आदर्श वर्ग समूह: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|In number theory, measure of non-unique factorization}} {{more citations needed|date=February 2010}} संख्या सिद्धांत मे...")
 
No edit summary
 
(10 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|In number theory, measure of non-unique factorization}}
{{Short description|In number theory, measure of non-unique factorization}}
{{more citations needed|date=February 2010}}
संख्या सिद्धांत में, एक बीजगणितीय संख्या क्षेत्र K का आदर्श वर्ग समूह (या वर्ग समूह) भागफल समूह ''J<sub>K</sub>''/''P<sub>K</sub>'' है जहाँ ''J<sub>K</sub>'' पूर्णांक K और ''P<sub>K</sub>'' के भागफल आदर्शों का समूह है जो इसके प्रमुख आदर्शों का उपसमूह है। वर्ग समूह उस सीमा का माप है जिस तक पूर्णांकों के वलय में अद्वितीय गुणनखंड विफल हो जाता है। एक समूह का क्रम जो परिमित है, K का वर्ग संख्या कहलाता है।
[[संख्या सिद्धांत]] में, एक [[बीजगणितीय संख्या क्षेत्र]] का आदर्श वर्ग समूह (या वर्ग समूह)। {{math|''K''}} भागफल समूह है {{math|''J<sub>K</sub>''/''P<sub>K</sub>''}} कहाँ {{math|''J<sub>K</sub>''}} के पूर्णांकों के वलय के भिन्नात्मक आदर्शों का समूह है {{math|''K''}}, और {{math|''P<sub>K</sub>''}} इसके [[प्रमुख आदर्श]]ों का उपसमूह है। वर्ग समूह इस बात का माप है कि पूर्णांकों के वलय में अद्वितीय गुणनखंडन किस सीमा तक विफल रहता है {{math|''K''}}. समूह का क्रम (समूह सिद्धांत), जो परिमित है, की वर्ग संख्या कहलाती है {{math|''K''}}.


यह सिद्धांत [[डेडेकिंड डोमेन]] और उनके अंशों के क्षेत्र तक फैला हुआ है, जिसके लिए गुणात्मक गुण वर्ग समूह की संरचना से घनिष्ठ रूप से बंधे हैं। उदाहरण के लिए, डेडेकाइंड डोमेन का वर्ग समूह तुच्छ है अगर और केवल अगर रिंग एक [[अद्वितीय गुणनखंड डोमेन]] है।
इस सिद्धांत को [[डेडेकिंड डोमेन|डेडेकिंड कार्यों]] और उनके अंशों के क्षेत्र में विस्तारित किया गया है, जिसके लिए गुणात्मक गुण वर्ग समूह की संरचना से परिचित हैं। उदाहरण के लिए, डेडेकाइंड कार्यक्षेत्र का वर्ग समूह नगण्य है और केवल वलय एक [[अद्वितीय गुणनखंड डोमेन|अद्वितीय गुणनखंड क्षेत्र]] है।


== आदर्श वर्ग समूह का इतिहास और उत्पत्ति ==
== आदर्श वर्ग समूह का इतिहास और उत्पत्ति ==


एक आदर्श (रिंग थ्योरी) के विचार से कुछ समय पहले आदर्श वर्ग समूह (या, बल्कि, प्रभावी रूप से आदर्श वर्ग समूह क्या थे) का अध्ययन किया गया था। ये समूह [[द्विघात रूप]]ों के सिद्धांत में दिखाई दिए: द्विआधारी अभिन्न द्विघात रूपों के मामले में, जैसा कि [[कार्ल फ्रेडरिक गॉस]] द्वारा अंतिम रूप में रखा गया था, एक रचना कानून को रूपों के कुछ समतुल्य वर्गों पर परिभाषित किया गया था। इसने एक परिमित [[एबेलियन समूह]] दिया, जैसा कि उस समय पहचाना गया था।
एक आदर्श (वृत्त परिकल्पना) के विचार से कुछ समय पहले प्रभावी रूप से आदर्श वर्ग समूह का अध्ययन किया गया था। ये समूह [[द्विघात रूप|द्विघात]] रूपों के सिद्धांत में दिखाई दिए: जैसा कि द्विआधारी अभिन्न द्विघात रूपों के स्थिति में [[कार्ल फ्रेडरिक गॉस]] द्वारा अंतिम रूप में रखा गया था और एक रचना कानून के रूपों के कुछ समतुल्य वर्गों पर परिभाषित किया गया था। इसने परिमित गणित में एक क्रमविनिमेय समूह दिया, जिसे उस समय मान्यता दी गई थी।


