संख्या रेखा: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Geometrical representation of real numbers}} {{About|the mathematical concept|the typesetting practice|Printer's key}} {{hatnote|This article covers basic...")
 
mNo edit summary
Line 2: Line 2:
{{About|the mathematical concept|the typesetting practice|Printer's key}}
{{About|the mathematical concept|the typesetting practice|Printer's key}}
{{hatnote|This article covers basic topics. For advanced topics, see [[Real line]].}}
{{hatnote|This article covers basic topics. For advanced topics, see [[Real line]].}}
प्राथमिक गणित में, एक नंबर लाइन एक स्नातक की सीधी रेखा की एक तस्वीर है जो वास्तविक संख्याओं के लिए अमूर्तता के रूप में कार्य करती है, जिसे दर्शाया गया है <math>\mathbb{R}</math>।एक नंबर लाइन के प्रत्येक बिंदु को एक वास्तविक संख्या के अनुरूप माना जाता है, और प्रत्येक वास्तविक संख्या को एक बिंदु पर।<ref>{{cite book | last1=Stewart | first1=James B. | last2 = Redlin | first2 = Lothar | last3=Watson | first3=Saleem | authorlink=James Stewart (mathematician) | title=College Algebra | publisher=[[Brooks Cole]]  | year=2008 | edition = 5th | pages=13&ndash;19 | isbn=978-0-495-56521-5}}</ref>
प्राथमिक गणित में, एक नंबर लाइन एक स्नातक की सीधी रेखा की एक तस्वीर है जो वास्तविक संख्याओं के लिए अमूर्तता के रूप में कार्य करती है, जिसे <math>\mathbb{R}</math> द्वारा चिह्नित किया गया है ।एक नंबर लाइन के प्रत्येक बिंदु को एक वास्तविक संख्या के अनुरूप माना जाता है, और प्रत्येक वास्तविक संख्या को एक बिंदु पर।<ref>{{cite book | last1=Stewart | first1=James B. | last2 = Redlin | first2 = Lothar | last3=Watson | first3=Saleem | authorlink=James Stewart (mathematician) | title=College Algebra | publisher=[[Brooks Cole]]  | year=2008 | edition = 5th | pages=13&ndash;19 | isbn=978-0-495-56521-5}}</ref> पूर्णांक को अक्सर विशेष रूप से चिह्नित बिंदुओं के रूप में दिखाया जाता है,जो समान रूप से लाइन पर फैला हुआ है। यद्यपि यह छवि केवल -9 से 9 तक के पूर्णांक को दिखाती है, लाइन में सभी वास्तविक संख्याएं शामिल हैं, जो प्रत्येक दिशा में हमेशा के लिए जारी रहती हैं, और पूर्णांकों के बीच की संख्याएँ भी शामिल हैं।।यह प्रायः सरल जोड़ और घटाव को पढ़ाने में सहायता के रूप में उपयोग किया जाता है, विशेष रूप से नकारात्मक संख्याओं को शामिल करते हुए।
पूर्णांक को अक्सर विशेष रूप से चिह्नित बिंदुओं के रूप में दिखाया जाता है जो समान रूप से लाइन पर फैला हुआ है।यद्यपि यह छवि केवल -9 से 9 तक के पूर्णांक को दिखाती है, लाइन में सभी वास्तविक संख्याएं शामिल हैं, प्रत्येक दिशा में हमेशा के लिए जारी है, और यह भी संख्याएँ जो पूर्णांक के बीच हैं।यह अक्सर सरल जोड़ और घटाव को पढ़ाने में सहायता के रूप में उपयोग किया जाता है, विशेष रूप से नकारात्मक संख्याओं को शामिल करते हुए।


[[File:Number-line.svg|center|संख्या रेखा]]
[[File:Number-line.svg|center|संख्या रेखा]]

