अपरूपण - मापांक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 4 users not shown)
Line 2: Line 2:
{{Infobox Physical quantity
{{Infobox Physical quantity
| bgcolour =
| bgcolour =
| name = Shear modulus
| name = अपरूपण - मापांक
| image =  
| image =  
| caption = Math
| caption = Math
| unit = [[Pascal (unit)|Pa]]
| unit = [[पास्कल (इकाई)|Pa]]
| symbols = {{mvar|G}}, {{mvar|S}}
| symbols = {{mvar|G}}, {{mvar|S}}
| derivations = {{math|1=''G'' = [[Shear stress|τ]] / [[Shear strain|γ]] = [[Young modulus|''E'']] / [2(1 + [[Poisson's ratio|ν]])]}}
| derivations = {{math|1=''G'' = [[Shear stress|τ]] / [[Shear strain|γ]] = [[Young modulus|''E'']] / [2(1 + [[Poisson's ratio|ν]])]}}
}}
}}
[[File:Shear scherung.svg|thumb|right|अपरूपण तनाव]]सामग्री विज्ञान में, कतरनी मापांक या कठोरता का मापांक, जिसे G, या कभी-कभी 'S' या 'μ' द्वारा दर्शाया जाता है, एक सामग्री की [[लोच (भौतिकी)]] कतरनी कठोरता का एक उपाय है और इसे कतरनी तनाव के अनुपात के रूप में परिभाषित किया जाता है::<ref>{{GoldBookRef|title=shear modulus, ''G''|file=S05635}}</ref>
[[File:Shear scherung.svg|thumb|right|अपरूपण तनाव]]सामग्री विज्ञान में, कतरनी मापांक या कठोरता का मापांक, जिसे G, या कभी-कभी 'S' या 'μ' द्वारा दर्शाया जाता है, एक सामग्री की [[लोच (भौतिकी)]] कतरनी कठोरता का एक उपाय है और इसे कतरनी तनाव के अनुपात के रूप में परिभाषित किया जाता है::<ref>{{GoldBookRef|title=shear modulus, ''G''|file=S05635}}</ref>
:<math>G \ \stackrel{\mathrm{def}}{=}\ \frac {\tau_{xy}} {\gamma_{xy}} = \frac{F/A}{\Delta x/l} = \frac{F l}{A \Delta x} </math>
:<math>G \ \stackrel{\mathrm{def}}{=}\ \frac {\tau_{xy}} {\gamma_{xy}} = \frac{F/A}{\Delta x/l} = \frac{F l}{A \Delta x} </math>
कहाँ
कहाँ
Line 22: Line 22:
== स्पष्टीकरण ==
== स्पष्टीकरण ==
{| class="wikitable" align=right
{| class="wikitable" align=right
!Material
!पदार्थ
!Typical values for <br>shear modulus (GPa)<br> <small>(at room temperature)</small>
!के लिए विशिष्ट मान
कतरनी मॉड्यूलस (जीपीए)
 
