,B} निरूपित करते हैं।


इस प्रकार स्वयंसिद्ध का सार है:
इस प्रकार अभिगृहीत का सार है:
: किन्हीं भी दो वस्तुओं का युग्म होता है।
: किन्हीं भी दो वस्तुओं का युग्म होता है।


समुच्चय {A,A} को संक्षिप्त रूप से {A} कहा जाता है,  जिसे A युक्त [[सिंगलटन (गणित)|एकाकी वस्तु]] कहा जाता है।
समुच्चय {A,A} को संक्षिप्त रूप से {A} कहा जाता है,  जिसे A युक्त [[सिंगलटन (गणित)|एकाकी वस्तु]] कहा जाता है।


ध्यान दें कि एकाकी वस्तु युग्म का एक विशेष स्थिति है। एक एकाकी वस्तु का निर्माण करने में सक्षम होना आवश्यक है, उदाहरण के लिए,  अनंततः अवरोही श्रृंखलाओं के अस्तित्वहीन को दिखाने के लिए <math>x=\{x\}</math> नियमितता के स्वयंसिद्ध से।
ध्यान दें कि एकाकी वस्तु युग्म का एक विशेष स्थिति है। एक एकाकी वस्तु का निर्माण करने में सक्षम होना आवश्यक है, उदाहरण के लिए,  अनंततः अवरोही श्रृंखलाओं के अस्तित्वहीन को दिखाने के लिए <math>x=\{x\}</math> [[नियमितता के स्वयंसिद्ध|नियमितता के अभिगृहीत]] से।


युग्मन का स्वयंसिद्ध क्रमित युग्म की परिभाषा के लिए भी अनुमति देता है। किसी वस्तु के लिए <math>a</math> और <math>b</math>, क्रमित युग्म को निम्नलिखित द्वारा परिभाषित किया गया है:
युग्मन का अभिगृहीत क्रमित युग्म की परिभाषा के लिए भी अनुमति देता है। किसी वस्तु के लिए <math>a</math> और <math>b</math>, [[क्रमित युग्म]] को निम्नलिखित द्वारा परिभाषित किया गया है:


:<math> (a, b) = \{ \{ a \}, \{ a, b \} \}.\,</math>
:<math> (a, b) = \{ \{ a \}, \{ a, b \} \}.\,</math>
Line 32: Line 32:


:<math>(a, b) = (c, d) \iff a = c \land b = d. </math>
:<math>(a, b) = (c, d) \iff a = c \land b = d. </math>
क्रमित एन-टुपल्स को पुनरावर्ती रूप से निम्नानुसार परिभाषित किया जा सकता है:
क्रमित [[एन-टुपल्स]] को पुनरावर्ती रूप से निम्नानुसार परिभाषित किया जा सकता है:


:<math> (a_1, \ldots, a_n) = ((a_1, \ldots, a_{n-1}), a_n).\!</math>
:<math> (a_1, \ldots, a_n) = ((a_1, \ldots, a_{n-1}), a_n).\!</math>
Line 40: Line 40:


=== गैर-स्वतंत्रता ===
=== गैर-स्वतंत्रता ===
<nowiki>युग्मन के स्वयंसिद्ध को सामान्यता विवादास्पद माना जाता है, और यह समकक्ष समुच्चय सिद्धांत के लगभग किसी भी स्वयंसिद्ध में प्रकट होता है। तब भी, ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के मानक सूत्रीकरण में, दो या दो से अधिक तत्वों के साथ किसी दिए गए समुच्चय पर लागू प्रतिस्थापन के स्वयंसिद्ध स्कीमा से युग्मन का स्वयंसिद्ध अनुसरण करता है, और इस प्रकार इसे कभी-कभी छोड़ दिया जाता है। {{}, {{}}} जैसे दो तत्वों वाले एक समुच्चयका अस्तित्व, या तो खाली समुच्चयके स्वयंसिद्ध और शक्ति समुच्चयके स्वयंसिद्ध या अनंत के स्वयंसिद्ध से निकाला जा सकता है।</nowiki>
युग्मन के अभिगृहीत को सामान्यता विवादास्पद माना जाता है, और यह [[समकक्ष]] समुच्चय सिद्धांत के लगभग किसी भी अभिगृहीत में प्रकट होता है। तब भी, [[ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत]]<nowiki> के मानक सूत्रीकरण में, दो या दो से अधिक तत्वों के साथ किसी दिए गए समुच्चय पर लागू प्रतिस्थापन के अभिगृहीत रूपरेखा से युग्मन का अभिगृहीत अनुसरण करता है, और इस प्रकार इसे कभी-कभी छोड़ दिया जाता है। {{}, {{}}} जैसे दो तत्वों वाले एक समुच्चय का अस्तित्व, या तो रिक्त समुच्चय के अभिगृहीत, </nowiki>[[शक्ति समुच्चय]] के [[स्वयंसिद्ध|अभिगृहीत]] और [[अनंत]] के [[स्वयंसिद्ध|अभिगृहीत]] से निकाला जा सकता है।