Revision as of 13:58, 5 August 2022

प्राथमिक गणित में, एक नंबर लाइन एक स्नातक की सीधी रेखा की एक तस्वीर है जो वास्तविक संख्याओं के लिए अमूर्तता के रूप में कार्य करती है, जिसे द्वारा चिह्नित किया गया है ।एक नंबर लाइन के प्रत्येक बिंदु को एक वास्तविक संख्या के अनुरूप माना जाता है, और प्रत्येक वास्तविक संख्या को एक बिंदु पर।[1] पूर्णांक को अक्सर विशेष रूप से चिह्नित बिंदुओं के रूप में दिखाया जाता है,जो समान रूप से लाइन पर फैला हुआ है। यद्यपि यह छवि केवल -9 से 9 तक के पूर्णांक को दिखाती है, लाइन में सभी वास्तविक संख्याएं शामिल हैं, जो प्रत्येक दिशा में हमेशा के लिए जारी रहती हैं, और पूर्णांकों के बीच की संख्याएँ भी शामिल हैं।।यह प्रायः सरल जोड़ और घटाव को पढ़ाने में सहायता के रूप में उपयोग किया जाता है, विशेष रूप से नकारात्मक संख्याओं को शामिल करते हुए।

संख्या रेखा

उन्नत गणित में, अभिव्यक्ति वास्तविक संख्या रेखा, या वास्तविक रेखा का उपयोग आम तौर पर उपर्युक्त अवधारणा को इंगित करने के लिए किया जाता है कि एक सीधी रेखा पर हर बिंदु एक वास्तविक संख्या से मेल खाता है, और लैटिन वाक्यांशों की सूची: V#इसके विपरीत।।

इतिहास

ऑपरेशन उद्देश्यों के लिए उपयोग की जाने वाली संख्या लाइन का पहला उल्लेख जॉन वालिस के बीजगणित के ग्रंथ में पाया गया है।[2] अपने ग्रंथ में, वालिस एक व्यक्ति के रूपक के नीचे, आगे और पीछे की ओर बढ़ने के मामले में एक संख्या रेखा पर जोड़ और घटाव का वर्णन करता है।

संचालन के लिए उल्लेख के बिना एक पहले का चित्रण, हालांकि, जॉन नेपियर के लॉगरिदम की सराहनीय तालिका का विवरण पाया जाता है, जो कि 12 के माध्यम से 1 के माध्यम से बाएं से दाएं तक मान दिखाता है।[3] लोकप्रिय धारणा के विपरीत, रेने डेसकार्टेस के मूल ला गोमेट्री में एक नंबर लाइन की सुविधा नहीं है, जैसा कि हम आज इसका उपयोग करते हैं, हालांकि यह एक समन्वय प्रणाली का उपयोग करता है।विशेष रूप से, डेसकार्टेस के काम में लाइनों पर मैप किए गए विशिष्ट संख्याएं नहीं होती हैं, केवल अमूर्त मात्रा।[4]


संख्या रेखा खींच

एक संख्या रेखा को आमतौर पर क्षैतिज होने के रूप में दर्शाया जाता है, लेकिन एक कार्टेशियन समन्वय विमान में ऊर्ध्वाधर अक्ष (y- अक्ष) भी एक संख्या रेखा है।[5] एक सम्मेलन के अनुसार, सकारात्मक संख्या हमेशा शून्य के दाईं ओर होती है, नकारात्मक संख्या हमेशा शून्य के बाईं ओर होती है, और लाइन के दोनों छोरों पर तीर का मतलब यह है कि यह सुझाव देना है कि लाइन सकारात्मक और नकारात्मक दिशाओं में अनिश्चित काल तक जारी रहती है।एक अन्य सम्मेलन केवल एक तीर का उपयोग करता है जो उस दिशा को इंगित करता है जिसमें संख्या बढ़ती है।[5]यह रेखा ज्यामिति के नियमों के अनुसार सकारात्मक और नकारात्मक दिशाओं में अनिश्चित काल तक जारी रहती है जो एक अनंत रेखा के रूप में समापन बिंदु के बिना एक रेखा को परिभाषित करती है, एक रे के रूप में एक समापन बिंदु के साथ एक पंक्ति, और एक लाइन खंड के रूप में दो समापन बिंदुओं के साथ एक पंक्ति।

संख्या की तुलना

यदि कोई विशेष संख्या संख्या रेखा पर दाईं ओर एक और संख्या की तुलना में दाईं ओर है, तो पहला नंबर दूसरे से अधिक है (समकक्ष, दूसरा पहले से कम है)। उनके बीच की दूरी उनके अंतर की भयावहता है & mdash; यानी, यह पहले संख्या को दूसरे को मापता है, या समकक्ष रूप से दूसरे नंबर माइनस का निरपेक्ष मान पहले एक को मापता है। इस अंतर को लेना घटाव की प्रक्रिया है।