बाद में [[गंभीर दु:ख]] [[साइक्लोटोमिक क्षेत्र]]ों के सिद्धांत की दिशा में काम कर रहे थे। यह महसूस किया गया था (शायद कई लोगों द्वारा) कि फ़र्मेट के अंतिम प्रमेय के सामान्य मामले में एकता की जड़ों का उपयोग करके गुणनखंडन द्वारा पूर्ण प्रमाणों को पूरा करने में विफलता एक बहुत अच्छे कारण के लिए थी: अद्वितीय गुणनखंडन की विफलता, अर्थात, [[अंकगणित का मौलिक प्रमेय]] एकता की उन जड़ों द्वारा उत्पन्न रिंग (गणित) में धारण करना एक बड़ी बाधा थी। कुमेर के कार्य में पहली बार गुणनखंडन में बाधा का अध्ययन आया। अब हम इसे आदर्श वर्ग समूह के हिस्से के रूप में पहचानते हैं: वास्तव में कुमेर ने उस समूह में एकता के पी-मूलों के क्षेत्र के लिए पी-टॉर्शन उपसमूह को अलग कर दिया था, किसी भी अभाज्य संख्या पी के लिए, मानक की विफलता के कारण के रूप में फ़र्मेट समस्या पर हमले की विधि (नियमित प्राइम देखें)।
बाद में अर्न्स्ट कुमेर चक्रवाती क्षेत्रों के सिद्धांत की दिशा में काम कर रहे थे। यह सिद्ध किया गया था (सम्भवतः कई लोगों द्वारा) कि फ़र्मा के अंतिम प्रमेय के सामान्य रूपों में एकता के मूलों का उपयोग करके गुणनखंडन द्वारा पूर्ण प्रमाणों को पूरा करने में विफलता एक बहुत अच्छे कारण के लिए थी: अद्वितीय गुणनखंडन की विफलता, अर्थात, [[अंकगणित का मौलिक प्रमेय]] एकता की उन मूलों द्वारा उत्पन्न वलय(गणित) में धारण करना एक प्रमुख अवरोध था। कुमेर के कार्य में पहली बार गुणनखंडन में अवरोध का अध्ययन आया। अब हम इसे आदर्श वर्ग समूह के भाग के रूप में पहचानते हैं: वास्तव में कुमेर ने उस समूह में एकता के p-मूलों के क्षेत्र के लिए, किसी भी अभाज्य संख्या p के लिए,फ़र्मा प्रश्न पर मानक पद्धति की विफलता के कारण p- आघूर्ण बल को अलग कर दिया था।