कुछ मजबूत ZFC स्वयंसिद्धों की अनुपस्थिति में, युग्मन का स्वयंसिद्ध अभी भी बिना किसी नुकसान के कमजोर रूपों में पेश किया जा सकता है।
कुछ महत्वपूर्ण ZFC अभिगृहीतों की अनुपस्थिति में, युग्मन का अभिगृहीत अभी भी बिना किसी हानि के कमजोर रूपों में प्रस्तुत किया जा सकता है।


=== कमजोर ===
=== कमजोर ===
जुदाई के स्वयंसिद्ध स्कीमा के मानक रूपों की उपस्थिति में हम युग्मन के स्वयंसिद्ध को इसके कमजोर संस्करण से बदल सकते हैं:
विभाजन के अभिगृहीत रूपरेखा के मानक रूपों की उपस्थिति में हम युग्मन के अभिगृहीत को इसके कमजोर संस्करण से बदल सकते हैं:
:<math>\forall A\forall B\exists C\forall D((D=A\lor D=B)\Rightarrow D\in C)</math>.
:<math>\forall A\forall B\exists C\forall D((D=A\lor D=B)\Rightarrow D\in C)</math>.


युग्मन के इस कमजोर स्वयंसिद्ध का अर्थ है कि कोई भी वस्तु <math>A</math> और <math>B</math> किसी समुच्चयके सदस्य हैं <math>C</math>. पृथक्करण की अभिगृहीत स्कीमा का उपयोग करके हम उस समुच्चय का निर्माण कर सकते हैं जिसके सदस्य ठीक हों <math>A</math> और <math>B</math>.
युग्मन के इस कमजोर अभिगृहीत का अर्थ है कि कोई भी वस्तु <math>A</math> और <math>B</math> किसी समुच्चय के सदस्य हैं <math>C</math>. पृथक्करण की अभिगृहीत रूपरेखा का उपयोग करके हम उस समुच्चय का निर्माण कर सकते हैं जिसके सदस्य सही हों <math>A</math> और <math>B</math>.


एक अन्य अभिगृहीत जिसका अर्थ रिक्त समुच्चय के अभिगृहीत की उपस्थिति में युग्मन की अभिगृहीत है, संयोजन की अभिगृहीत है
एक अन्य अभिगृहीत जिसका अर्थ [[रिक्त समुच्चय के अभिगृहीत]] की उपस्थिति में [[युग्मन की अभिगृहीत]] है, संयोजन की अभिगृहीत है
:<math>\forall A \, \forall B \, \exists C \, \forall D \, [D \in C \iff (D \in A \lor D = B)]</math>.
:<math>\forall A \, \forall B \, \exists C \, \forall D \, [D \in C \iff (D \in A \lor D = B)]</math>.
यह के उपयोग से मानक एक से अलग है <math>D \in A</math> के बजाय <math>D=A</math>.
यह के उपयोग से मानक एक से अलग है <math>D \in A</math> के अतिरिक्त <math>D=A</math>.
A के लिए {} और B के लिए x का उपयोग करके, हम C के लिए {x} प्राप्त करते हैं। फिर A के लिए {x} और B के लिए y का उपयोग करते हुए, C के लिए {x, y} प्राप्त करते हैं। कोई भी परिमित बनाने के लिए इस तरह से जारी रह सकता है तय करना। और इसका उपयोग संघ के स्वयंसिद्ध का उपयोग किए बिना सभी आनुवंशिक रूप से परिमित समुच्चयउत्पन्न करने के लिए किया जा सकता है।
 
