नॉर्मड वेक्टर स्पेस: Difference between revisions

From Vigyanwiki
(text)
No edit summary
 
(4 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Vector space on which a distance is defined}}
{{short description|Vector space on which a distance is defined}}
{{see also|मानदंड (गणित)|बानाख समष्टि}}
[[File:Mathematical Spaces.png|thumb|250px|गणितीय रिक्त स्थान का पदानुक्रम। मानकित सदिश समष्टि आंतरिक उत्पाद समष्टि का अधिसमुच्चय है और मीट्रिक रिक्त स्थान का एक उपसमुच्चय, जो बदले में सांस्थितिकीय रिक्त स्थान का एक उपसमुच्चय है।]]गणित में, एक मानक सदिश स्थान या आदर्श स्थान [[वास्तविक संख्या]] या [[जटिल संख्या]] संख्याओं पर एक सदिश स्थान होता है, जिस पर मानक (गणित) परिभाषित किया जाता है।<ref name="text">{{cite book|first=Frank M.|last=Callier|title=रैखिक प्रणाली सिद्धांत|location=New York |publisher=Springer-Verlag|year=1991|isbn=0-387-97573-X}}</ref> मानक वास्तविक (भौतिक) दुनिया में लंबाई की सहज धारणा के वास्तविक सदिश रिक्त स्थान के लिए औपचारिकता और सामान्यीकरण है। मानदंड एक वास्तविक-मूल्यवान कार्य है जो सदिश स्थान पर परिभाषित होता है जिसे सामान्यतः <math>x\mapsto \|x\|</math> निरूपित किया जाता है और इसके निम्नलिखित गुण हैं:{{sfn|Rudin|1991|pp=3-4}}
{{more footnotes|date=December 2019}}
[[File:Mathematical Spaces.png|thumb|250px|गणितीय रिक्त स्थान का पदानुक्रम। मानकित सदिश समष्टि आंतरिक उत्पाद समष्टि का अधिसमुच्चय है और
मीट्रिक रिक्त स्थान का एक उपसमुच्चय, जो बदले में सांस्थितिकीय रिक्त स्थान का एक उपसमुच्चय है।]]गणित में, एक मानक सदिश स्थान या आदर्श स्थान [[वास्तविक संख्या]] या [[जटिल संख्या]] संख्याओं पर एक सदिश स्थान होता है, जिस पर मानक (गणित) परिभाषित किया जाता है।<ref name="text">{{cite book|first=Frank M.|last=Callier|title=रैखिक प्रणाली सिद्धांत|location=New York |publisher=Springer-Verlag|year=1991|isbn=0-387-97573-X}}</ref> मानक वास्तविक (भौतिक) दुनिया में लंबाई की सहज धारणा के वास्तविक सदिश रिक्त स्थान के लिए औपचारिकता और सामान्यीकरण है। मानदंड एक वास्तविक-मूल्यवान कार्य है जो सदिश स्थान पर परिभाषित होता है जिसे सामान्यतः <math>x\mapsto \|x\|</math> निरूपित किया जाता है और इसके निम्नलिखित गुण हैं:{{sfn|Rudin|1991|pp=3-4}}


#यह नकारात्मक नहीं है, इसका मतलब प्रत्येक सदिश <math>x.</math> के लिए <math>\|x\| \geq 0</math> है
#यह नकारात्मक नहीं है, इसका मतलब प्रत्येक सदिश <math>x.</math> के लिए <math>\|x\| \geq 0</math> है
Line 11: Line 8:
मानदंड एक [[मीट्रिक (गणित)]] को प्रेरित करता है, जिसे निम्न सूत्र द्वारा इसका {{em|[[मानदंड प्रेरित मात्रिक|(मानदंड) प्रेरित मात्रिक]]}} कहा जाता है,  
मानदंड एक [[मीट्रिक (गणित)]] को प्रेरित करता है, जिसे निम्न सूत्र द्वारा इसका {{em|[[मानदंड प्रेरित मात्रिक|(मानदंड) प्रेरित मात्रिक]]}} कहा जाता है,  
<math display=block>d(x,y) = \|y-x\|.</math>
<math display=block>d(x,y) = \|y-x\|.</math>
जो किसी भी मानकित सदिश समष्टि को मेट्रिक समष्टि और [[टोपोलॉजिकल वेक्टर स्पेस|सांस्थितिक सदिश समष्टि]] बनाता है। अगर यह मेट्रिक समष्टि [[ पूर्ण मीट्रिक स्थान |पूर्ण मीट्रिक स्थान]] है तो मानकित समष्टि एक <em>बनच समष्टि</em> है। प्रत्येक मानक सदिश स्थान को विशिष्ट रूप से [[बनच स्थान]] तक विस्तारित किया जा सकता है, जो आदर्श स्थान को बनच स्थान से घनिष्ठ रूप से संबंधित बनाता है। प्रत्येक बनच स्थान एक आदर्श स्थान है लेकिन इसका विलोम सत्य नहीं है। उदाहरण के लिए, वास्तविक संख्याओं के [[परिमित अनुक्रम|परिमित अनुक्रमों]] के समुच्चय को [[यूक्लिडियन मानदंड]] के साथ आदर्श बनाया जा सकता है, लेकिन यह इस मानदंड के लिए पूर्ण नहीं है।
जो किसी भी मानकित सदिश समष्टि को मेट्रिक समष्टि और [[टोपोलॉजिकल वेक्टर स्पेस|सांस्थितिक सदिश समष्टि]] बनाता है। यदि यह मेट्रिक समष्टि [[ पूर्ण मीट्रिक स्थान |पूर्ण मीट्रिक स्थान]] है तो मानकित समष्टि एक <em>बनच समष्टि</em> है। प्रत्येक मानक सदिश स्थान को विशिष्ट रूप से [[बनच स्थान]] तक विस्तारित किया जा सकता है, जो आदर्श स्थान को बनच स्थान से घनिष्ठ रूप से संबंधित बनाता है। प्रत्येक बनच स्थान एक आदर्श स्थान है लेकिन इसका विलोम सत्य नहीं है। उदाहरण के लिए, वास्तविक संख्याओं के [[परिमित अनुक्रम|परिमित अनुक्रमों]] के समुच्चय को [[यूक्लिडियन मानदंड]] के साथ आदर्श बनाया जा सकता है, लेकिन यह इस मानदंड के लिए पूर्ण नहीं है।


एक आंतरिक उत्पाद स्थान एक मानक सदिश स्थान है जिसका मानदंड एक सदिश और स्वयं के आंतरिक उत्पाद का वर्गमूल है। यूक्लिडियन सदिश स्थान की यूक्लिडियन मानदंड एक विशेष स्तिथि है जो सूत्र द्वारा [[यूक्लिडियन दूरी]] को परिभाषित करने की अनुमति देती है
एक आंतरिक उत्पाद स्थान एक मानक सदिश स्थान है जिसका मानदंड एक सदिश और स्वयं के आंतरिक उत्पाद का वर्गमूल है। यूक्लिडियन सदिश स्थान की यूक्लिडियन मानदंड एक विशेष स्तिथि है जो सूत्र द्वारा [[यूक्लिडियन दूरी]] को परिभाषित करने की अनुमति देती है
Line 30: Line 27:
== सामयिक संरचना ==
== सामयिक संरचना ==