(कमरे के तापमान पर)
|-
|-
|[[Diamond]]<ref name=McSkimin>{{cite journal|last=McSkimin|first=H.J.|author2=Andreatch, P.
|[[Diamond|डायमंड]]<ref name=McSkimin>{{cite journal|last=McSkimin|first=H.J.|author2=Andreatch, P.
  |year = 1972|title=Elastic Moduli of Diamond as a Function of Pressure and Temperature|journal = J. Appl. Phys.|volume = 43|pages=2944–2948|doi=10.1063/1.1661636|issue=7|bibcode = 1972JAP....43.2944M }}</ref>
  |year = 1972|title=Elastic Moduli of Diamond as a Function of Pressure and Temperature|journal = J. Appl. Phys.|volume = 43|pages=2944–2948|doi=10.1063/1.1661636|issue=7|bibcode = 1972JAP....43.2944M }}</ref>
|478.0
|478.0
|-
|-
|[[Steel]]<ref name=CDL>{{cite book|author=Crandall, Dahl, Lardner|title=An Introduction to the Mechanics of Solids|publisher=McGraw-Hill|location=Boston|year=1959|isbn=0-07-013441-3}}</ref>
|[[Steel|इस्पात]]<ref name=CDL>{{cite book|author=Crandall, Dahl, Lardner|title=An Introduction to the Mechanics of Solids|publisher=McGraw-Hill|location=Boston|year=1959|isbn=0-07-013441-3}}</ref>
|79.3
|79.3
|-
|-
|[[Iron]]<ref name=rayne61>{{cite journal|last1=Rayne|first1=J.A.|title=Elastic constants of Iron from 4.2 to 300 ° K|journal=Physical Review|volume=122|pages=1714–1716|year=1961|doi=10.1103/PhysRev.122.1714|issue=6|bibcode =  1961PhRv..122.1714R}}</ref>
|[[Iron|लोहा]]<ref name=rayne61>{{cite journal|last1=Rayne|first1=J.A.|title=Elastic constants of Iron from 4.2 to 300 ° K|journal=Physical Review|volume=122|pages=1714–1716|year=1961|doi=10.1103/PhysRev.122.1714|issue=6|bibcode =  1961PhRv..122.1714R}}</ref>
|52.5
|52.5
|-
|-
|[[Copper]]<ref>[http://homepages.which.net/~paul.hills/Materials/MaterialsBody.html Material properties]</ref>
|[[Copper|ताँबा]]<ref>[http://homepages.which.net/~paul.hills/Materials/MaterialsBody.html Material properties]</ref>
|44.7
|44.7
|-
|-
|[[Titanium]]<ref name=CDL/>
|[[Titanium|टाइटेनियम]]<ref name=CDL/>
|41.4
|41.4
|-
|-
|[[Glass]]<ref name=CDL/>
|[[Glass|काँच]]<ref name=CDL/>
|26.2
|26.2
|-
|-
|[[Aluminium]]<ref name=CDL/>
|[[Aluminium|--एल्यूमिनियम]]<ref name=CDL/>
|25.5
|25.5
|-
|-
|[[Polyethylene]]<ref name=CDL/>
|[[Polyethylene|पॉलीथीन]]<ref name=CDL/>
|0.117
|0.117
|-
|-
|[[Rubber]]<ref name=Spanos>{{cite journal|last=Spanos|first=Pete|year=2003|title=Cure system effect on low temperature dynamic shear modulus of natural rubber
|[[Rubber|रबड़]]<ref name=Spanos>{{cite journal|last=Spanos|first=Pete|year=2003|title=Cure system effect on low temperature dynamic shear modulus of natural rubber
|journal = Rubber World|url=http://www.thefreelibrary.com/Cure+system+effect+on+low+temperature+dynamic+shear+modulus+of...-a0111451108}}</ref>
|journal = Rubber World|url=http://www.thefreelibrary.com/Cure+system+effect+on+low+temperature+dynamic+shear+modulus+of...-a0111451108}}</ref>
|0.0006
|0.0006
|-
|-
|[[Granite]]<ref name=Hoek>Hoek, Evert, and Jonathan D. Bray. Rock slope engineering. CRC Press, 1981.</ref><ref name=Pariseau>Pariseau, William G. Design analysis in rock mechanics. CRC Press, 2017.</ref>
|[[Granite|ग्रेनाइट]]<ref name=Hoek>Hoek, Evert, and Jonathan D. Bray. Rock slope engineering. CRC Press, 1981.</ref><ref name=Pariseau>Pariseau, William G. Design analysis in rock mechanics. CRC Press, 2017.</ref>
|24
|24
|-
|-
|[[Shale]]<ref name=Hoek/><ref name=Pariseau/>
|[[Shale|शेल्स]]<ref name=Hoek/><ref name=Pariseau/>
|1.6
|1.6
|-
|-
|[[Limestone]]<ref name=Hoek/><ref name=Pariseau/>
|[[Limestone|चूना पत्थर]]<ref name=Hoek/><ref name=Pariseau/>
|24
|24
|-
|-
|[[Chalk]]<ref name=Hoek/><ref name=Pariseau/>
|[[Chalk|चॉक]]<ref name=Hoek/><ref name=Pariseau/>
|3.2
|3.2
|-
|-
|[[Sandstone]]<ref name=Hoek/><ref name=Pariseau/>
|[[Sandstone|बलुआ पत्थर]]<ref name=Hoek/><ref name=Pariseau/>
|0.4
|0.4
|-
|-
|[[Wood]]
|[[Wood|काष्ठ]]
|4
|4
|}
|}
Line 77: Line 80:
* थोक मापांक K सामग्री की प्रतिक्रिया (समान) हाइड्रोस्टेटिक दबाव (जैसे समुद्र के तल पर दबाव या गहरे स्विमिंग पूल) का वर्णन करता है।
* थोक मापांक K सामग्री की प्रतिक्रिया (समान) हाइड्रोस्टेटिक दबाव (जैसे समुद्र के तल पर दबाव या गहरे स्विमिंग पूल) का वर्णन करता है।
* 'अपरूपण मापांक ' G अपरूपण तनाव के लिए सामग्री की प्रतिक्रिया का वर्णन करता है (जैसे इसे सुस्त कैंची से काटने)।
* 'अपरूपण मापांक ' G अपरूपण तनाव के लिए सामग्री की प्रतिक्रिया का वर्णन करता है (जैसे इसे सुस्त कैंची से काटने)।
*द्रव की एक परिभाषा शून्य के अपरूपण मापांक वाला पदार्थ है। कोई भी बल इसकी सतह को विकृत कर देता है।
*धातुओं के लिए, तापमान और दबाव का एक क्षेत्र होता है, जिस पर कतरनी मापांक में परिवर्तन रैखिक होता है। इस सीमा के बाहर, मॉडलिंग व्यवहार अधिक कठिन है।