इस प्रकार, उदाहरण के लिए, 0 और कुछ अन्य संख्या के बीच एक लाइन खंड की लंबाई बाद की संख्या के परिमाण का प्रतिनिधित्व करती है।

दो नंबरों को 0 से एक संख्या में से एक तक की लंबाई उठाकर जोड़ा जा सकता है, और इसे फिर से नीचे रखा जा सकता है जो कि 0 को दूसरे नंबर के ऊपर रखा गया था।

इस उदाहरण में दो संख्याओं को गुणा किया जा सकता है: 5 × 3 को गुणा करने के लिए, ध्यान दें कि यह 5 + 5 + 5 के समान है, इसलिए लंबाई को 0 से 5 तक उठाएं और इसे 5 के दाईं ओर रखें, और फिर चुनें उस लंबाई को फिर से ऊपर रखें और इसे पिछले परिणाम के दाईं ओर रखें। यह एक परिणाम देता है जो 5 प्रत्येक की 3 संयुक्त लंबाई है; चूंकि प्रक्रिया 15 पर समाप्त होती है, हम पाते हैं कि 5 × 3 = 15।

डिवीजन को निम्नलिखित उदाहरण के रूप में किया जा सकता है: 6 को 2 & mdash से विभाजित करने के लिए; यानी, यह पता लगाने के लिए कि कितनी बार 2 6 & mdash में जाता है; ध्यान दें कि 0 से 2 तक की लंबाई 0 से 6 तक लंबाई की शुरुआत में होती है; पूर्व की लंबाई को उठाएं और इसे फिर से अपनी मूल स्थिति के दाईं ओर रखें, अंत में पूर्व में 0 पर अब 2 पर रखा गया है, और फिर लंबाई को फिर से अपनी नवीनतम स्थिति के दाईं ओर ले जाएं। यह लंबाई 2 के दाहिने छोर को लंबाई के दाहिने छोर से 0 से 6 तक रखता है। चूंकि 2 की तीन लंबाई की लंबाई 6 की लंबाई 6 है, 2 6 तीन बार (यानी, 6 = 2 = 3) में चला जाता है।


संख्या रेखा के भाग

बंद अंतराल [a,b]

दो संख्याओं के बीच संख्या रेखा के खंड को एक अंतराल कहा जाता है।यदि अनुभाग में दोनों संख्याएँ शामिल हैं, तो इसे एक बंद अंतराल कहा जाता है, जबकि यदि यह दोनों संख्याओं को बाहर करता है तो इसे एक खुला अंतराल कहा जाता है।यदि इसमें संख्याओं में से एक शामिल है, लेकिन दूसरे को नहीं, तो इसे आधा खुला अंतराल कहा जाता है।

एक विशेष बिंदु से एक दिशा में हमेशा के लिए फैले सभी बिंदुओं को एक किरण के रूप में जाना जाता है।यदि किरण में विशेष बिंदु शामिल है, तो यह एक बंद किरण है;अन्यथा यह एक खुली किरण है।

अवधारणा का विस्तार

लॉगरिदमिक स्केल

Y & nbsp; = & nbsp; x & nbsp; (नीला), y & nbsp; = & nbsp; x; x;2 & nbsp; (हरा), और y & nbsp; = & nbsp; x; x;3 < /sup> & nbsp; (लाल)।1 हैं।

संख्या रेखा पर, दो बिंदुओं के बीच की दूरी इकाई लंबाई है यदि और केवल यदि प्रतिनिधित्व संख्याओं का अंतर 1 बराबर होता है। अन्य विकल्प संभव हैं।

सबसे आम विकल्पों में से एक लॉगरिदमिक स्केल है, जो एक लाइन पर सकारात्मक संख्याओं का प्रतिनिधित्व है, जैसे कि दो बिंदुओं की दूरी इकाई लंबाई है, यदि प्रतिनिधित्व संख्याओं के अनुपात में एक निश्चित मूल्य है, तो आमतौर पर 10।ऐसे लघुगणक पैमाने में, मूल 1 का प्रतिनिधित्व करता है;दाईं ओर एक इंच, एक में 10, एक इंच के दाईं ओर 10 है 10×10 = 100, फिर 10×100 = 1000 = 103, फिर 10×1000 = 10,000 = 104, आदि इसी तरह, 1 के बाईं ओर एक इंच, एक है 1/10 = 10–1, फिर 1/100 = 10–2, आदि।