अगर <math>(V, \|\,\cdot\,\|)</math> एक आदर्श सदिश स्थान है, आदर्श <math>\|\,\cdot\,\|</math> एक मीट्रिक (गणित) (दूरी की एक धारणा) और इसलिए एक [[टोपोलॉजी|सांस्थिति]] <math>V</math> को प्रेरित करता है इस मीट्रिक को प्राकृतिक तरीके से परिभाषित किया गया है: दो सदिशों <math>\|\mathbf{u} - \mathbf{v}\|.</math> के बीच की दूरी <math>\mathbf{u}</math> और <math>\mathbf{v}</math> द्वारा दिया गया है यह सांस्थिति सबसे दुर्बल सांस्थिति है जो <math>\|\,\cdot\,\|</math> को निरंतर बनाती है और जो की रैखिक संरचना के अनुकूल निम्नलिखित अर्थ में <math>V</math> है  :
यदि <math>(V, \|\,\cdot\,\|)</math> एक आदर्श सदिश स्थान है, आदर्श <math>\|\,\cdot\,\|</math> एक मीट्रिक (गणित) (दूरी की एक धारणा) और इसलिए एक [[टोपोलॉजी|सांस्थिति]] <math>V</math> को प्रेरित करता है इस मीट्रिक को प्राकृतिक तरीके से परिभाषित किया गया है: दो सदिशों <math>\|\mathbf{u} - \mathbf{v}\|.</math> के बीच की दूरी <math>\mathbf{u}</math> और <math>\mathbf{v}</math> द्वारा दिया गया है यह सांस्थिति सबसे दुर्बल सांस्थिति है जो <math>\|\,\cdot\,\|</math> को निरंतर बनाती है और जो की रैखिक संरचना के अनुकूल निम्नलिखित अर्थ में <math>V</math> है  :


# सदिश जोड़ <math>\,+\, : V \times V \to V</math> इस सांस्थिति के संबंध में संयुक्त रूप से निरंतर है। यह त्रिभुज असमानता से सीधे अनुसरण करता है।
# सदिश जोड़ <math>\,+\, : V \times V \to V</math> इस सांस्थिति के संबंध में संयुक्त रूप से निरंतर है। यह त्रिभुज असमानता से सीधे अनुसरण करता है।
Line 41: Line 38:
विशेष रुचि पूर्ण स्थान मानक स्थान हैं, जिन्हें {{em|[[बनच समष्टि]]}} रूप में जाना जाता है।
विशेष रुचि पूर्ण स्थान मानक स्थान हैं, जिन्हें {{em|[[बनच समष्टि]]}} रूप में जाना जाता है।


हर मानकित सदिश समष्टि <math>V</math> कुछ बनच अंतरिक्ष के अंदर घने उप-स्थान के रूप में '''बैठता है; यह बनच स्थान अनिवार्य रू'''प से विशिष्ट रूप से परिभाषित है <math>V</math> और कहा जाता है {{em|[[Cauchy completion|completion]]}} का <math>V.</math>
हर मानकित सदिश समष्टि <math>V</math> कुछ बनच अंतरिक्ष के अंदर घने उप-स्थान के रूप में बैठता है; यह बनच स्थान अनिवार्य विशिष्ट रूप से <math>V</math> परिभाषित है और  <math>V</math> का {{em|[[Cauchy completion|समापन]]}} कहा जाता है


एक ही सदिश समष्टि पर दो मानदंड कहलाते हैं {{em|[[Equivalent norm|equivalent]]}} यदि वे समान [[टोपोलॉजी (संरचना)|सांस्थिति (संरचना)]] को परिभाषित करते हैं। एक परिमित-आयामी सदिश अंतरिक्ष पर, सभी मानदंड समान हैं लेकिन अनंत आयामी सदिश रिक्त स्थान के लिए यह सच नहीं है।
एक ही सदिश समष्टि पर दो मानदंड यदि वे समान [[टोपोलॉजी (संरचना)|सांस्थिति (संरचना)]] को परिभाषित करते हैं तो वे {{em|[[समतुल्य norm|समतुल्य]]}} कहलाते हैं। एक परिमित-आयामी सदिश अंतरिक्ष पर, सभी मानदंड समान हैं लेकिन अनंत आयामी सदिश रिक्त स्थान के लिए यह सत्य नहीं है।


परिमित-आयामी सदिश स्थान पर सभी मानदंड एक सांस्थितिक दृष्टिकोण से समतुल्य हैं क्योंकि वे समान सांस्थिति को प्रेरित करते हैं (हालांकि परिणामी मीट्रिक रिक्त स्थान समान होने की आवश्यकता नहीं है)।<ref>{{Citation|last1=Kedlaya|first1=Kiran S.|author1-link=Kiran Kedlaya|title=''p''-adic differential equations|publisher=[[Cambridge University Press]]|series=Cambridge Studies in Advanced Mathematics|isbn=978-0-521-76879-5|year=2010|volume=125|citeseerx=10.1.1.165.270}}, Theorem 1.3.6</ref> और चूंकि कोई भी यूक्लिडियन स्थान पूर्ण है, इसलिए हम यह निष्कर्ष निकाल सकते हैं कि सभी परिमित-आयामी आदर्श सदिश स्थान बनच स्थान हैं। एक नॉर्मड सदिश समष्टि <math>V</math> [[स्थानीय रूप से कॉम्पैक्ट]] है अगर और केवल अगर यूनिट बॉल <math>B = \{ x : \|x\| \leq 1\}</math> [[ कॉम्पैक्ट जगह | कॉम्पैक्ट जगह]] है, जो कि अगर और केवल अगर स्तिथि है <math>V</math> परिमित आयामी है; यह रिज्ज़ की लेम्मा का परिणाम है। (वास्तव में, एक अधिक सामान्य परिणाम सत्य है: एक सांस्थितिक सदिश समष्टि स्थानीय रूप से कॉम्पैक्ट है अगर और केवल अगर यह परिमित-आयामी है। यहां बिंदु यह है कि हम यह नहीं मानते हैं कि सांस्थिति एक मानक से आती है।)
परिमित-आयामी सदिश स्थान पर सभी मानदंड एक सांस्थितिक दृष्टिकोण से समतुल्य हैं क्योंकि वे समान सांस्थिति को प्रेरित करते हैं (हालांकि परिणामी मीट्रिक रिक्त स्थान समान होने की आवश्यकता नहीं है)।<ref>{{Citation|last1=Kedlaya|first1=Kiran S.|author1-link=Kiran Kedlaya|title=''p''-adic differential equations|publisher=[[Cambridge University Press]]|series=Cambridge Studies in Advanced Mathematics|isbn=978-0-521-76879-5|year=2010|volume=125|citeseerx=10.1.1.165.270}}, Theorem 1.3.6</ref> और चूंकि कोई भी यूक्लिडियन स्थान पूर्ण है, इसलिए हम यह निष्कर्ष निकाल सकते हैं कि सभी परिमित-आयामी आदर्श सदिश स्थान बनच स्थान हैं। एक नॉर्मड सदिश समष्टि <math>V</math> [[स्थानीय रूप से कॉम्पैक्ट|स्थानीय रूप से सघन]] है यदि और केवल यदि एकल गोलक <math>B = \{ x : \|x\| \leq 1\}</math> [[ कॉम्पैक्ट जगह | सघन जगह]] है, जो कि यदि और केवल यदि स्तिथि <math>V</math> परिमित आयामी है; यह रिज्ज़ की लेम्मा का परिणाम है। (वस्तुत:, एक अधिक सामान्य परिणाम सत्य है: एक सांस्थितिक सदिश समष्टि स्थानीय रूप से सघन है यदि और केवल यदि यह परिमित-आयामी है। यहां बिंदु यह है कि हम यह नहीं मानते हैं कि सांस्थिति एक मानक से आती है।)