कुछ समय बाद फिर से [[रिचर्ड डेडेकिंड]] ने आइडियल (रिंग थ्योरी) की अवधारणा तैयार की, कुमेर ने एक अलग तरीके से काम किया। इस बिंदु पर मौजूदा उदाहरणों को एकीकृत किया जा सकता है। यह दिखाया गया था कि जबकि [[बीजगणितीय पूर्णांक]]ों के छल्लों में हमेशा अभाज्यों में अद्वितीय गुणनखंडन नहीं होता है (क्योंकि उन्हें [[प्रमुख आदर्श डोमेन]] होने की आवश्यकता नहीं है), उनके पास यह गुण होता है कि प्रत्येक उचित आदर्श [[प्रधान आदर्श]]ों के उत्पाद के रूप में एक अद्वितीय गुणनखंडन को स्वीकार करता है (अर्थात , बीजगणितीय पूर्णांकों का प्रत्येक वलय एक Dedekind डोमेन है)। आदर्श वर्ग समूह के आकार को एक प्रमुख आदर्श डोमेन होने से रिंग के विचलन के लिए एक उपाय के रूप में माना जा सकता है; एक अंगूठी एक प्रमुख डोमेन है अगर और केवल अगर इसमें एक तुच्छ आदर्श वर्ग समूह है।
कुछ समय बाद फिर से [[रिचर्ड डेडेकिंड]] ने आदर्श की अवधारणा विकसित की और कुमेर ने एक अलग तरीके से काम किया। इस बिंदु पर स्थित उदाहरणों को एकीकृत किया जा सकता है। यह दिखाया गया था कि [[बीजगणितीय पूर्णांक|बीजगणितीय]] पूर्णांकों के वलय में हमेशा अभाज्यों में अद्वितीय गुणनखंडन नहीं होता है (क्योंकि उन्हें प्रमुख आदर्श क्षेत्र होने की आवश्यकता नहीं है), उनके पास यह गुण होता है कि प्रत्येक उचित आदर्श सिद्धांत आदर्शों के उत्पाद के रूप में एक अद्वितीय गुणनखंडन को स्वीकार करता है (अर्थात , बीजगणितीय पूर्णांकों का प्रत्येक वलय एक डेडेकिंड क्षेत्र है)। आदर्श वर्ग समूह के आकार को एक प्रमुख आदर्श क्षेत्र होने से वलय के विचलन के लिए एक उपाय के रूप में माना जा सकता है; एक वलय एक प्रमुख क्षेत्र है यदि इसमें केवल एक नगण्य आदर्श वर्ग समूह है।


== परिभाषा ==
== परिभाषा ==


यदि R एक [[अभिन्न डोमेन]] है, तो I ~ J द्वारा R के शून्येतर भिन्नात्मक आदर्शों पर एक [[संबंध (गणित)]] ~ परिभाषित करें जब भी R के शून्येतर तत्व a और b मौजूद हों, जैसे कि (a)I = (b)J. (यहाँ अंकन () का अर्थ आर के प्रमुख गुणक से है, जिसमें के सभी गुणक शामिल हैं।) यह आसानी से दिखाया गया है कि यह एक [[तुल्यता संबंध]] है। [[तुल्यता वर्ग]] को R का आदर्श वर्ग कहा जाता है।
जब भी R के शून्येतर अवयव a और b होते हैं जैसे कि (a)I = (b)J, तो R के शून्येतर भिन्नात्मक आदर्शों पर I ~J द्वारा एक संबंध ~ परिभाषित करें, यदि R एक पूर्णांकीय प्रांत है (यहाँ अंकन (a) का अर्थ R के प्रमुख गुणक से है, जिसमें a के सभी गुणक सम्मिलित हैं।) यह सरलता से दिखाया गया है कि यह एक [[तुल्यता संबंध]] है। एक[[तुल्यता वर्ग]] को R का एक आदर्श वर्ग कहा जाता है।
आदर्श वर्गों को गुणा किया जा सकता है: यदि [I] आदर्श I के तुल्यता वर्ग को दर्शाता है, तो गुणन [I] [J] = [IJ] अच्छी तरह से परिभाषित और क्रम[[विनिमेय]] है। प्रमुख गुण आदर्श वर्ग [R] बनाते हैं जो इस गुणन के लिए एक [[पहचान तत्व]] के रूप में कार्य करता है। इस प्रकार एक वर्ग [I] का व्युत्क्रम [J] होता है यदि और केवल यदि एक आदर्श J है जैसे कि IJ एक [[प्रमुख आदर्श]] है। सामान्य तौर पर, ऐसा J मौजूद नहीं हो सकता है और फलस्वरूप R के आदर्श वर्गों का सेट केवल एक [[मोनोइड]] हो सकता है।