ये मोडुली स्वतंत्र नहीं हैं, और आइसोट्रोपिक सामग्रियों के लिए वे समीकरणों के माध्यम से जुड़े हुए हैं :<ref>[Landau LD, Lifshitz EM. ''Theory of Elasticity'', vol. 7. Course of Theoretical Physics. (2nd Ed) Pergamon: Oxford 1970 p13]</ref>
ये मोडुली स्वतंत्र नहीं हैं, और आइसोट्रोपिक सामग्रियों के लिए वे समीकरणों के माध्यम से जुड़े हुए हैं :<ref>[Landau LD, Lifshitz EM. ''Theory of Elasticity'', vol. 7. Course of Theoretical Physics. (2nd Ed) Pergamon: Oxford 1970 p13]</ref>
:<math> E = 2G(1+\nu) = 3K(1-2\nu)</math>
:<math> E = 2G(1+\nu) = 3K(1-2\nu)</math>
कतरनी मापांक एक ठोस के विरूपण से संबंधित है जब यह अपनी सतहों में से एक के समानांतर एक बल का अनुभव करता है जबकि इसका विपरीत चेहरा एक विरोधी बल (जैसे घर्षण) का अनुभव करता है। एक आयताकार प्रिज्म के आकार की वस्तु के मामले में, यह एक समानांतर चतुर्भुज में विकृत हो जाएगा। [[एनिस्ट्रोपिक]] सामग्री जैसे [[लकड़ी]], कागज और अनिवार्य रूप से सभी एकल क्रिस्टल अलग-अलग दिशाओं में परीक्षण किए जाने पर तनाव या तनाव के लिए अलग-अलग सामग्री प्रतिक्रिया प्रदर्शित करते हैं। इस मामले में, किसी को एकल स्केलर मान के बजाय पूरे हुक के नियम#टेंसर एक्सप्रेशन ऑफ़ हुक.27s लॉ|टेन्सर-एक्सप्रेशन ऑफ़ इलास्टिक कांस्टेंट का उपयोग करने की आवश्यकता हो सकती है।
कतरनी मापांक एक ठोस के विरूपण से संबंधित होता है जब यह अपनी सतहों में से किसी एक के समानांतर बल का अनुभव करता है जबकि इसका विपरीत चेहरा एक विरोधी बल (जैसे घर्षण) का अनुभव करता है। एक आयताकार प्रिज्म के आकार की वस्तु के मामले में, यह एक समानांतर चतुर्भुज में विकृत हो जाएगा। [[एनिस्ट्रोपिक]] सामग्री जैसे [[लकड़ी]], कागज और अनिवार्य रूप से सभी एकल क्रिस्टल अलग-अलग दिशाओं में परीक्षण किए जाने पर तनाव या तनाव के लिए अलग-अलग सामग्री प्रतिक्रिया प्रदर्शित करते हैं। इस मामले में, किसी को एकल स्केलर मान के बजाय लोचदार स्थिरांक की पूर्ण टेंसर-अभिव्यक्ति का उपयोग करने की आवश्यकता हो सकती है।कतरनी मापांक एक ठोस की एक सतह के समानांतर बल लगाने से ठोस के विरूपण को मापने के द्वारा निर्धारित किया जाता है, जबकि एक विरोधी बल इसकी विपरीत सतह पर कार्य करता है और ठोस को जगह में रखता है।


द्रव की एक संभावित परिभाषा शून्य अपरूपण मापांक वाली सामग्री होगी।
द्रव की एक संभावित परिभाषा शून्य अपरूपण मापांक वाली सामग्री होगी।
Line 92: Line 97:


== धातुओं का अपरूपण मापांक ==
== धातुओं का अपरूपण मापांक ==
[[File:CuShearMTS.svg|thumb|upright=1.2|तापमान के एक समारोह के रूप में तांबे का अपरूपण मापांक। प्रायोगिक डेटा<ref name=Overton55>{{cite journal|last1=Overton|first1=W.|last2=Gaffney|first2=John|title=घन तत्वों के लोचदार स्थिरांक का तापमान भिन्नता। आई कॉपर|journal=Physical Review|volume=98|pages=969|year=1955|doi=10.1103/PhysRev.98.969|issue=4|bibcode = 1955PhRv...98..969O }}</ref><ref name=Nadal03/>रंगीन प्रतीकों के साथ दिखाया गया है।]]धातुओं का अपरूपण गुणांक आमतौर पर बढ़ते तापमान के साथ घटता देखा जाता है। उच्च दबावों पर, लागू दबाव के साथ कतरनी मापांक भी बढ़ता हुआ प्रतीत होता है। कई धातुओं में पिघलने के तापमान, रिक्ति निर्माण ऊर्जा और अपरूपण मापांक के बीच संबंध देखे गए हैं।<ref name=March>March, N. H., (1996), [https://books.google.com/books?id=PaphaJhfAloC&pg=PA363 ''Electron Correlation in Molecules and Condensed Phases''], Springer, {{ISBN|0-306-44844-0}} p. 363</ref>
[[File:CuShearMTS.svg|thumb|upright=1.2|तापमान के एक फलन के रूप में तांबे का अपरूपण मापांक। प्रायोगिक डेटा<ref name=Overton55>{{cite journal|last1=Overton|first1=W.|last2=Gaffney|first2=John|title=घन तत्वों के लोचदार स्थिरांक का तापमान भिन्नता। आई कॉपर|journal=Physical Review|volume=98|pages=969|year=1955|doi=10.1103/PhysRev.98.969|issue=4|bibcode = 1955PhRv...98..969O }}</ref><ref name=Nadal03/>रंगीन प्रतीकों के साथ दिखाया गया है।]]बढ़ते तापमान के साथ धातुओं का कतरनी मापांक सामान्य रूप से घटता देखा जाता है। उच्च दबावों पर, लागू दबाव के साथ कतरनी मापांक भी बढ़ता हुआ प्रतीत होता है। कई धातुओं में पिघलने के तापमान, रिक्ति गठन ऊर्जा, और अपरूपण मापांक के बीच संबंध देखे गए हैं।<ref name=March>March, N. H., (1996), [https://books.google.com/books?id=PaphaJhfAloC&pg=PA363 ''Electron Correlation in Molecules and Condensed Phases''], Springer, {{ISBN|0-306-44844-0}} p. 363</ref>
कई मॉडल मौजूद हैं जो धातुओं के अपरूपण मापांक (और संभवतः मिश्र धातुओं के) की भविष्यवाणी करने का प्रयास करते हैं। प्लास्टिक प्रवाह संगणना में उपयोग किए जाने वाले अपरूपण मापांक मॉडल में शामिल हैं:
कई मॉडल उपलब्ध हैं जो धातुओं के अपरूपण मापांक (और संभवतः मिश्र धातुओं के) की भविष्यवाणी करने का प्रयास करते हैं। प्लास्टिक प्रवाह संगणना में उपयोग किए जाने वाले अपरूपण मापांक मॉडल में शामिल हैं:


# एमटीएस अपरूपण मापांक द्वारा विकसित किया गया<ref name=Varshni70>{{cite journal|last1=Varshni|first1=Y.|title=लोचदार स्थिरांक की तापमान निर्भरता|journal=Physical Review B|volume=2|pages=3952–3958|year=1970|doi=10.1103/PhysRevB.2.3952|issue=10|bibcode = 1970PhRvB...2.3952V }}</ref> और मैकेनिकल थ्रेशोल्ड स्ट्रेस (MTS) प्लास्टिक फ्लो स्ट्रेस मॉडल के संयोजन में उपयोग किया जाता है।<ref name=Chen96>{{cite journal|last1=Chen|first1=Shuh Rong|last2=Gray|first2=George T.|title=टैंटलम और टैंटलम-टंगस्टन मिश्र धातुओं का संवैधानिक व्यवहार|journal=Metallurgical and Materials Transactions A|volume=27|pages=2994|year=1996|doi=10.1007/BF02663849|issue=10|bibcode = 1996MMTA...27.2994C |s2cid=136695336|url=https://zenodo.org/record/1232556}}</ref><ref name=Goto00>{{cite journal|doi=10.1007/s11661-000-0226-8|title=HY-100 स्टील का मैकेनिकल थ्रेशोल्ड स्ट्रेस कॉन्स्टिट्यूटिव-स्ट्रेंथ मॉडल विवरण|year=2000|last1=Goto|first1=D. M.|last2=Garrett|first2=R. K.|last3=Bingert|first3=J. F.|last4=Chen|first4=S. R.|last5=Gray|first5=G. T.|journal=Metallurgical and Materials Transactions A|volume=31|issue=8|pages=1985–1996 |bibcode=2000MMTA...31.1985G |s2cid=136118687|url=https://apps.dtic.mil/sti/pdfs/ADA372816.pdf|archive-url=https://web.archive.org/web/20170925012725/http://www.dtic.mil/get-tr-doc/pdf?AD=ADA372816|url-status=live|archive-date=September 25, 2017}}</ref>
# एमटीएस अपरूपण मापांक द्वारा विकसित किया गया<ref name=Varshni70>{{cite journal|last1=Varshni|first1=Y.|title=लोचदार स्थिरांक की तापमान निर्भरता|journal=Physical Review B|volume=2|pages=3952–3958|year=1970|doi=10.1103/PhysRevB.2.3952|issue=10|bibcode = 1970PhRvB...2.3952V }}</ref> और मैकेनिकल थ्रेशोल्ड स्ट्रेस (MTS) प्लास्टिक फ्लो स्ट्रेस मॉडल के संयोजन में उपयोग किया जाता है।<ref name=Chen96>{{cite journal|last1=Chen|first1=Shuh Rong|last2=Gray|first2=George T.|title=टैंटलम और टैंटलम-टंगस्टन मिश्र धातुओं का संवैधानिक व्यवहार|journal=Metallurgical and Materials Transactions A|volume=27|pages=2994|year=1996|doi=10.1007/BF02663849|issue=10|bibcode = 1996MMTA...27.2994C |s2cid=136695336|url=https://zenodo.org/record/1232556}}</ref><ref name=Goto00>{{cite journal|doi=10.1007/s11661-000-0226-8|title=HY-100 स्टील का मैकेनिकल थ्रेशोल्ड स्ट्रेस कॉन्स्टिट्यूटिव-स्ट्रेंथ मॉडल विवरण|year=2000|last1=Goto|first1=D. M.|last2=Garrett|first2=R. K.|last3=Bingert|first3=J. F.|last4=Chen|first4=S. R.|last5=Gray|first5=G. T.|journal=Metallurgical and Materials Transactions A|volume=31|issue=8|pages=1985–1996 |bibcode=2000MMTA...31.1985G |s2cid=136118687|url=https://apps.dtic.mil/sti/pdfs/ADA372816.pdf|archive-url=https://web.archive.org/web/20170925012725/http://www.dtic.mil/get-tr-doc/pdf?AD=ADA372816|url-status=live|archive-date=September 25, 2017}}</ref>
# स्टाइनबर्ग-कोचरन-गिनान (एससीजी) कतरनी मॉड्यूलस मॉडल द्वारा विकसित किया गया<ref name=Guinan74>{{cite journal|last1=Guinan|first1=M|last2=Steinberg|first2=D|title=Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements|journal=Journal of Physics and Chemistry of Solids|volume=35|pages=1501|year=1974|doi=10.1016/S0022-3697(74)80278-7|bibcode=1974JPCS...35.1501G|issue=11}}</ref> और स्टाइनबर्ग-कोचरन-गिनान-लुंड (एससीजीएल) प्रवाह तनाव मॉडल के संयोजन के साथ प्रयोग किया जाता है।
# स्टाइनबर्ग-कोचरन-गिनान (एससीजी) कतरनी मॉड्यूलस मॉडल द्वारा विकसित किया गया<ref name=Guinan74>{{cite journal|last1=Guinan|first1=M|last2=Steinberg|first2=D|title=Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements|journal=Journal of Physics and Chemistry of Solids|volume=35|pages=1501|year=1974|doi=10.1016/S0022-3697(74)80278-7|bibcode=1974JPCS...35.1501G|issue=11}}</ref> और स्टाइनबर्ग-कोचरन-गिनान-लुंड (एससीजीएल) प्रवाह तनाव मॉडल के संयोजन के साथ प्रयोग किया जाता है।
# नडाल और LePoac (एनपी) कतरनी मापांक मॉडल<ref name=Nadal03>{{cite journal|last1=Nadal|first1=Marie-Hélène|last2=Le Poac|first2=Philippe|title=Continuous model for the shear modulus as a function of pressure and temperature up to the melting point: Analysis and ultrasonic validation|journal=Journal of Applied Physics|volume=93|pages=2472|year=2003|doi=10.1063/1.1539913|issue=5|bibcode = 2003JAP....93.2472N }}</ref> यह तापमान निर्भरता और कतरनी मॉड्यूलस के दबाव निर्भरता के लिए एससीजी मॉडल निर्धारित करने के लिए लिंडमैन मानदंड का उपयोग करता है।
# नडाल और लेपोएक (एनपी) कतरनी मापांक मॉडल<ref name=Nadal03>{{cite journal|last1=Nadal|first1=Marie-Hélène|last2=Le Poac|first2=Philippe|title=Continuous model for the shear modulus as a function of pressure and temperature up to the melting point: Analysis and ultrasonic validation|journal=Journal of Applied Physics|volume=93|pages=2472|year=2003|doi=10.1063/1.1539913|issue=5|bibcode = 2003JAP....93.2472N }}</ref> जो तापमान निर्भरता और कतरनी मापांक के दबाव निर्भरता के लिए एससीजी मॉडल निर्धारित करने के लिए लिंडमैन सिद्धांत का उपयोग करता है।