सेमीनॉर्मड सदिश समष्टि की सांस्थिति में कई अच्छे गुण हैं। एक [[पड़ोस प्रणाली]] को देखते हुए <math>\mathcal{N}(0)</math> 0 के आस-पास हम अन्य सभी नेबरहुड सिस्टम का निर्माण कर सकते हैं
सेमीनॉर्मड सदिश समष्टि की सांस्थिति में कई अच्छे गुण हैं। एक [[पड़ोस प्रणाली|प्रतिवेश प्रणाली]] <math>\mathcal{N}(0)</math> को देखते हुए  0 के आस-पास हम अन्य सभी प्रतिवेश प्रणाली का निर्माण कर सकते हैं
<math display="block">\mathcal{N}(x) = x + \mathcal{N}(0) := \{x + N : N \in \mathcal{N}(0)\}</math>
<math display="block">\mathcal{N}(x) = x + \mathcal{N}(0) := \{x + N : N \in \mathcal{N}(0)\}</math>
साथ
साथ
<math display=block>x + N := \{x + n : n \in N\}.</math>
<math display=block>x + N := \{x + n : n \in N\}.</math>
इसके अलावा, अव[[शोषक सेट|शोषक समुच्चय]] और [[उत्तल सेट|उत्तल समुच्चय]]ों की उत्पत्ति के लिए [[पड़ोस का आधार]] मौजूद है। चूंकि यह संपत्ति कार्यात्मक विश्लेषण में बहुत उपयोगी है, इस संपत्ति के साथ आदर्श सदिश रिक्त स्थान के सामान्यीकरण का अध्ययन स्थानीय रूप से उत्तल रिक्त स्थान के नाम से किया जाता है।
इसके अतिरिक्त, अव[[शोषक सेट|शोषक समुच्चय]] और [[उत्तल सेट|उत्तल समुच्चय]] की उत्पत्ति के लिए [[पड़ोस का आधार|प्रतिवैस आधार]] उपस्थित है। चूंकि यह संपत्ति कार्यात्मक विश्लेषण में बहुत उपयोगी है, इस संपत्ति के साथ आदर्श सदिश रिक्त स्थान के सामान्यीकरण का अध्ययन स्थानीय रूप से उत्तल रिक्त स्थान के नाम से किया जाता है।


एक आदर्श (या सेमिनोर्म) <math>\|\cdot\|</math> एक सांस्थितिक सदिश समष्टि पर <math>(X, \tau)</math> निरंतर है अगर और केवल अगर सांस्थिति <math>\tau_{\|\cdot\|}</math> वह <math>\|\cdot\|</math> प्रवृत्त करता है <math>X</math> की तुलना में [[टोपोलॉजी की तुलना|सांस्थिति की तुलना]] है <math>\tau</math> (अर्थ, <math>\tau_{\|\cdot\|} \subseteq \tau</math>), जो तब होता है जब कुछ खुली गेंद मौजूद होती है <math>B</math> में <math>(X, \|\cdot\|)</math> (जैसे शायद <math>\{x \in X : \|x\| < 1\}</math> उदाहरण के लिए) जो में खुला है <math>(X, \tau)</math> (अलग कहा, ऐसा है कि <math>B \in \tau</math>).
एक आदर्श (या सेमिनोर्म) <math>\|\cdot\|</math> एक सांस्थितिक सदिश समष्टि <math>(X, \tau)</math> पर निरंतर है यदि और केवल यदि सांस्थिति <math>\tau_{\|\cdot\|}</math> जो <math>\|\cdot\|</math> <math>X</math> पर प्रवृत्त करता है <math>\tau</math> की तुलना में [[टोपोलॉजी की तुलना|स्थूलतर]] (अर्थ, <math>\tau_{\|\cdot\|} \subseteq \tau</math>) है, जो तब होता है जब कुछ खुली गेंद <math>B</math><math>(X, \|\cdot\|)</math> में उपस्थित होती है (जैसे शायद <math>\{x \in X : \|x\| < 1\}</math> उदाहरण के लिए) जो <math>(X, \tau)</math> में खुला है (अलग कहा, ऐसा है कि <math>B \in \tau</math>).


== सामान्य स्थान ==
== सामान्य स्थान ==


{{See also|Metrizable topological vector space#Normability}}
{{See also|मेट्रिजेबल सांस्थितिक सदिश समष्टि#नॉर्मबिलिटी}}
 
एक सांस्थितिक सदिश समष्टि <math>(X, \tau)</math>  मानक  <math>X</math> पर <math>\| \cdot \|</math> उपस्थित होने पर सामान्य कहा जाता है। इस तरह कि विहित मीट्रिक <math>(x, y) \mapsto \|y-x\|</math> सांस्थिति <math>\tau</math> को <math>X</math> पर प्रेरित करता है। 


एक सांस्थितिक सदिश समष्टि <math>(X, \tau)</math> मानक मौजूद होने पर सामान्य कहा जाता है <math>\| \cdot \|</math> पर <math>X</math> जैसे कि विहित मीट्रिक <math>(x, y) \mapsto \|y-x\|</math> सांस्थिति को प्रेरित करता है <math>\tau</math> पर <math>X.</math>
निम्नलिखित प्रमेय [[एंड्री कोलमोगोरोव]] के कारण है:{{sfn|Schaefer|1999|p=41}}
निम्नलिखित प्रमेय [[एंड्री कोलमोगोरोव]] के कारण है:{{sfn|Schaefer|1999|p=41}}


कोल्मोगोरोव की सामान्यता कसौटी: हॉउसडॉर्फ सांस्थितिक सदिश समष्टि नॉर्मल है अगर और केवल अगर कोई उत्तल मौजूद है, [[वॉन न्यूमैन बाउंडेड]] घिरा हुआ पड़ोस <math>0 \in X.</math>
कोल्मोगोरोव की सामान्यता मानदण्ड: हॉउसडॉर्फ सांस्थितिक सदिश समष्टि सामान्य है यदि और केवल यदि कोई उत्तल उपस्थित है, <math>0 \in X</math> का [[वॉन न्यूमैन बाउंडेड]] घिरा हुआ प्रतिवैस
सामान्य स्थानों के एक परिवार का एक उत्पाद सामान्य है अगर और केवल अगर बहुत से रिक्त स्थान गैर-तुच्छ हैं (अर्थात, <math>\neq \{ 0 \}</math>).{{sfn|Schaefer|1999|p=41}} इसके अलावा, एक सामान्य स्थान का भागफल <math>X</math> एक बंद सदिश उप-स्थान द्वारा <math>C</math> सामान्य है, और यदि इसके अतिरिक्त <math>X</math>की सांस्थिति एक मानक द्वारा दी गई है <math>\|\,\cdot,\|</math> फिर नक्शा <math>X/C \to \R</math> द्वारा दिए गए <math display=inline>x + C \mapsto \inf_{c \in C} \|x + c\|</math> पर एक अच्छी तरह से परिभाषित मानदंड है <math>X / C</math> जो [[भागफल टोपोलॉजी|भागफल सांस्थिति]] को प्रेरित करता है <math>X / C.</math>{{sfn|Schaefer|1999|p=42}}
 
सामान्य स्थानों के एक परिवार का एक उत्पाद सामान्य है यदि और केवल यदि बहुत से रिक्त स्थान गैर-तुच्छ (अर्थात, <math>\neq \{ 0 \}</math>) हैं।{{sfn|Schaefer|1999|p=41}} इसके अतिरिक्त, एक सामान्य स्थान का भागफल <math>X</math> एक बंद सदिश उप-स्थान द्वारा <math>C</math> सामान्य है, और यदि इसके अतिरिक्त <math>X</math> की सांस्थिति एक मानक <math>\|\,\cdot,\|</math> द्वारा दी गई है फिर मानचित्र <math>X/C \to \R</math> द्वारा दिए गए <math display="inline">x + C \mapsto \inf_{c \in C} \|x + c\|</math> पर एक अच्छी तरह से परिभाषित मानदंड <math>X / C</math> है जो [[भागफल टोपोलॉजी|भागफल सांस्थिति]] <math>X / C.</math> को प्रेरित करता है {{sfn|Schaefer|1999|p=42}}


अगर <math>X</math> एक हॉसडॉर्फ [[स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस|स्थानीय रूप से उत्तल सांस्थितिक सदिश समष्टि]] सांस्थितिक सदिश समष्टि है तो निम्नलिखित समतुल्य हैं:
यदि <math>X</math> एक हॉसडॉर्फ [[स्थानीय रूप से उत्तल टोपोलॉजिकल वेक्टर स्पेस|स्थानीय रूप से उत्तल सांस्थितिक सदिश समष्टि]] सांस्थितिक सदिश समष्टि है तो निम्नलिखित समतुल्य हैं:


# <math>X</math> सामान्य है।
# <math>X</math> सामान्य है।
# <math>X</math> मूल का एक परिबद्ध पड़ोस है।
# <math>X</math> मूल का एक परिबद्ध प्रतिवैस है।
# [[मजबूत दोहरी जगह]] <math>X^{\prime}_b</math> का <math>X</math> सामान्य है।{{sfn|Trèves|2006|pp=136–149, 195–201, 240–252, 335–390, 420–433}}
# [[मजबूत दोहरी जगह]] <math>X^{\prime}_b</math> का <math>X</math> सामान्य है।{{sfn|Trèves|2006|pp=136–149, 195–201, 240–252, 335–390, 420–433}}
# मजबूत दोहरी जगह <math>X^{\prime}_b</math> का <math>X</math> [[मेट्रिजेबल टोपोलॉजिकल वेक्टर स्पेस|मेट्रिजेबल सांस्थितिक सदिश समष्टि]] है।{{sfn|Trèves|2006|pp=136–149, 195–201, 240–252, 335–390, 420–433}}
# मजबूत दोहरी जगह <math>X^{\prime}_b</math> का <math>X</math> [[मेट्रिजेबल टोपोलॉजिकल वेक्टर स्पेस|मेट्रिजेबल सांस्थितिक सदिश समष्टि]] है।{{sfn|Trèves|2006|pp=136–149, 195–201, 240–252, 335–390, 420–433}}


आगे, <math>X</math> परिमित आयामी है अगर और केवल अगर <math>X^{\prime}_{\sigma}</math> सामान्य है (यहाँ <math>X^{\prime}_{\sigma}</math> अर्थ है <math>X^{\prime}</math> [[कमजोर- * टोपोलॉजी|दुर्बल- * सांस्थिति]] से संपन्न)।
आगे, <math>X</math> परिमित आयामी है यदि और केवल यदि <math>X^{\prime}_{\sigma}</math> सामान्य है (यहाँ <math>X^{\prime}_{\sigma}</math> अर्थ है <math>X^{\prime}</math> [[कमजोर- * टोपोलॉजी|दुर्बल- * सांस्थिति]] से संपन्न)।
 
सांस्थिति <math>\tau</math> फ्रेचेट अंतरिक्ष की <math>C^{\infty}(K),</math> जैसा कि परीक्षण कार्यों और वितरणों के रिक्त स्थान पर आलेख में परिभाषित किया गया है, मानदंडों के एक गणनीय परिवार द्वारा परिभाषित किया गया है लेकिन यह है {{em|not}} एक सामान्य स्थान क्योंकि कोई मानदंड उपस्थित नहीं है <math>\|\cdot\|</math> पर <math>C^{\infty}(K)</math> ऐसा है कि यह मानदंड प्रेरित करने वाली सांस्थिति <math>\tau.</math> के बराबर है  यहां तक ​​​​कि यदि एक मेट्रिजेबल सांस्थितिक सदिश समष्टि में एक सांस्थिति है जो मानदंडों के एक परिवार द्वारा परिभाषित की जाती है, तो यह अभी भी आदर्श स्थान होने में विफल हो सकता है (जिसका अर्थ है कि इसकी सांस्थिति को किसी भी तरह से परिभाषित नहीं किया जा सकता है। {{em| एकल}} मानदंड)।


सांस्थिति <math>\tau</math> फ्रेचेट अंतरिक्ष की <math>C^{\infty}(K),</math> जैसा कि परीक्षण कार्यों और वितरणों के रिक्त स्थान पर आलेख में परिभाषित किया गया है, मानदंडों के एक गणनीय परिवार द्वारा परिभाषित किया गया है लेकिन यह है {{em|not}} एक सामान्य स्थान क्योंकि कोई मानदंड मौजूद नहीं है <math>\|\cdot\|</math> पर <math>C^{\infty}(K)</math> ऐसा है कि यह मानदंड प्रेरित करने वाली सांस्थिति के बराबर है <math>\tau.</math> यहां तक ​​​​कि अगर एक मेट्रिजेबल सांस्थितिक सदिश समष्टि में एक सांस्थिति है जो मानदंडों के एक परिवार द्वारा परिभाषित की जाती है, तो यह अभी भी आदर्श स्थान होने में विफल हो सकता है (जिसका अर्थ है कि इसकी सांस्थिति को किसी भी तरह से परिभाषित नहीं किया जा सकता है। {{em|single}} मानदंड)।
ऐसी जगह का एक उदाहरण फ्रेचेट समष्टि <math>C^{\infty}(K)</math> है जिसकी परिभाषा लेख में परीक्षण कार्यों और वितरण के स्थान पर पाई जा सकती है, क्योंकि इसकी सांस्थिति <math>\tau</math> मानदंडों के एक गणनीय परिवार द्वारा परिभाषित किया गया है लेकिन यह है {{em|not}} एक सामान्य स्थान क्योंकि कोई मानदंड उपस्थित नहीं है <math>\|\cdot\|</math> पर <math>C^{\infty}(K)</math> ऐसा है कि यह मानदंड प्रेरित करने वाली सांस्थिति <math>\tau</math> के बराबर है वस्तुत:, स्थानीय रूप से उत्तल सांस्थितिक सदिश समष्टि की सांस्थिति <math>X</math> के परिवार द्वारा परिभाषित किया जा सकता है {{em|मानक}} पर <math>X</math> यदि और केवल यदि उपस्थित है {{em|कम से कम एक}} निरंतर मानदंड <math>X.</math>{{sfn|Jarchow|1981|p=130}}
ऐसी जगह का एक उदाहरण फ्रेचेट समष्टि है <math>C^{\infty}(K),</math> जिसकी परिभाषा लेख में परीक्षण कार्यों और वितरण के स्थान पर पाई जा सकती है, क्योंकि इसकी सांस्थिति <math>\tau</math> मानदंडों के एक गणनीय परिवार द्वारा परिभाषित किया गया है लेकिन यह है {{em|not}} एक सामान्य स्थान क्योंकि कोई मानदंड मौजूद नहीं है <math>\|\cdot\|</math> पर <math>C^{\infty}(K)</math> ऐसा है कि यह मानदंड प्रेरित करने वाली सांस्थिति के बराबर है <math>\tau.</math> वास्तव में, स्थानीय रूप से उत्तल सांस्थितिक सदिश समष्टि की सांस्थिति <math>X</math> के परिवार द्वारा परिभाषित किया जा सकता है {{em|norms}} पर <math>X</math> अगर और केवल अगर मौजूद है {{em|at least one}} निरंतर मानदंड <math>X.</math>{{sfn|Jarchow|1981|p=130}}


== रेखीय मानचित्र और दोहरे स्थान ==
== रेखीय मानचित्र और दोहरे स्थान ==
Line 83: Line 83:
मानदंड अपने सदिश स्थान पर एक सतत कार्य है। परिमित आयामी सदिश स्थानों के बीच सभी रेखीय मानचित्र भी निरंतर होते हैं।
मानदंड अपने सदिश स्थान पर एक सतत कार्य है। परिमित आयामी सदिश स्थानों के बीच सभी रेखीय मानचित्र भी निरंतर होते हैं।