हालाँकि, यदि R एक बीजगणितीय संख्या क्षेत्र में [[बीजगणितीय पूर्णांक]]ों का वलय है, या अधिक सामान्यतः एक डेडेकिंड डोमेन है, तो ऊपर परिभाषित गुणन भिन्नात्मक आदर्श वर्गों के सेट को एक एबेलियन समूह, R के 'आदर्श वर्ग समूह' में बदल देता है। समूह व्युत्क्रम तत्वों के अस्तित्व की संपत्ति इस तथ्य से आसानी से अनुसरण करती है कि, डेडेकिंड डोमेन में, प्रत्येक गैर-शून्य आदर्श (आर को छोड़कर) प्रमुख आदर्शों का एक उत्पाद है।
आदर्श वर्गों को गुणा किया जा सकता है: यदि [I] आदर्श I के तुल्यता वर्ग को दर्शाता है, तो गुणन [I] [J] = [IJ] अच्छी तरह से परिभाषित और क्रम[[विनिमेय]] है। प्रमुख गुण आदर्श वर्ग [R] बनाते हैं जो इस गुणन के लिए एक [[पहचान तत्व]] के रूप में कार्य करता है। यदि एक आदर्श J है जैसे कि IJ एक प्रमुख आदर्श है तो इस प्रकार एक वर्ग [I] का व्युत्क्रम [J] होता है। सामान्यता, J का अस्तित्व नहीं हो सकता है और फलस्वरूप R के आदर्श वर्गों का समूह केवल एक [[मोनोइड|एकाभ]] हो सकता है।


== गुण<!--'Class number (number theory)' redirects here-->==
हालाँकि, यदि R एक बीजगणितीय संख्या क्षेत्र में [[बीजगणितीय पूर्णांक|बीजगणितीय]] पूर्णांकों का वलय है, या  R का आदर्श वर्ग समूह अधिक सामान्यतः का एक डेडेकिंड क्षेत्र है, तो ऊपर परिभाषित गुणन भिन्नात्मक आदर्श वर्गों के समूह को एक गणित में विनिमेय समूह में बदल देता है। व्युत्क्रम तत्वों के अस्तित्व की समूह संपत्ति इस तथ्य से सरलता से अनुसरण करती है कि, डेडेकिंड कार्यक्षेत्र में, प्रत्येक शून्येतर आदर्श (R को छोड़कर) प्रमुख आदर्शों का एक उत्पाद है।
आदर्श वर्ग समूह तुच्छ है (अर्थात् केवल एक तत्व है) यदि और केवल यदि R के सभी आदर्श प्रमुख हैं। इस अर्थ में, आदर्श वर्ग समूह यह मापता है कि आर एक प्रमुख आदर्श डोमेन होने से कितना दूर है, और इसलिए अद्वितीय प्रधान गुणनखंड को संतुष्ट करने से (डेडेकिंड डोमेन अद्वितीय गुणनखंड डोमेन हैं यदि और केवल यदि वे प्रमुख आदर्श डोमेन हैं)


आदर्श वर्गों की संख्या ('{{vanchor|class number}}<!--boldface per WP:R#PLA--> R का) सामान्य रूप से अनंत हो सकता है। वास्तव में, प्रत्येक एबेलियन समूह कुछ डेडेकाइंड डोमेन के आदर्श वर्ग समूह के लिए समरूप है।<ref>{{harvnb|Claborn|1966}}</ref> लेकिन यदि R वास्तव में बीजगणितीय पूर्णांकों का एक वलय है, तो वर्ग संख्या हमेशा परिमित होती है। यह शास्त्रीय बीजगणितीय संख्या सिद्धांत के मुख्य परिणामों में से एक है।
== गुण==
एक आदर्श वर्ग समूह नगण्य है (अर्थात् केवल एक तत्व है) यदि और केवल R के सभी आदर्श प्रमुख हैं। इस अर्थ में, आदर्श वर्ग समूह यह मापता है कि R एक प्रमुख आदर्श क्षेत्र होने से कितना दूर है और इसलिए अद्वितीय सिद्धांत गुणनखंड को संतुष्ट करने से (डेडेकिंड कार्यक्षेत्र अद्वितीय गुणनखंड क्षेत्र हैं, यदि केवल वे प्रमुख आदर्श क्षेत्र हैं)।