A के लिए {} और B के लिए x का प्रयोग करने पर, हमें C के लिए {x} प्राप्त होता है।  तब A के लिए {x} और B के लिए y का उपयोग करें , C के लिए {x, y} प्राप्त करें। कोई भी परिमित समुच्चय बनाने के लिए इस तरह से जारी रह सकता है। और इसका उपयोग [[संघ के अभिगृहीत]] का उपयोग किए बिना सभी [[आनुवंशिक रूप से परिमित समुच्चय]] उत्पन्न करने के लिए किया जा सकता है।


=== मजबूत ===
=== मजबूत ===
साथ में रिक्त समुच्चय का स्वयंसिद्ध और संघ का स्वयंसिद्ध, का स्वयंसिद्ध
[[रिक्त समुच्चय के अभिगृहीत]] और [[संघ के अभिगृहीत]] के साथ, युग्मन के अभिगृहीत को निम्नलिखित रूपरेखा में सामान्यीकृत किया जा सकता है:
युग्मन को निम्नलिखित स्कीमा में सामान्यीकृत किया जा सकता है:
:<math>\forall A_1 \, \ldots \, \forall A_n \, \exists C \, \forall D \, [D \in C \iff (D = A_1 \lor \cdots \lor D = A_n)]</math>
:<math>\forall A_1 \, \ldots \, \forall A_n \, \exists C \, \forall D \, [D \in C \iff (D = A_1 \lor \cdots \lor D = A_n)]</math>
वह है:
वह है:
: वस्तुओं के किसी भी [[परिमित सेट|परिमित]] समुच्चयसंख्या को देखते हुए ए<sub>1</sub> किसी के जरिए<sub>''n''</sub>, एक समुच्चय C है जिसके सदस्य निश्चित रूप से A हैं<sub>1</sub> किसी के जरिए<sub>''n''</sub>.
: A1 से An तक वस्तुओं की किसी भी परिमित संख्या को देखते हुए, एक समुच्चय C है जिसके सदस्य शुद्ध रुप से A1 से An तक हैं।
यह समुच्चय C विस्तारात्मकता के अभिगृहीत द्वारा फिर से अद्वितीय है, और इसे {A<sub>1</sub>,...,<sub>''n''</sub>}.
यह समुच्चय C फिर से विस्तार के [[अभिगृहीत द्वारा अद्वितीय]] है, और इसे {A1,...,An} के रूप में लक्षित किया गया है।
 
स्वभावतः, हम अपने हाथों में पहले से ही एक (परिमित) समुच्चय के बिना वस्तुओं की एक सीमित संख्या को सख्ती से संदर्भित नहीं कर सकते हैं, जिसमें प्रश्न वाली वस्तुएं हैं।
 
इस प्रकार, यह एक एकल कथन नहीं है, बल्कि एक [[रूपरेखा]] है, जिसमें प्रत्येक [[प्राकृतिक संख्या]] n के लिए एक अलग कथन है।
*स्थिति n = 1, A = A1 और B = A1 के साथ युग्मन का अभिगृहीत है।
*स्थिति n = 2, A = A1 और B = A2 के साथ युग्मन का अभिगृहीत है।
* स्थिति n > 2 को कई बार युग्मन के अभिगृहीत और [[संघ के अभिगृही]]त का उपयोग करके सिद्ध किया जा सकता है।
उदाहरण के लिए, स्थिति n = 3 को सिद्ध करने के लिए,  युग्मन {A1,A2}, एकाकी वस्तु {A3}, और तब युग्मन<nowiki>{{A1,A2},{A3}}</nowiki> बनाने के लिए तीन बार युग्मन के अभिगृहीत का उपयोग करें।