दो आदर्श सदिश समष्टियों के बीच की सममिति एक रेखीय मानचित्र है <math>f</math> जो आदर्श को संरक्षित करता है (अर्थ <math>\|f(\mathbf{v})\| = \|\mathbf{v}\|</math> सभी सदिश के लिए <math>\mathbf{v}</math>). आइसोमेट्री हमेशा निरंतर और [[इंजेक्शन]] वाली होती है। आदर्श सदिश समष्टियों के बीच एक [[विशेषण]] समरूपता <math>V</math> और <math>W</math> एक आइसोमेट्रिक आइसोमोर्फिज्म कहा जाता है, और <math>V</math> और <math>W</math> आइसोमेट्रिक रूप से आइसोमोर्फिक कहलाते हैं। आइसोमेट्रिकली आइसोमोर्फिक मानकित सदिश समष्टि सभी व्यावहारिक उद्देश्यों के लिए समान हैं।
दो आदर्श सदिश समष्टियों के बीच की सममिति एक रेखीय मानचित्र <math>f</math> है जो आदर्श को संरक्षित करता है (अर्थ <math>\|f(\mathbf{v})\| = \|\mathbf{v}\|</math> सभी सदिश के लिए <math>\mathbf{v}</math>). आइसोमेट्री हमेशा निरंतर और [[इंजेक्शन]] वाली होती है। आदर्श सदिश समष्टियों के बीच एक [[विशेषण]] समरूपता <math>V</math> और <math>W</math> एक आइसोमेट्रिक आइसोमोर्फिज्म कहा जाता है, और <math>V</math> और <math>W</math> आइसोमेट्रिक रूप से आइसोमोर्फिक कहलाते हैं। आइसोमेट्रिकली आइसोमोर्फिक मानकित सदिश समष्टि सभी व्यावहारिक उद्देश्यों के लिए समान हैं।


मानकित सदिश समष्टि की बात करते समय, हम नॉर्म को ध्यान में रखने के लिए [[ दोहरी जगह ]] की धारणा को बढ़ाते हैं। द्वैत <math>V^{\prime}</math> एक नॉर्मड सदिश समष्टि का <math>V</math> से सभी निरंतर रैखिक मानचित्रों का स्थान है <math>V</math> आधार क्षेत्र के लिए (जटिल या वास्तविक) - ऐसे रैखिक मानचित्रों को कार्यात्मक कहा जाता है। एक कार्यात्मक का मानदंड <math>\varphi</math> की सर्वोच्चता के रूप में परिभाषित किया गया है <math>|\varphi(\mathbf{v})|</math> कहाँ <math>\mathbf{v}</math> सभी यूनिट सदिश (यानी, आदर्श के सदिश) पर पर्वतमाला <math>1</math>) में <math>V.</math> यह मुड़ता है <math>V^{\prime}</math> एक नॉर्मड सदिश समष्टि में। मानक सदिश स्थानों पर निरंतर रैखिक क्रियाओं के बारे में एक महत्वपूर्ण प्रमेय हैन-बनाक प्रमेय है।
मानकित सदिश समष्टि की बात करते समय, हम नॉर्म को ध्यान में रखने के लिए [[ दोहरी जगह ]] की धारणा को बढ़ाते हैं। द्वैत <math>V^{\prime}</math> एक नॉर्मड सदिश समष्टि का <math>V</math> से सभी निरंतर रैखिक मानचित्रों का स्थान है <math>V</math> आधार क्षेत्र के लिए (जटिल या वास्तविक) - ऐसे रैखिक मानचित्रों को कार्यात्मक कहा जाता है। एक कार्यात्मक का मानदंड <math>\varphi</math> की सर्वोच्चता के रूप में परिभाषित किया गया है <math>|\varphi(\mathbf{v})|</math> कहाँ <math>\mathbf{v}</math> सभी एकल सदिश (यानी, आदर्श के सदिश) पर पर्वतमाला <math>1</math>) में <math>V.</math> यह मुड़ता है <math>V^{\prime}</math> एक नॉर्मड सदिश समष्टि में। मानक सदिश स्थानों पर निरंतर रैखिक क्रियाओं के बारे में एक महत्वपूर्ण प्रमेय हैन-बनाक प्रमेय है।


== सेमिनोर्म्ड समष्टि के कोयंट समष्टि के रूप में मानकित समष्टि ==
== सेमिनोर्म्ड समष्टि के कोयंट समष्टि के रूप में मानकित समष्टि ==


कई आदर्श स्थानों की परिभाषा (विशेष रूप से, बनच रिक्त स्थान) में एक सदिश स्थान पर परिभाषित एक सेमिनोर्म शामिल होता है और फिर आदर्श स्थान को सेमिनोर्म शून्य के तत्वों के उप-स्थान द्वारा कोटिएंट समष्टि (रैखिक बीजगणित) के रूप में परिभाषित किया जाता है। उदाहरण के लिए, एलपी समष्टि | के साथ<math>L^p</math> रिक्त स्थान, द्वारा परिभाषित प्रकार्य
कई आदर्श स्थानों की परिभाषा (विशेष रूप से, बनच रिक्त स्थान) में एक सदिश स्थान पर परिभाषित एक सेमिनोर्म शामिल होता है और फिर आदर्श स्थान को सेमिनोर्म शून्य के तत्वों के उप-स्थान द्वारा कोटिएंट समष्टि (रैखिक बीजगणित) के रूप में परिभाषित किया जाता है। उदाहरण के लिए, LP समष्टि | के साथ <math>L^p</math> रिक्त स्थान, द्वारा परिभाषित प्रकार्य
<math display=block>\|f\|_p = \left( \int |f(x)|^p \;dx \right)^{1/p}</math>
<math display=block>\|f\|_p = \left( \int |f(x)|^p \;dx \right)^{1/p}</math>
सभी कार्यों के सदिश स्थान पर एक सेमिनोर्म है जिस पर दाहिने हाथ की ओर [[लेबेस्ग इंटीग्रल]] परिभाषित और परिमित है। हालांकि, [[लेबेस्ग उपाय]] शून्य के समुच्चय पर किसी भी प्रकार्य [[समर्थन (गणित)]] के लिए सेमिनोर्म शून्य के बराबर है। ये फलन एक उपसमष्टि बनाते हैं जिसे हम भागफल देते हैं, जिससे वे शून्य फलन के तुल्य बन जाते हैं।
सभी कार्यों के सदिश स्थान पर एक सेमिनोर्म है जिस पर दाहिने हाथ की ओर [[लेबेस्ग इंटीग्रल|लेबेस्ग पूर्णांकी]] परिभाषित और परिमित है। हालांकि, [[लेबेस्ग उपाय]] शून्य के समुच्चय पर किसी भी प्रकार्य [[समर्थन (गणित)]] के लिए सेमिनोर्म शून्य के बराबर है। ये फलन एक उपसमष्टि बनाते हैं जिसे हम भागफल देते हैं, जिससे वे शून्य फलन के तुल्य बन जाते हैं।


== परिमित उत्पाद स्थान ==
== परिमित उत्पाद स्थान ==
Line 103: Line 103:
एक नया कार्य परिभाषित करें <math>q : X \to \R</math> द्वारा
एक नया कार्य परिभाषित करें <math>q : X \to \R</math> द्वारा
<math display=block>q\left(x_1,\ldots,x_n\right) := \sum_{i=1}^n q_i\left(x_i\right),</math>
<math display=block>q\left(x_1,\ldots,x_n\right) := \sum_{i=1}^n q_i\left(x_i\right),</math>
जो कि सेमीनार है <math>X.</math> कार्यक्रम <math>q</math> एक आदर्श है अगर और केवल अगर सभी <math>q_i</math> मानदंड हैं।
जो कि <math>X.</math>सेमीनार है, कार्यक्रम <math>q</math> आदर्श है यदि और केवल यदि सभी <math>q_i</math> मानदंड हैं।


अधिक सामान्यतः, प्रत्येक वास्तविक के लिए <math>p \geq 1</math> वो नक्शा <math>q : X \to \R</math> द्वारा परिभाषित
अधिक सामान्यतः, प्रत्येक वास्तविक के लिए <math>p \geq 1</math> वो मानचित्र <math>q : X \to \R</math> द्वारा परिभाषित
<math display=block>q\left(x_1,\ldots,x_n\right) := \left(\sum_{i=1}^n q_i\left(x_i\right)^p\right)^{\frac{1}{p}}</math>
<math display=block>q\left(x_1,\ldots,x_n\right) := \left(\sum_{i=1}^n q_i\left(x_i\right)^p\right)^{\frac{1}{p}}</math>
एक अर्ध मानक है।
एक अर्ध मानक है।
प्रत्येक के लिए <math>p</math> यह समान सांस्थितिक समष्टि को परिभाषित करता है।