वर्ग समूह की गणना सामान्य तौर पर कठिन है; यह एक बीजगणितीय संख्या क्षेत्र के छोटे विवेचक के बीजगणितीय संख्या क्षेत्र में पूर्णांकों के वलय के लिए हाथ से किया जा सकता है, मिन्कोव्स्की की सीमा का उपयोग करके। यह परिणाम रिंग के आधार पर एक बाउंड देता है, जैसे कि प्रत्येक आदर्श वर्ग में बाउंड से कम एक [[आदर्श मानदंड]] होता है। सामान्य तौर पर बाउंड इतना तेज नहीं है कि बड़े डिस्क्रिमिनेंट वाले क्षेत्रों के लिए गणना को व्यावहारिक बनाया जा सके, लेकिन कंप्यूटर इस कार्य के लिए उपयुक्त हैं।
आदर्श वर्गों की संख्या (R की वर्ग संख्या) सामान्य रूप से अनंत हो सकती है। वास्तव में,  गणित में प्रत्येक क्रमविनिमेय समूह किसी डेडेकाइंड कार्यक्षेत्र के आदर्श वर्ग समूह का समरूप है।<ref>{{harvnb|Claborn|1966}}</ref> लेकिन यदि R वास्तव में बीजगणितीय पूर्णांकों का एक वलय है, तो वर्ग संख्या हमेशा परिमित होती है। यह पूर्ण बीजगणितीय संख्या सिद्धांत के मुख्य परिणामों में से एक है।


पूर्णांक आर के छल्ले से उनके संबंधित वर्ग समूहों के लिए मानचित्रण क्रियात्मक है, और वर्ग समूह को [[बीजगणितीय के-सिद्धांत]] के शीर्षक के तहत शामिल किया जा सकता है, के के साथ<sub>0</sub>(आर) आर को अपने आदर्श वर्ग समूह को असाइन करने वाला फ़ैक्टर होने के नाते; अधिक सटीक, के<sub>0</sub>(आर) = 'जेड' × सी (आर), जहां सी (आर) वर्ग समूह है। पूर्णांकों के वलयों के संबंध में उच्च K समूहों को अंकगणितीय रूप से नियोजित और व्याख्यायित किया जा सकता है।
मिन्कोव्स्की की सीमा का उपयोग करते हुए वर्ग समूह की गणना साधारण छोटे विभेदक के बीजगणितीय संख्या क्षेत्र में पूर्णांकों के वलय के लिए हाथ से किया जा सकता है। यह परिणाम वलय के आधार पर एक सीमा देता है, जैसे कि प्रत्येक आदर्श वर्ग में सीमा से कम एक [[आदर्श मानदंड]] होता है। सामान्यतः सीमा बहुत प्रखर नहीं है कि बड़े विभेदक वाले क्षेत्रों के लिए गणना को व्यावहारिक बनाया जा सके, लेकिन कंप्यूटर इस कार्य के लिए उपयुक्त हैं।
 
पूर्णांक R के वलय से उनके संबंधित वर्ग समूहों के लिए मानचित्रण क्रियात्मक है, और वर्ग समूह को [[बीजगणितीय के-सिद्धांत|बीजगणितीय K-]] सिद्धांत के शीर्षक के तहत सम्मिलित किया जा सकता है, K<sub>0</sub>(R)) R को इसके आदर्श वर्ग समूह को नियत करने वाला कारकीय है; अधिक शुद्ध रुप से, K<sub>0</sub>(R) =Z×C(R), जहां C(R) वर्ग समूह है। पूर्णांकों के वलयों के संबंध में उच्च K समूहों को अंकगणितीय रूप से नियोजित और व्याख्यायित किया जा सकता है।


== इकाइयों के समूह के साथ संबंध ==
== इकाइयों के समूह के साथ संबंध ==
ऊपर यह टिप्पणी की गई थी कि आदर्श वर्ग समूह इस प्रश्न के उत्तर का एक भाग प्रदान करता है कि डेडेकाइंड डोमेन में कितने आदर्श तत्वों की तरह व्यवहार करते हैं। उत्तर का दूसरा भाग डेडेकाइंड डोमेन की इकाई (रिंग थ्योरी) के गुणक [[समूह (गणित)]] द्वारा प्रदान किया गया है, क्योंकि प्रमुख आदर्शों से मार्ग
ऊपर यह टिप्पणी की गई थी कि आदर्श वर्ग समूह इस प्रश्न के उत्तर का एक भाग प्रदान करता है कि डेडेकाइंड क्षेत्र में कितने आदर्श तत्वों की तरह व्यवहार करते हैं। उत्तर का दूसरा भाग डेडेकाइंड कार्यक्षेत्र की इकाइयों के गुणात्मक समूह द्वारा प्रदान किया गया है, क्योंकि प्रमुख आदर्शों से उनके जनित्र तक जाने के लिए इकाइयों के उपयोग की आवश्यकता होती है (और यह भिन्नात्मक आदर्श की अवधारणा को प्रस्तुत करने का शेष कारण है):
उनके जनरेटर के लिए इकाइयों के उपयोग की आवश्यकता होती है (और यह आंशिक आदर्श की अवधारणा को भी पेश करने का बाकी कारण है):