बेशक, हम अपने हाथों में पहले से ही एक (परिमित) समुच्चयके बिना वस्तुओं की एक सीमित संख्या को सख्ती से संदर्भित नहीं कर सकते हैं, जिसमें प्रश्न वाली वस्तुएं हैं।
[[संघ का अभिगृहीत]] तब वांछित परिणाम उत्पन्न करता है,{A1,A2,A3}हम इस रूपरेखा को n = 0 सम्मिलित करने के लिए विस्तारित कर सकते हैं यदि हम उस स्थिति को [[रिक्त समुच्चय के अभिगृहीत]] के रूप में व्याख्या करते हैं।
इस प्रकार, यह एक एकल कथन नहीं है, बल्कि एक [[स्कीमा (तर्क)]] है, जिसमें प्रत्येक [[प्राकृतिक संख्या]] n के लिए एक अलग कथन है।
*मामला n = 1, A = A के साथ युग्मन का स्वयंसिद्ध है<sub>1</sub> और बी = ए<sub>1</sub>.
*मामला n = 2, A = A के साथ युग्मन का स्वयंसिद्ध है<sub>1</sub> और बी = ए<sub>2</sub>.
* मामले n > 2 को कई बार युग्मन के स्वयंसिद्ध और संघ के स्वयंसिद्ध का उपयोग करके सिद्ध किया जा सकता है।
उदाहरण के लिए, मामले n = 3 को साबित करने के लिए, तीन बार जोड़ी बनाने के स्वयंसिद्ध का उपयोग करें, जोड़ी {ए<sub>1</sub>,ए<sub>2</sub>}, एकाकी वस्तु{ए<sub>3</sub>}, और फिर जोड़ी {{''A''<sub>1</sub>,''A''<sub>2</sub>},{''A''<sub>3</sub>}}.
संघ का स्वयंसिद्ध तब वांछित परिणाम उत्पन्न करता है, {ए<sub>1</sub>,ए<sub>2</sub>,ए<sub>3</sub>}. हम इस स्कीमा को n = 0 शामिल करने के लिए विस्तारित कर सकते हैं यदि हम उस मामले को खाली समुच्चयके स्वयंसिद्ध के रूप में व्याख्या करते हैं।


इस प्रकार, कोई इसे खाली समुच्चयऔर युग्मन के सिद्धांतों के स्थान पर एक स्वयंसिद्ध स्कीमा के रूप में उपयोग कर सकता है। आम तौर पर, हालांकि, खाली समुच्चयऔर जोड़ी को अलग से स्वयंसिद्धों का उपयोग करता है, और फिर इसे एक [[प्रमेय]] स्कीमा के रूप में साबित करता है। ध्यान दें कि इसे एक स्वयंसिद्ध स्कीमा के रूप में अपनाने से संघ के स्वयंसिद्ध को प्रतिस्थापित नहीं किया जाएगा, जो अभी भी अन्य स्थितियों के लिए आवश्यक है।
इस प्रकार, कोई इसे रिक्त समुच्चय और युग्मन के सिद्धांतों के स्थान पर एक [[अभिगृहीत रूपरेखा]] के रूप में उपयोग कर सकता है। सामान्यता, हालांकि, रिक्त समुच्चय और युग्मन को अलग से अभिगृहीतों का उपयोग करता है, और तब इसे एक [[प्रमेय]] रूपरेखा के रूप में सिद्ध करता है। ध्यान दें कि इसे एक अभिगृहीत रूपरेखा के रूप में अपनाने से [[संघ के अभिगृहीत]] को प्रतिस्थापित नहीं किया जाएगा, जो अभी भी अन्य स्थितियों के लिए आवश्यक है।


== संदर्भ ==
== संदर्भ ==

Revision as of 15:11, 16 February 2023

[[अभिगृहीत समुच्चय सिद्धांत]] और इसका उपयोग करने वाले तर्क, गणित और कंप्यूटर विज्ञान की शाखाओं में, युग्मन का अभिगृहीत ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के अभिगृहीतों में से एक है। यह ज़र्मेलो (1908) द्वारा प्राथमिक समुच्चय के अपने अभिगृहीत के एक विशेष मामले के रूप में प्रस्तावित किया गया था।

औपचारिक वक्तव्य

ज़र्मेलो-फ्रेंकेल अभिगृहीतों की औपचारिक भाषा में, अभिगृहीत पढ़ता है:

शब्दों में:

किसी भी वस्तु A और किसी भी वस्तु B को देखते हुए, एक समुच्चय C है जैसे कि, किसी भी वस्तु D को दिया गया है, D, C का सदस्य है यदि और केवल यदि D, A के बराबर है या D, B के बराबर है।

या सरल शब्दों में:

दो वस्तुएँ दी गई हैं, एक समुच्चय है जिसके सदस्य वास्तव में दी गई दो वस्तुएँ हैं।

परिणाम

जैसा कि उल्लेख किया गया है, अभिगृहीत क्या कह रहा है कि, दो वस्तुओं A और B को देखते हुए, हम एक समुच्चय C पा सकते हैं जिसका सदस्य बिल्कुल A और B हैं।

हम विस्तृतता के अभिगृहीत का उपयोग यह सिद्ध करने के लिए कर सकते हैं कि यह समुच्चय C अद्वितीय है।

हम समुच्चय C को A और B का युग्म कहते हैं, और इसे {A,B} निरूपित करते हैं।

इस प्रकार अभिगृहीत का सार है:

किन्हीं भी दो वस्तुओं का युग्म होता है।

समुच्चय {A,A} को संक्षिप्त रूप से {A} कहा जाता है, जिसे A युक्त एकाकी वस्तु कहा जाता है।

ध्यान दें कि एकाकी वस्तु युग्म का एक विशेष स्थिति है। एक एकाकी वस्तु का निर्माण करने में सक्षम होना आवश्यक है, उदाहरण के लिए, अनंततः अवरोही श्रृंखलाओं के अस्तित्वहीन को दिखाने के लिए नियमितता के अभिगृहीत से।

युग्मन का अभिगृहीत क्रमित युग्म की परिभाषा के लिए भी अनुमति देता है। किसी वस्तु के लिए और , क्रमित युग्म को निम्नलिखित द्वारा परिभाषित किया गया है:

ध्यान दें कि यह परिभाषा स्थिति को संतुष्ट करती है

क्रमित एन-टुपल्स को पुनरावर्ती रूप से निम्नानुसार परिभाषित किया जा सकता है:


विकल्प

गैर-स्वतंत्रता

युग्मन के अभिगृहीत को सामान्यता विवादास्पद माना जाता है, और यह समकक्ष समुच्चय सिद्धांत के लगभग किसी भी अभिगृहीत में प्रकट होता है। तब भी, ज़र्मेलो-फ्रेंकेल समुच्चय सिद्धांत के मानक सूत्रीकरण में, दो या दो से अधिक तत्वों के साथ किसी दिए गए समुच्चय पर लागू प्रतिस्थापन के अभिगृहीत रूपरेखा से युग्मन का अभिगृहीत अनुसरण करता है, और इस प्रकार इसे कभी-कभी छोड़ दिया जाता है। {{}, {{}}} जैसे दो तत्वों वाले एक समुच्चय का अस्तित्व, या तो रिक्त समुच्चय के अभिगृहीत, शक्ति समुच्चय के अभिगृहीत और अनंत के अभिगृहीत से निकाला जा सकता है।

कुछ महत्वपूर्ण ZFC अभिगृहीतों की अनुपस्थिति में, युग्मन का अभिगृहीत अभी भी बिना किसी हानि के कमजोर रूपों में प्रस्तुत किया जा सकता है।

कमजोर

विभाजन के अभिगृहीत रूपरेखा के मानक रूपों की उपस्थिति में हम युग्मन के अभिगृहीत को इसके कमजोर संस्करण से बदल सकते हैं:

.

युग्मन के इस कमजोर अभिगृहीत का अर्थ है कि कोई भी वस्तु और किसी समुच्चय के सदस्य हैं . पृथक्करण की अभिगृहीत रूपरेखा का उपयोग करके हम उस समुच्चय का निर्माण कर सकते हैं जिसके सदस्य सही हों और .

एक अन्य अभिगृहीत जिसका अर्थ रिक्त समुच्चय के अभिगृहीत की उपस्थिति में युग्मन की अभिगृहीत है, संयोजन की अभिगृहीत है

.