=== एमटीएस मॉडल ===
=== एमटीएस मॉडल ===
Line 151: Line 156:
{{Elastic moduli}}
{{Elastic moduli}}
{{Authority control}}
{{Authority control}}
[[Category: पदार्थ विज्ञान]] [[Category: लोच (भौतिकी)]]


[[Category: Machine Translated Page]]
[[Category:CS1 maint]]
[[Category:Collapse templates]]
[[Category:Created On 24/02/2023]]
[[Category:Created On 24/02/2023]]
[[Category:Infobox templates|physical quantity]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with broken file links]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:पदार्थ विज्ञान]]
[[Category:लोच (भौतिकी)]]

Latest revision as of 11:04, 10 March 2023

अपरूपण - मापांक
सामान्य प्रतीक
G, S
Si   इकाईPa
अन्य मात्राओं से
व्युत्पत्तियां
G = τ / γ = E / [2(1 + ν)]
अपरूपण तनाव

सामग्री विज्ञान में, कतरनी मापांक या कठोरता का मापांक, जिसे G, या कभी-कभी 'S' या 'μ' द्वारा दर्शाया जाता है, एक सामग्री की लोच (भौतिकी) कतरनी कठोरता का एक उपाय है और इसे कतरनी तनाव के अनुपात के रूप में परिभाषित किया जाता है::[1]

कहाँ

= कतरनी तनाव
वह शक्ति है जो कार्य करती है
वह क्षेत्र है जिस पर बल कार्य करता है
= कतरनी तनाव। इंजीनियरिंग में , कहीं और  : अनुप्रस्थ विस्थापन है
क्षेत्र की प्रारंभिक लंबाई है।

अपरूपण मापांक की व्युत्पन्न SI इकाई पास्कल (इकाई) (Pa) है, हालाँकि इसे सामान्य रूप से गीगापास्कल (GPa) या हज़ार पाउंड प्रति वर्ग इंच (ksi) में व्यक्त किया जाता है। इसका विमीय रूप M1L−1T−2 है, बल को द्रव्यमान समय त्वरण द्वारा प्रतिस्थापित किया जाता है।

स्पष्टीकरण

पदार्थ के लिए विशिष्ट मान

कतरनी मॉड्यूलस (जीपीए)

(कमरे के तापमान पर)

डायमंड[2] 478.0
इस्पात[3] 79.3
लोहा[4] 52.5
ताँबा[5] 44.7
टाइटेनियम[3] 41.4
काँच[3] 26.2
--एल्यूमिनियम[3] 25.5
पॉलीथीन[3] 0.117
रबड़[6] 0.0006
ग्रेनाइट[7][8] 24
शेल्स[7][8] 1.6
चूना पत्थर[7][8] 24
चॉक[7][8] 3.2
बलुआ पत्थर[7][8] 0.4
काष्ठ 4

सामग्री की कठोरता को मापने के लिए अपरूपण मापांक कई मात्राओं में से एक है। ये सभी सामान्यीकृत हुक के नियम में उत्पन्न होते हैं:

  • यंग का मापांक ई इस तनाव की दिशा में एक अक्षीय तनाव के लिए सामग्री की तनाव प्रतिक्रिया का वर्णन करता है (जैसे तार के सिरों पर खींचना या स्तंभ के ऊपर भार डालना, तार लंबा होना और स्तंभ की ऊंचाई कम होना)।
  • प्वासों अनुपात ν इस अक्षीय प्रतिबल (तार के पतले होने और स्तम्भ के मोटे होने) की ओर्थोगोनल दिशाओं में प्रतिक्रिया का वर्णन करता है।
  • थोक मापांक K सामग्री की प्रतिक्रिया (समान) हाइड्रोस्टेटिक दबाव (जैसे समुद्र के तल पर दबाव या गहरे स्विमिंग पूल) का वर्णन करता है।
  • 'अपरूपण मापांक ' G अपरूपण तनाव के लिए सामग्री की प्रतिक्रिया का वर्णन करता है (जैसे इसे सुस्त कैंची से काटने)।
  • द्रव की एक परिभाषा शून्य के अपरूपण मापांक वाला पदार्थ है। कोई भी बल इसकी सतह को विकृत कर देता है।
  • धातुओं के लिए, तापमान और दबाव का एक क्षेत्र होता है, जिस पर कतरनी मापांक में परिवर्तन रैखिक होता है। इस सीमा के बाहर, मॉडलिंग व्यवहार अधिक कठिन है।

ये मोडुली स्वतंत्र नहीं हैं, और आइसोट्रोपिक सामग्रियों के लिए वे समीकरणों के माध्यम से जुड़े हुए हैं :[9]