R से एक मानचित्र को परिभाषित करें<sup>×</sup> आर के सभी गैर-शून्य भिन्नात्मक आदर्शों के सेट में प्रत्येक तत्व को प्रिंसिपल (आंशिक) आदर्श के लिए भेजकर उत्पन्न करता है। यह एक [[समूह समरूपता]] है; इसका [[कर्नेल (बीजगणित)]] R की इकाइयों का समूह है, और इसका कोकर्नेल R का आदर्श वर्ग समूह है। इन समूहों के तुच्छ होने की विफलता एक समरूपता होने के लिए मानचित्र की विफलता का एक उपाय है: यह विफलता है आदर्शों की अंगूठी तत्वों की तरह कार्य करने के लिए, यानी संख्याओं की तरह।
प्रत्येक तत्व के उत्पन्न होने वाले प्रमुख(आंशिक) आदर्श के लिए भेजकर ''R''<sup>×</sup> से R के सभी शून्येतर आंशिक आदर्शों के समूह में एक मानचित्र परिभाषित करें। यह एक [[समूह समरूपता]] है; इसका [[कर्नेल (बीजगणित)|मध्यभाग (बीजगणित)]] R की इकाइयों का समूह है, और इसका सह मध्यभाग R का आदर्श वर्ग समूह है। इन समूहों के नगण्य होने की विफलता एक समरूपता होने के लिए मानचित्र की विफलता का एक उपाय है: यह आदर्शों की विफलता है जो वलय तत्वों की तरह कार्य करती है, अर्थात संख्याओं की तरह।


== आदर्श वर्ग समूहों के उदाहरण ==
== आदर्श वर्ग समूहों के उदाहरण ==


* वलय पूर्णांक, ईसेनस्टीन पूर्णांक|Z[ω], और गॉसियन पूर्णांक|Z[''i''], जहां ω 1 का घनमूल है और ''i'' 1 का चौथा मूल है (अर्थात् एक वर्ग −1 का मूल), सभी प्रमुख आदर्श डोमेन हैं (और वास्तव में सभी [[यूक्लिडियन डोमेन]] हैं), और इसलिए वर्ग संख्या 1 है: अर्थात, उनके पास तुच्छ आदर्श वर्ग समूह हैं।
* वलय Z, Z[ω], और Z[i], जहां ω 1 का घनमूल है और i 1 का चौथा मूल है (अर्थात् −1 का वर्गमूल), सभी प्रमुख आदर्श कार्यक्षेत्र हैं (और वास्तव में सभी यूक्लिडीय क्षेत्र हैं), और इसलिए वर्ग संख्या 1 है: अर्थात, उनके पास नगण्य आदर्श वर्ग समूह हैं।
*यदि ''के'' एक क्षेत्र है, तो बहुपद वलय ''के''[''एक्स''<sub>1</sub>, एक्स<sub>2</sub>, एक्स<sub>3</sub>, ...] एक अभिन्न डोमेन है। इसमें आदर्श वर्गों का एक अनगिनत अनंत सेट है।
*यदि k एक क्षेत्र है, तो बहुपद वलय ''k''[X1, X2, X3, ...] एक अभिन्न क्षेत्र है। इसमें आदर्श वर्गों का एक अनगिनत अनंत समूह है।