यह दृष्टिकोण उपयोगी है, जब कोई प्रतिनिधित्व करना चाहता है, एक ही आकृति पर, परिमाण के बहुत अलग क्रम के साथ मूल्य।उदाहरण के लिए, किसी को ब्रह्मांड में मौजूद विभिन्न निकायों के आकार का प्रतिनिधित्व करने के लिए एक लघुगणक पैमाने की आवश्यकता होती है, आमतौर पर, एक फोटॉन, एक इलेक्ट्रॉन, एक परमाणु, एक अणु, एक मानव, पृथ्वी, सौर प्रणाली, एक आकाशगंगा, एक आकाशगंगा, एक आकाशगंगा,और दृश्य ब्रह्मांड।

लॉगरिदमिक तराजू का उपयोग स्लाइड नियमों में लॉगरिदमिक तराजू पर लंबाई को जोड़ने या घटाने के लिए संख्याओं को गुणा करने या विभाजित करने के लिए किया जाता है।

एक स्लाइड नियम के दो लॉगरिदमिक तराजू


संयोजन संख्या लाइनों

वास्तविक संख्या रेखा पर समकोण पर मूल के माध्यम से खींची गई एक लाइन का उपयोग काल्पनिक संख्याओं का प्रतिनिधित्व करने के लिए किया जा सकता है। काल्पनिक लाइन नामक यह लाइन, संख्या रेखा को एक जटिल संख्या विमान तक बढ़ाती है, जिसमें जटिल संख्याओं का प्रतिनिधित्व करते हैं।

वैकल्पिक रूप से, एक वास्तविक संख्या रेखा को एक वास्तविक संख्या के संभावित मूल्यों को निरूपित करने के लिए क्षैतिज रूप से खींचा जा सकता है, जिसे आमतौर पर एक्स कहा जाता है, और एक और वास्तविक संख्या रेखा को एक और वास्तविक संख्या के संभावित मूल्यों को निरूपित करने के लिए लंबवत रूप से खींचा जा सकता है, जिसे आमतौर पर वाई कहा जाता है। साथ में इन पंक्तियों को एक कार्टेशियन समन्वय प्रणाली के रूप में जाना जाता है, और विमान में कोई भी बिंदु वास्तविक संख्याओं की एक जोड़ी के मूल्य का प्रतिनिधित्व करता है। इसके अलावा, कार्टेशियन समन्वय प्रणाली को स्क्रीन (या पेज) से बाहर आने वाले तीसरे नंबर लाइन की कल्पना करके खुद को बढ़ाया जा सकता है, जो कि Z नामक तीसरे चर को मापता है। सकारात्मक संख्या स्क्रीन की तुलना में दर्शक की आंखों के करीब होती है, जबकि नकारात्मक संख्या स्क्रीन के पीछे होती है; बड़ी संख्या स्क्रीन से दूर हैं। फिर तीन आयामी स्थान में कोई भी बिंदु जो हम रहते हैं, वास्तविक संख्याओं की तिकड़ी के मूल्यों का प्रतिनिधित्व करता है।

यह भी देखें

  • कालक्रम
  • जटिल विमान
  • Cuisenaire छड़ें
  • विस्तारित वास्तविक संख्या रेखा
  • हाइपरल नंबर लाइन
  • संख्या रूप (न्यूरोलॉजिकल घटना)
  • Intercept_theorem#the_construction_of_a_decimal_number | दशमलव संख्या का निर्माण

संदर्भ

  1. Stewart, James B.; Redlin, Lothar; Watson, Saleem (2008). College Algebra (5th ed.). Brooks Cole. pp. 13–19. ISBN 978-0-495-56521-5.
  2. Wallis, John (1685). Treatise of algebra. http://lhldigital.lindahall.org/cdm/ref/collection/math/id/11231 pp. 265
  3. Napier, John (1616). A description of the admirable table of logarithmes https://www.math.ru.nl/werkgroepen/gmfw/bronnen/napier1.html
  4. Núñez, Rafael (2017). How Much Mathematics Is "Hardwired", If Any at All Minnesota Symposia on Child Psychology: Culture and Developmental Systems, Volume 38. http://www.cogsci.ucsd.edu/~nunez/COGS152_Readings/Nunez_ch3_MN.pdf pp. 98
  5. 5.0 5.1 Introduction to the x,y-plane Archived 2015-11-09 at the Wayback Machine "Purplemath" Retrieved 2015-11-13


बाहरी संबंध