प्राथमिक रेखीय बीजगणित से जुड़े एक सीधे-सादे तर्क से पता चलता है कि केवल परिमित-आयामी सेमिनोर्म्ड रिक्त स्थान वे हैं जो एक आदर्श स्थान के उत्पाद स्थान के रूप में उत्पन्न होते हैं और तुच्छ सेमीनॉर्म के साथ एक स्थान है। नतीजतन, कई अधिक दिलचस्प उदाहरण और सेमिनोर्म्ड रिक्त स्थान के अनुप्रयोग अनंत-आयामी सदिश रिक्त स्थान के लिए होते हैं।
प्रत्येक <math>p</math> के लिए यह समान सांस्थितिक समष्टि को परिभाषित करता है।
 
प्राथमिक रेखीय बीजगणित से जुड़े एक सीधे-सादे तर्क से पता चलता है कि केवल परिमित-आयामी सेमिनोर्म्ड रिक्त स्थान वे हैं जो एक आदर्श स्थान के उत्पाद स्थान के रूप में उत्पन्न होते हैं और तुच्छ सेमीनॉर्म के साथ एक स्थान है। नतीजतन, कई अधिक रोचक उदाहरण और सेमिनोर्म्ड रिक्त स्थान के अनुप्रयोग अनंत-आयामी सदिश रिक्त स्थान के लिए होते हैं।


== यह भी देखें ==
== यह भी देखें ==


* बैनाच समष्टि, मानकित सदिश समष्टि जो मानदंड से प्रेरित मीट्रिक के संबंध में पूर्ण हैं
* बैनाच समष्टि, मानकित सदिश समष्टि जो मानदंड से प्रेरित मीट्रिक के संबंध में पूर्ण हैं।
* {{annotated link|Banach–Mazur compactum}}
* {{annotated link|बनच-मजूर कॉम्पेक्टम}}- सघन मीट्रिक स्थान में बने नॉर्म्ड स्पेस के n-विमीय उपसमष्‍टि का सम्मुच्चय।
* [[फिन्सलर कई गुना]], जहां प्रत्येक स्पर्शरेखा सदिश की लंबाई एक मानक द्वारा निर्धारित की जाती है
* [[फिन्सलर कई गुना]], जहां प्रत्येक स्पर्शरेखा सदिश की लंबाई एक मानक द्वारा निर्धारित की जाती है।
* [[ अंदरूनी प्रोडक्ट ]] समष्टि, मानकित सदिश समष्टि जहां एक आंतरिक उत्पाद द्वारा मानदंड दिया जाता है
* [[ अंदरूनी प्रोडक्ट ]] समष्टि, मानकित सदिश समष्टि जहां एक आंतरिक उत्पाद द्वारा मानदंड दिया जाता है।
* {{annotated link|Kolmogorov's normability criterion}}
* {{annotated link|कोलमोगोरोव की सामान्यता मानदंड}}
* स्थानीय रूप से उत्तल सांस्थितिक सदिश समष्टि - उत्तल ओपन समुच्चय द्वारा परिभाषित सांस्थिति के साथ एक सदिश समष्टि
* स्थानीय रूप से उत्तल सांस्थितिक सदिश समष्टि - उत्तल ओपन समुच्चय द्वारा परिभाषित सांस्थिति के साथ एक सदिश समष्टि।
* [[अंतरिक्ष (गणित)]] - कुछ अतिरिक्त संरचना के साथ गणितीय समुच्चय
* [[अंतरिक्ष (गणित)]] - कुछ अतिरिक्त संरचना के साथ गणितीय समुच्चय।
* {{annotated link|Topological vector space}}
* {{annotated link|सांस्थितिक सदिश समष्टि}}


==संदर्भ==
==संदर्भ==
Line 141: Line 142:


* {{Commons category-inline|Normed spaces}}
* {{Commons category-inline|Normed spaces}}
{{Banach spaces}}
{{Functional Analysis}}
{{TopologicalVectorSpaces}}


{{DEFAULTSORT:Normed Vector Space}}
{{DEFAULTSORT:Normed Vector Space}}
[[Category: बनच स्पेस | बनच स्पेस ]] [[Category: नॉर्म्ड स्पेस| नॉर्म्ड स्पेस]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Normed Vector Space]]
[[Category:Created On 01/03/2023]]
[[Category:CS1 français-language sources (fr)|Normed Vector Space]]
[[Category:Created On 01/03/2023|Normed Vector Space]]
[[Category:Lua-based templates|Normed Vector Space]]
[[Category:Machine Translated Page|Normed Vector Space]]
[[Category:Pages with script errors|Normed Vector Space]]
[[Category:Short description with empty Wikidata description|Normed Vector Space]]
[[Category:Templates Vigyan Ready|Normed Vector Space]]
[[Category:Templates that add a tracking category|Normed Vector Space]]
[[Category:Templates that generate short descriptions|Normed Vector Space]]
[[Category:Templates using TemplateData|Normed Vector Space]]
[[Category:नॉर्म्ड स्पेस| नॉर्म्ड स्पेस]]
[[Category:बनच स्पेस| बनच स्पेस ]]

Latest revision as of 10:34, 10 March 2023

गणितीय रिक्त स्थान का पदानुक्रम। मानकित सदिश समष्टि आंतरिक उत्पाद समष्टि का अधिसमुच्चय है और मीट्रिक रिक्त स्थान का एक उपसमुच्चय, जो बदले में सांस्थितिकीय रिक्त स्थान का एक उपसमुच्चय है।

गणित में, एक मानक सदिश स्थान या आदर्श स्थान वास्तविक संख्या या जटिल संख्या संख्याओं पर एक सदिश स्थान होता है, जिस पर मानक (गणित) परिभाषित किया जाता है।[1] मानक वास्तविक (भौतिक) दुनिया में लंबाई की सहज धारणा के वास्तविक सदिश रिक्त स्थान के लिए औपचारिकता और सामान्यीकरण है। मानदंड एक वास्तविक-मूल्यवान कार्य है जो सदिश स्थान पर परिभाषित होता है जिसे सामान्यतः निरूपित किया जाता है और इसके निम्नलिखित गुण हैं:[2]

  1. यह नकारात्मक नहीं है, इसका मतलब प्रत्येक सदिश के लिए है
  2. यह शून्येतर सदिशों पर धनात्मक है, अर्थात,
  3. हर सदिश और हर अदिश के लिए
  4. त्रिभुज असमानता रखती है; यानी हर सदिश और के लिए

मानदंड एक मीट्रिक (गणित) को प्रेरित करता है, जिसे निम्न सूत्र द्वारा इसका (मानदंड) प्रेरित मात्रिक कहा जाता है,

जो किसी भी मानकित सदिश समष्टि को मेट्रिक समष्टि और सांस्थितिक सदिश समष्टि बनाता है। यदि यह मेट्रिक समष्टि पूर्ण मीट्रिक स्थान है तो मानकित समष्टि एक बनच समष्टि है। प्रत्येक मानक सदिश स्थान को विशिष्ट रूप से बनच स्थान तक विस्तारित किया जा सकता है, जो आदर्श स्थान को बनच स्थान से घनिष्ठ रूप से संबंधित बनाता है। प्रत्येक बनच स्थान एक आदर्श स्थान है लेकिन इसका विलोम सत्य नहीं है। उदाहरण के लिए, वास्तविक संख्याओं के परिमित अनुक्रमों के समुच्चय को यूक्लिडियन मानदंड के साथ आदर्श बनाया जा सकता है, लेकिन यह इस मानदंड के लिए पूर्ण नहीं है।