=== द्विघात क्षेत्रों की वर्ग संख्या ===
=== द्विघात क्षेत्रों की वर्ग संख्या ===
यदि d 1 के अलावा एक वर्ग-मुक्त पूर्णांक (विभिन्न अभाज्य संख्याओं का गुणनफल) है, तो 'Q'({{radic|''d''}}) एक द्विघात क्षेत्र है। यदि ''d'' < 0, तो Q के बीजगणितीय पूर्णांकों के वलय ''R'' की वर्ग संख्या ({{radic|''d''}}) d के निम्नलिखित मानों के लिए 1 के बराबर है: d = -1, -2, -3, -7, -11, -19, -43, -67, और -163। यह परिणाम सबसे पहले कार्ल फ्रेडरिक गॉस द्वारा अनुमान लगाया गया था और कर्ट हेगनेर द्वारा सिद्ध किया गया था, हालांकि हेगनेर के प्रमाण पर तब तक विश्वास नहीं किया गया था जब तक [[हेरोल्ड स्टार्क]] ने 1967 में बाद में प्रमाण नहीं दिया था। (स्टार्क-हेगनेर प्रमेय देखें।) यह प्रसिद्ध वर्ग संख्या समस्या का एक विशेष मामला है। .
यदि d 1 के अतिरिक्त एक वर्ग-मुक्त पूर्णांक (विभिन्न अभाज्य संख्याओं का गुणनफल) है, तो 'Q'({{radic|''d''}}) Q का द्विघात विस्तार है। यदि d < 0, तो '''Q'''(''d'') के बीजगणितीय पूर्णांकों के वलय R की वर्ग संख्या 1 के बराबर है, ठीक d के निम्नलिखित मानों के लिए: d = −1, −2, −3, −7, −11 , -19, -43, -67, और -163। यह परिणाम पहले गॉस द्वारा अनुमान लगाया गया था और कर्ट हेगनर द्वारा सिद्ध किया गया था, हालांकि हेगनेर के प्रमाण पर तब तक विश्वास नहीं किया गया था जब तक हेरोल्ड स्टार्क ने 1967 में बाद का प्रमाण नहीं दिया था। ((देखें स्टार्क-हेगनेर प्रमेय।) यह प्रसिद्ध वर्ग संख्या प्रश्न की एक विशेष स्थिति है। .
 
यदि, दूसरी ओर, d > 0, तो यह अज्ञात है कि कक्षा संख्या 1 के साथ अपरिमित रूप से अनेक क्षेत्र Q(√d) हैं या नहीं। अभिकलनात्‍मक परिणाम बताते हैं कि बहुत ऐसे क्षेत्र हैं। हालाँकि, यह भी ज्ञात नहीं है कि वर्ग संख्या 1 के साथ असीम रूप से कई संख्याएँ हैं।<ref>{{harvnb|Neukirch|1999}}</ref><ref>{{harvnb|Gauss|1700}}</ref>
 
d< 0 के लिए, Q(√d) का आदर्श वर्ग समूह, Q(√d) के विभेदक के बराबर विभेदक के अभिन्न द्विआधारी द्विघात रूपों के वर्ग समूह के लिए समरूप है। d > 0 के लिए, आदर्श वर्ग समूह आधे आकार का हो सकता है क्योंकि पूर्णांक द्विघात रूपों का वर्ग समूह Q(√d) के [[संकीर्ण वर्ग समूह]] के लिए समरूप है।<ref>{{harvnb|Fröhlich|Taylor|1993|loc=Theorem 58}}</ref>
 
वास्तविक द्विघात पूर्णांक वलयों के लिए, वर्ग संख्या [[oeis:A003649|OEIS A003649]] में दी गई है; काल्पनिक स्थिति के लिए, उन्हें [[oeis:A000924|OEIS A000924]] में दिया गया है।