कतरनी मापांक एक ठोस के विरूपण से संबंधित होता है जब यह अपनी सतहों में से किसी एक के समानांतर बल का अनुभव करता है जबकि इसका विपरीत चेहरा एक विरोधी बल (जैसे घर्षण) का अनुभव करता है। एक आयताकार प्रिज्म के आकार की वस्तु के मामले में, यह एक समानांतर चतुर्भुज में विकृत हो जाएगा। एनिस्ट्रोपिक सामग्री जैसे लकड़ी, कागज और अनिवार्य रूप से सभी एकल क्रिस्टल अलग-अलग दिशाओं में परीक्षण किए जाने पर तनाव या तनाव के लिए अलग-अलग सामग्री प्रतिक्रिया प्रदर्शित करते हैं। इस मामले में, किसी को एकल स्केलर मान के बजाय लोचदार स्थिरांक की पूर्ण टेंसर-अभिव्यक्ति का उपयोग करने की आवश्यकता हो सकती है।कतरनी मापांक एक ठोस की एक सतह के समानांतर बल लगाने से ठोस के विरूपण को मापने के द्वारा निर्धारित किया जाता है, जबकि एक विरोधी बल इसकी विपरीत सतह पर कार्य करता है और ठोस को जगह में रखता है।

द्रव की एक संभावित परिभाषा शून्य अपरूपण मापांक वाली सामग्री होगी।

कतरनी तरंगें

File:SpiderGraph ShearModulus.GIF
एक विशिष्ट बेस ग्लास के कतरनी मापांक पर चयनित ग्लास घटक परिवर्धन का प्रभाव।[10]

समांगी और समदैशिक ठोसों में दो प्रकार की तरंगें होती हैं, P तरंग और S तरंग। अपरूपण तरंग का वेग, कतरनी मापांक द्वारा नियंत्रित किया जाता है,

कहाँ

G अपरूपण मापांक है
ठोस का घनत्व है।

धातुओं का अपरूपण मापांक

तापमान के एक फलन के रूप में तांबे का अपरूपण मापांक। प्रायोगिक डेटा[11][12]रंगीन प्रतीकों के साथ दिखाया गया है।

बढ़ते तापमान के साथ धातुओं का कतरनी मापांक सामान्य रूप से घटता देखा जाता है। उच्च दबावों पर, लागू दबाव के साथ कतरनी मापांक भी बढ़ता हुआ प्रतीत होता है। कई धातुओं में पिघलने के तापमान, रिक्ति गठन ऊर्जा, और अपरूपण मापांक के बीच संबंध देखे गए हैं।[13]

कई मॉडल उपलब्ध हैं जो धातुओं के अपरूपण मापांक (और संभवतः मिश्र धातुओं के) की भविष्यवाणी करने का प्रयास करते हैं। प्लास्टिक प्रवाह संगणना में उपयोग किए जाने वाले अपरूपण मापांक मॉडल में शामिल हैं:

  1. एमटीएस अपरूपण मापांक द्वारा विकसित किया गया[14] और मैकेनिकल थ्रेशोल्ड स्ट्रेस (MTS) प्लास्टिक फ्लो स्ट्रेस मॉडल के संयोजन में उपयोग किया जाता है।[15][16]
  2. स्टाइनबर्ग-कोचरन-गिनान (एससीजी) कतरनी मॉड्यूलस मॉडल द्वारा विकसित किया गया[17] और स्टाइनबर्ग-कोचरन-गिनान-लुंड (एससीजीएल) प्रवाह तनाव मॉडल के संयोजन के साथ प्रयोग किया जाता है।
  3. नडाल और लेपोएक (एनपी) कतरनी मापांक मॉडल[12] जो तापमान निर्भरता और कतरनी मापांक के दबाव निर्भरता के लिए एससीजी मॉडल निर्धारित करने के लिए लिंडमैन सिद्धांत का उपयोग करता है।

एमटीएस मॉडल

एमटीएस कतरनी मॉड्यूलस मॉडल का रूप है:

कहाँ कतरनी मापांक है , और और भौतिक स्थिरांक हैं।

एससीजी मॉडल

स्टाइनबर्ग-कोच्रन-गिनान (SCG) कतरनी मापांक मॉडल दबाव पर निर्भर है और इसका रूप है

कहाँ, μ0 संदर्भ स्थिति में कतरनी मॉड्यूलस है (टी = 300 के, पी = 0, η = 1), पी दबाव है, और टी तापमान है।

एनपी मॉडल

नडाल-ले पोएक (एनपी) कतरनी मॉड्यूलस मॉडल एससीजी मॉडल का एक संशोधित संस्करण है। एससीजी मॉडल में कतरनी मॉड्यूलस की अनुभवजन्य तापमान निर्भरता को लिंडेमैन मानदंड के आधार पर समीकरण के साथ बदल दिया गया है। एनपी कतरनी मॉड्यूलस मॉडल का रूप है:

कहाँ

और μ0 पूर्ण शून्य और परिवेशी दबाव पर अपरूपण मापांक है, ζ एक क्षेत्र है, m परमाणु द्रव्यमान है, और f लिंडमैन कसौटी है।

कतरनी छूट मापांक

कतरनी विश्राम मापांक गतिशील मापांक है। कतरनी मापांक का समय-निर्भर सामान्यीकरण[18] :

.