एक आंतरिक उत्पाद स्थान एक मानक सदिश स्थान है जिसका मानदंड एक सदिश और स्वयं के आंतरिक उत्पाद का वर्गमूल है। यूक्लिडियन सदिश स्थान की यूक्लिडियन मानदंड एक विशेष स्तिथि है जो सूत्र द्वारा यूक्लिडियन दूरी को परिभाषित करने की अनुमति देती है

नॉर्मड समष्टि और बनच समष्टि का अध्ययन कार्यात्मक विश्लेषण का एक मूलभूत हिस्सा है, जो गणित का एक प्रमुख उपक्षेत्र है।

परिभाषा

एक मानकित सदिश समष्टि एक मानदंड (गणित) से लैस एक सदिश समष्टि है। सेमीनॉर्मड सदिश समष्टि एक सदिश स्थान है जो एक सेमिनोर्म से सुसज्जित है।

एक उपयोगी त्रिभुज असमानता त्रिकोण असमानता निम्न है

किसी भी सदिश और के लिए इससे यह भी पता चलता है कि सदिश मानदंड एक (समान रूप से) निरंतर कार्य है।

विशेषता 3 अदिश के क्षेत्र में मानदंड की पसंद पर निर्भर करती है। जब अदिश क्षेत्र (या अधिक सामान्यतः इसका एक सबसमुच्चय ) है, इसे सामान्यतः सामान्य पूर्ण मान के रूप में लिया जाता है, लेकिन अन्य विकल्प संभव हैं। उदाहरण के लिए, एक सदिश स्थान के लिए को -एडिक निरपेक्ष मूल्य लिया जा सकता है |

सामयिक संरचना

यदि एक आदर्श सदिश स्थान है, आदर्श एक मीट्रिक (गणित) (दूरी की एक धारणा) और इसलिए एक सांस्थिति को प्रेरित करता है इस मीट्रिक को प्राकृतिक तरीके से परिभाषित किया गया है: दो सदिशों के बीच की दूरी और द्वारा दिया गया है यह सांस्थिति सबसे दुर्बल सांस्थिति है जो को निरंतर बनाती है और जो की रैखिक संरचना के अनुकूल निम्नलिखित अर्थ में है  :

  1. सदिश जोड़ इस सांस्थिति के संबंध में संयुक्त रूप से निरंतर है। यह त्रिभुज असमानता से सीधे अनुसरण करता है।
  2. अदिश गुणन जहाँ का अंतर्निहित अदिश क्षेत्र संयुक्त रूप से निरंतर है। यह त्रिभुज असमानता और आदर्श की एकरूपता से अनुसरण करता है।

इसी प्रकार, किसी भी सेमिनोर्म्ड सदिश समष्टि के लिए हम दो सदिशों और के बीच की दूरी को द्वारा परिभाषित कर सकते हैं, जैसा यह सेमीनॉर्मड समष्टि को एक स्यूडोमेट्रिक समष्टि में बदल देता है (ध्यान दें कि यह मीट्रिक से दुर्बल है) और निरंतर प्रकार्य (सांस्थिति) और प्रकार्य की सीमा जैसे विचारों की परिभाषा की अनुमति देता है।

इसे और अधिक सारगर्भित रूप से रखने के लिए प्रत्येक सेमीनॉर्मड सदिश समष्टि एक सांस्थितिक सदिश समष्टि है और इस प्रकार एक सांस्थितिक संरचना होती है जो अर्ध-नॉर्म से प्रेरित होती है।

विशेष रुचि पूर्ण स्थान मानक स्थान हैं, जिन्हें बनच समष्टि रूप में जाना जाता है।

हर मानकित सदिश समष्टि कुछ बनच अंतरिक्ष के अंदर घने उप-स्थान के रूप में बैठता है; यह बनच स्थान अनिवार्य विशिष्ट रूप से परिभाषित है और का समापन कहा जाता है

एक ही सदिश समष्टि पर दो मानदंड यदि वे समान सांस्थिति (संरचना) को परिभाषित करते हैं तो वे समतुल्य कहलाते हैं। एक परिमित-आयामी सदिश अंतरिक्ष पर, सभी मानदंड समान हैं लेकिन अनंत आयामी सदिश रिक्त स्थान के लिए यह सत्य नहीं है।

परिमित-आयामी सदिश स्थान पर सभी मानदंड एक सांस्थितिक दृष्टिकोण से समतुल्य हैं क्योंकि वे समान सांस्थिति को प्रेरित करते हैं (हालांकि परिणामी मीट्रिक रिक्त स्थान समान होने की आवश्यकता नहीं है)।[3] और चूंकि कोई भी यूक्लिडियन स्थान पूर्ण है, इसलिए हम यह निष्कर्ष निकाल सकते हैं कि सभी परिमित-आयामी आदर्श सदिश स्थान बनच स्थान हैं। एक नॉर्मड सदिश समष्टि स्थानीय रूप से सघन है यदि और केवल यदि एकल गोलक सघन जगह है, जो कि यदि और केवल यदि स्तिथि परिमित आयामी है; यह रिज्ज़ की लेम्मा का परिणाम है। (वस्तुत:, एक अधिक सामान्य परिणाम सत्य है: एक सांस्थितिक सदिश समष्टि स्थानीय रूप से सघन है यदि और केवल यदि यह परिमित-आयामी है। यहां बिंदु यह है कि हम यह नहीं मानते हैं कि सांस्थिति एक मानक से आती है।)

सेमीनॉर्मड सदिश समष्टि की सांस्थिति में कई अच्छे गुण हैं। एक प्रतिवेश प्रणाली को देखते हुए 0 के आस-पास हम अन्य सभी प्रतिवेश प्रणाली का निर्माण कर सकते हैं

साथ
इसके अतिरिक्त, अवशोषक समुच्चय और उत्तल समुच्चय की उत्पत्ति के लिए प्रतिवैस आधार उपस्थित है। चूंकि यह संपत्ति कार्यात्मक विश्लेषण में बहुत उपयोगी है, इस संपत्ति के साथ आदर्श सदिश रिक्त स्थान के सामान्यीकरण का अध्ययन स्थानीय रूप से उत्तल रिक्त स्थान के नाम से किया जाता है।

एक आदर्श (या सेमिनोर्म) एक सांस्थितिक सदिश समष्टि पर निरंतर है यदि और केवल यदि सांस्थिति जो पर प्रवृत्त करता है की तुलना में स्थूलतर (अर्थ, ) है, जो तब होता है जब कुछ खुली गेंद में उपस्थित होती है (जैसे शायद उदाहरण के लिए) जो में खुला है (अलग कहा, ऐसा है कि ).

सामान्य स्थान

एक सांस्थितिक सदिश समष्टि मानक पर उपस्थित होने पर सामान्य कहा जाता है। इस तरह कि विहित मीट्रिक सांस्थिति को पर प्रेरित करता है।

निम्नलिखित प्रमेय एंड्री कोलमोगोरोव के कारण है:[4]

कोल्मोगोरोव की सामान्यता मानदण्ड: हॉउसडॉर्फ सांस्थितिक सदिश समष्टि सामान्य है यदि और केवल यदि कोई उत्तल उपस्थित है, का वॉन न्यूमैन बाउंडेड घिरा हुआ प्रतिवैस

सामान्य स्थानों के एक परिवार का एक उत्पाद सामान्य है यदि और केवल यदि बहुत से रिक्त स्थान गैर-तुच्छ (अर्थात, ) हैं।[4] इसके अतिरिक्त, एक सामान्य स्थान का भागफल एक बंद सदिश उप-स्थान द्वारा सामान्य है, और यदि इसके अतिरिक्त की सांस्थिति एक मानक द्वारा दी गई है फिर मानचित्र द्वारा दिए गए पर एक अच्छी तरह से परिभाषित मानदंड है जो भागफल सांस्थिति को प्रेरित करता है [5]