यह के उपयोग से मानक एक से अलग है के अतिरिक्त .

A के लिए {} और B के लिए x का प्रयोग करने पर, हमें C के लिए {x} प्राप्त होता है। तब A के लिए {x} और B के लिए y का उपयोग करें , C के लिए {x, y} प्राप्त करें। कोई भी परिमित समुच्चय बनाने के लिए इस तरह से जारी रह सकता है। और इसका उपयोग संघ के अभिगृहीत का उपयोग किए बिना सभी आनुवंशिक रूप से परिमित समुच्चय उत्पन्न करने के लिए किया जा सकता है।

मजबूत

रिक्त समुच्चय के अभिगृहीत और संघ के अभिगृहीत के साथ, युग्मन के अभिगृहीत को निम्नलिखित रूपरेखा में सामान्यीकृत किया जा सकता है:

वह है:

A1 से An तक वस्तुओं की किसी भी परिमित संख्या को देखते हुए, एक समुच्चय C है जिसके सदस्य शुद्ध रुप से A1 से An तक हैं।

यह समुच्चय C फिर से विस्तार के अभिगृहीत द्वारा अद्वितीय है, और इसे {A1,...,An} के रूप में लक्षित किया गया है।

स्वभावतः, हम अपने हाथों में पहले से ही एक (परिमित) समुच्चय के बिना वस्तुओं की एक सीमित संख्या को सख्ती से संदर्भित नहीं कर सकते हैं, जिसमें प्रश्न वाली वस्तुएं हैं।

इस प्रकार, यह एक एकल कथन नहीं है, बल्कि एक रूपरेखा है, जिसमें प्रत्येक प्राकृतिक संख्या n के लिए एक अलग कथन है।

  • स्थिति n = 1, A = A1 और B = A1 के साथ युग्मन का अभिगृहीत है।
  • स्थिति n = 2, A = A1 और B = A2 के साथ युग्मन का अभिगृहीत है।
  • स्थिति n > 2 को कई बार युग्मन के अभिगृहीत और संघ के अभिगृहीत का उपयोग करके सिद्ध किया जा सकता है।

उदाहरण के लिए, स्थिति n = 3 को सिद्ध करने के लिए, युग्मन {A1,A2}, एकाकी वस्तु {A3}, और तब युग्मन{{A1,A2},{A3}} बनाने के लिए तीन बार युग्मन के अभिगृहीत का उपयोग करें।

संघ का अभिगृहीत तब वांछित परिणाम उत्पन्न करता है,{A1,A2,A3}। हम इस रूपरेखा को n = 0 सम्मिलित करने के लिए विस्तारित कर सकते हैं यदि हम उस स्थिति को रिक्त समुच्चय के अभिगृहीत के रूप में व्याख्या करते हैं।

इस प्रकार, कोई इसे रिक्त समुच्चय और युग्मन के सिद्धांतों के स्थान पर एक अभिगृहीत रूपरेखा के रूप में उपयोग कर सकता है। सामान्यता, हालांकि, रिक्त समुच्चय और युग्मन को अलग से अभिगृहीतों का उपयोग करता है, और तब इसे एक प्रमेय रूपरेखा के रूप में सिद्ध करता है। ध्यान दें कि इसे एक अभिगृहीत रूपरेखा के रूप में अपनाने से संघ के अभिगृहीत को प्रतिस्थापित नहीं किया जाएगा, जो अभी भी अन्य स्थितियों के लिए आवश्यक है।

संदर्भ

  • Paul Halmos, Naive set theory. Princeton, NJ: D. Van Nostrand Company, 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition).
  • Jech, Thomas, 2003. Set Theory: The Third Millennium Edition, Revised and Expanded. Springer. ISBN 3-540-44085-2.
  • Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.
  • Zermelo, Ernst (1908), "Untersuchungen über die Grundlagen der Mengenlehre I", Mathematische Annalen, 65 (2): 261–281, doi:10.1007/bf01449999, S2CID 120085563. English translation: Heijenoort, Jean van (1967), "Investigations in the foundations of set theory", From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931, Source Books in the History of the Sciences, Harvard Univ. Press, pp. 199–215, ISBN 978-0-674-32449-7.