यह भी देखें

संदर्भ

  1. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "shear modulus, G". doi:10.1351/goldbook.S05635
  2. McSkimin, H.J.; Andreatch, P. (1972). "Elastic Moduli of Diamond as a Function of Pressure and Temperature". J. Appl. Phys. 43 (7): 2944–2948. Bibcode:1972JAP....43.2944M. doi:10.1063/1.1661636.
  3. 3.0 3.1 3.2 3.3 3.4 Crandall, Dahl, Lardner (1959). An Introduction to the Mechanics of Solids. Boston: McGraw-Hill. ISBN 0-07-013441-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. Rayne, J.A. (1961). "Elastic constants of Iron from 4.2 to 300 ° K". Physical Review. 122 (6): 1714–1716. Bibcode:1961PhRv..122.1714R. doi:10.1103/PhysRev.122.1714.
  5. Material properties
  6. Spanos, Pete (2003). "Cure system effect on low temperature dynamic shear modulus of natural rubber". Rubber World.
  7. 7.0 7.1 7.2 7.3 7.4 Hoek, Evert, and Jonathan D. Bray. Rock slope engineering. CRC Press, 1981.
  8. 8.0 8.1 8.2 8.3 8.4 Pariseau, William G. Design analysis in rock mechanics. CRC Press, 2017.
  9. [Landau LD, Lifshitz EM. Theory of Elasticity, vol. 7. Course of Theoretical Physics. (2nd Ed) Pergamon: Oxford 1970 p13]
  10. Shear modulus calculation of glasses
  11. Overton, W.; Gaffney, John (1955). "घन तत्वों के लोचदार स्थिरांक का तापमान भिन्नता। आई कॉपर". Physical Review. 98 (4): 969. Bibcode:1955PhRv...98..969O. doi:10.1103/PhysRev.98.969.
  12. 12.0 12.1 Nadal, Marie-Hélène; Le Poac, Philippe (2003). "Continuous model for the shear modulus as a function of pressure and temperature up to the melting point: Analysis and ultrasonic validation". Journal of Applied Physics. 93 (5): 2472. Bibcode:2003JAP....93.2472N. doi:10.1063/1.1539913.
  13. March, N. H., (1996), Electron Correlation in Molecules and Condensed Phases, Springer, ISBN 0-306-44844-0 p. 363
  14. Varshni, Y. (1970). "लोचदार स्थिरांक की तापमान निर्भरता". Physical Review B. 2 (10): 3952–3958. Bibcode:1970PhRvB...2.3952V. doi:10.1103/PhysRevB.2.3952.
  15. Chen, Shuh Rong; Gray, George T. (1996). "टैंटलम और टैंटलम-टंगस्टन मिश्र धातुओं का संवैधानिक व्यवहार". Metallurgical and Materials Transactions A. 27 (10): 2994. Bibcode:1996MMTA...27.2994C. doi:10.1007/BF02663849. S2CID 136695336.
  16. Goto, D. M.; Garrett, R. K.; Bingert, J. F.; Chen, S. R.; Gray, G. T. (2000). "HY-100 स्टील का मैकेनिकल थ्रेशोल्ड स्ट्रेस कॉन्स्टिट्यूटिव-स्ट्रेंथ मॉडल विवरण" (PDF). Metallurgical and Materials Transactions A. 31 (8): 1985–1996. Bibcode:2000MMTA...31.1985G. doi:10.1007/s11661-000-0226-8. S2CID 136118687. Archived from the original on September 25, 2017.
  17. Guinan, M; Steinberg, D (1974). "Pressure and temperature derivatives of the isotropic polycrystalline shear modulus for 65 elements". Journal of Physics and Chemistry of Solids. 35 (11): 1501. Bibcode:1974JPCS...35.1501G. doi:10.1016/S0022-3697(74)80278-7.
  18. Rubinstein, Michael, 1956 December 20- (2003). पॉलिमर भौतिकी. Colby, Ralph H. Oxford: Oxford University Press. p. 284. ISBN 019852059X. OCLC 50339757.{{cite book}}: CS1 maint: multiple names: authors list (link)
Conversion formulae
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part).
3D formulae Notes

There are two valid solutions.
The plus sign leads to .

The minus sign leads to .

Cannot be used when
2D formulae Notes
Cannot be used when