यदि एक हॉसडॉर्फ स्थानीय रूप से उत्तल सांस्थितिक सदिश समष्टि सांस्थितिक सदिश समष्टि है तो निम्नलिखित समतुल्य हैं:

  1. सामान्य है।
  2. मूल का एक परिबद्ध प्रतिवैस है।
  3. मजबूत दोहरी जगह का सामान्य है।[6]
  4. मजबूत दोहरी जगह का मेट्रिजेबल सांस्थितिक सदिश समष्टि है।[6]

आगे, परिमित आयामी है यदि और केवल यदि सामान्य है (यहाँ अर्थ है दुर्बल- * सांस्थिति से संपन्न)।

सांस्थिति फ्रेचेट अंतरिक्ष की जैसा कि परीक्षण कार्यों और वितरणों के रिक्त स्थान पर आलेख में परिभाषित किया गया है, मानदंडों के एक गणनीय परिवार द्वारा परिभाषित किया गया है लेकिन यह है not एक सामान्य स्थान क्योंकि कोई मानदंड उपस्थित नहीं है पर ऐसा है कि यह मानदंड प्रेरित करने वाली सांस्थिति के बराबर है यहां तक ​​​​कि यदि एक मेट्रिजेबल सांस्थितिक सदिश समष्टि में एक सांस्थिति है जो मानदंडों के एक परिवार द्वारा परिभाषित की जाती है, तो यह अभी भी आदर्श स्थान होने में विफल हो सकता है (जिसका अर्थ है कि इसकी सांस्थिति को किसी भी तरह से परिभाषित नहीं किया जा सकता है। एकल मानदंड)।

ऐसी जगह का एक उदाहरण फ्रेचेट समष्टि है जिसकी परिभाषा लेख में परीक्षण कार्यों और वितरण के स्थान पर पाई जा सकती है, क्योंकि इसकी सांस्थिति मानदंडों के एक गणनीय परिवार द्वारा परिभाषित किया गया है लेकिन यह है not एक सामान्य स्थान क्योंकि कोई मानदंड उपस्थित नहीं है पर ऐसा है कि यह मानदंड प्रेरित करने वाली सांस्थिति के बराबर है वस्तुत:, स्थानीय रूप से उत्तल सांस्थितिक सदिश समष्टि की सांस्थिति के परिवार द्वारा परिभाषित किया जा सकता है मानक पर यदि और केवल यदि उपस्थित है कम से कम एक निरंतर मानदंड [7]

रेखीय मानचित्र और दोहरे स्थान

दो मानक सदिश स्थानों के बीच सबसे महत्वपूर्ण मानचित्र सतत कार्य (सांस्थिति) रैखिक परिवर्तन हैं। इन मानचित्रों के साथ, मानक सदिश स्थान एक श्रेणी सिद्धांत बनाते हैं।

मानदंड अपने सदिश स्थान पर एक सतत कार्य है। परिमित आयामी सदिश स्थानों के बीच सभी रेखीय मानचित्र भी निरंतर होते हैं।

दो आदर्श सदिश समष्टियों के बीच की सममिति एक रेखीय मानचित्र है जो आदर्श को संरक्षित करता है (अर्थ सभी सदिश के लिए ). आइसोमेट्री हमेशा निरंतर और इंजेक्शन वाली होती है। आदर्श सदिश समष्टियों के बीच एक विशेषण समरूपता और एक आइसोमेट्रिक आइसोमोर्फिज्म कहा जाता है, और और आइसोमेट्रिक रूप से आइसोमोर्फिक कहलाते हैं। आइसोमेट्रिकली आइसोमोर्फिक मानकित सदिश समष्टि सभी व्यावहारिक उद्देश्यों के लिए समान हैं।

मानकित सदिश समष्टि की बात करते समय, हम नॉर्म को ध्यान में रखने के लिए दोहरी जगह की धारणा को बढ़ाते हैं। द्वैत एक नॉर्मड सदिश समष्टि का से सभी निरंतर रैखिक मानचित्रों का स्थान है आधार क्षेत्र के लिए (जटिल या वास्तविक) - ऐसे रैखिक मानचित्रों को कार्यात्मक कहा जाता है। एक कार्यात्मक का मानदंड की सर्वोच्चता के रूप में परिभाषित किया गया है कहाँ सभी एकल सदिश (यानी, आदर्श के सदिश) पर पर्वतमाला ) में यह मुड़ता है एक नॉर्मड सदिश समष्टि में। मानक सदिश स्थानों पर निरंतर रैखिक क्रियाओं के बारे में एक महत्वपूर्ण प्रमेय हैन-बनाक प्रमेय है।

सेमिनोर्म्ड समष्टि के कोयंट समष्टि के रूप में मानकित समष्टि

कई आदर्श स्थानों की परिभाषा (विशेष रूप से, बनच रिक्त स्थान) में एक सदिश स्थान पर परिभाषित एक सेमिनोर्म शामिल होता है और फिर आदर्श स्थान को सेमिनोर्म शून्य के तत्वों के उप-स्थान द्वारा कोटिएंट समष्टि (रैखिक बीजगणित) के रूप में परिभाषित किया जाता है। उदाहरण के लिए, LP समष्टि | के साथ रिक्त स्थान, द्वारा परिभाषित प्रकार्य

सभी कार्यों के सदिश स्थान पर एक सेमिनोर्म है जिस पर दाहिने हाथ की ओर लेबेस्ग पूर्णांकी परिभाषित और परिमित है। हालांकि, लेबेस्ग उपाय शून्य के समुच्चय पर किसी भी प्रकार्य समर्थन (गणित) के लिए सेमिनोर्म शून्य के बराबर है। ये फलन एक उपसमष्टि बनाते हैं जिसे हम भागफल देते हैं, जिससे वे शून्य फलन के तुल्य बन जाते हैं।

परिमित उत्पाद स्थान

दिया गया अर्धवृत्ताकार स्थान सेमिनोर्म्स के साथ द्वारा उत्पाद स्थान को निरूपित करें

जहां सदिश जोड़ के रूप में परिभाषित किया गया है
और अदिश गुणन के रूप में परिभाषित किया गया है
एक नया कार्य परिभाषित करें द्वारा
जो कि सेमीनार है, कार्यक्रम आदर्श है यदि और केवल यदि सभी मानदंड हैं।

अधिक सामान्यतः, प्रत्येक वास्तविक के लिए वो मानचित्र द्वारा परिभाषित

एक अर्ध मानक है।

प्रत्येक के लिए यह समान सांस्थितिक समष्टि को परिभाषित करता है।

प्राथमिक रेखीय बीजगणित से जुड़े एक सीधे-सादे तर्क से पता चलता है कि केवल परिमित-आयामी सेमिनोर्म्ड रिक्त स्थान वे हैं जो एक आदर्श स्थान के उत्पाद स्थान के रूप में उत्पन्न होते हैं और तुच्छ सेमीनॉर्म के साथ एक स्थान है। नतीजतन, कई अधिक रोचक उदाहरण और सेमिनोर्म्ड रिक्त स्थान के अनुप्रयोग अनंत-आयामी सदिश रिक्त स्थान के लिए होते हैं।

यह भी देखें

संदर्भ

  1. Callier, Frank M. (1991). रैखिक प्रणाली सिद्धांत. New York: Springer-Verlag. ISBN 0-387-97573-X.
  2. Rudin 1991, pp. 3–4.
  3. Kedlaya, Kiran S. (2010), p-adic differential equations, Cambridge Studies in Advanced Mathematics, vol. 125, Cambridge University Press, CiteSeerX 10.1.1.165.270, ISBN 978-0-521-76879-5, Theorem 1.3.6
  4. 4.0 4.1 Schaefer 1999, p. 41.
  5. Schaefer 1999, p. 42.
  6. 6.0 6.1 Trèves 2006, pp. 136–149, 195–201, 240–252, 335–390, 420–433.
  7. Jarchow 1981, p. 130.


ग्रन्थसूची


बाहरी संबंध