यदि, दूसरी ओर, d > 0, तो यह अज्ञात है कि क्या अपरिमित रूप से अनेक क्षेत्र 'Q' हैं ({{radic|''d''}}) कक्षा संख्या 1 के साथ। कम्प्यूटेशनल परिणाम इंगित करते हैं कि ऐसे कई क्षेत्र हैं। हालाँकि, यह भी ज्ञात नहीं है कि वर्ग संख्या 1 के साथ असीम रूप से कई संख्याएँ हैं।<ref>{{harvnb|Neukirch|1999}}</ref><ref>{{harvnb|Gauss|1700}}</ref>
==== गैर-नगण्य वर्ग समूह का उदाहरण ====
d < 0 के लिए, 'Q' का आदर्श वर्ग समूह ({{radic|''d''}}) क्यू के विवेचक के बराबर विवेचक के अभिन्न [[द्विआधारी द्विघात रूप]]ों के वर्ग समूह के लिए आइसोमोर्फिक है ({{radic|''d''}}). d > 0 के लिए, आदर्श वर्ग समूह आधे आकार का हो सकता है क्योंकि पूर्णांक द्विघात रूपों का वर्ग समूह 'Q' के [[संकीर्ण वर्ग समूह]] के लिए समरूप है ({{radic|''d''}}).<ref>{{harvnb|Fröhlich|Taylor|1993|loc=Theorem 58}}</ref>
वास्तविक द्विघात पूर्णांक वलयों के लिए, वर्ग संख्या [https://oeis.org/A003649 OEIS A003649] में दी गई है; काल्पनिक मामले के लिए, वे [https://oeis.org/A000924 OEIS A000924] में दिए गए हैं।


==== गैर-तुच्छ वर्ग समूह का उदाहरण ====
[[द्विघात पूर्णांक]] वलय R = 'Z' [{{radic|&minus;5}}] Q({{radic|&minus;5}}) के पूर्णांकों का वलय है। इसमें अद्वितीय गुणनखंड नहीं है; वास्तव में R का वर्ग समूह क्रम 2 का चक्रीय है। वास्तव में, आदर्श
: ''J''  = (2, 1 + {{radic|&minus;5}})
सिद्धांत नहीं है, जिसे विरोधाभास द्वारा निम्नानुसार सिद्ध किया जा सकता है। <math>R</math> का एक आदर्श कार्य है <math>N(a + b \sqrt{-5}) = a^2 + 5 b^2 </math>, जो संतुष्ट करता है <math>N(uv) = N(u)N(v)</math>, और <math>N(u) = 1</math> अगर और केवल अगर <math>u</math> में एक <math>R</math> इकाई है। सबसे पहले, <math> J \ne R</math>, क्योंकि भागफल का वलय <math>R</math> मापांक आदर्श <math>(1 + \sqrt{-5})</math> के लिए समरूप है <math>\mathbf{Z} / 6 \mathbf{Z}</math>, ताकि [[भागफल की अंगूठी|भागफल का वलय]] <math>R</math> मापांक <math>J</math> के लिए समरूप है <math>\mathbf{Z} / 2 \mathbf{Z}</math>. यदि J को R के एक तत्व x द्वारा उत्पन्न किया गया था, तो x 2 और 1 + √−5 दोनों को विभाजित करेगा। फिर आदर्श <math>N(x)</math> दोनों को विभाजित करेगा <math>N(2) = 4</math> और <math>N(1 + \sqrt{-5}) = 6</math>, इसलिए N(x) 2 को विभाजित करेगा। यदि <math>N(x) = 1</math>, तब <math>x</math> एक इकाई है, और <math>J = R</math>, एक विरोधाभास। लेकिन <math>N(x)</math> 2 भी नहीं हो सकता है, क्योंकि R में मानक 2 के कोई तत्व नहीं हैं, क्योंकि [[डायोफैंटाइन समीकरण]] <math>b^2 + 5 c^2 = 2</math> का पूर्णांकों में कोई समाधान नहीं है, क्योंकि इसका कोई समाधान मापांक 5 नहीं है।


[[द्विघात पूर्णांक]] वलय R = 'Z' [{{radic|&minus;5}}] Q के पूर्णांकों का वलय है ({{radic|&minus;5}}). इसमें अद्वितीय गुणनखंड नहीं है; वास्तव में R का वर्ग समूह क्रम 2 का चक्रीय है। वास्तव में, आदर्श
एक यह भी गणना करता है कि ''J''<sup>2</sup> = (2), जो कि सिद्धांत है, इसलिए आदर्श वर्ग समूह में J के वर्ग का क्रम दो है। यह दिखाने के लिए कि कोई अन्य आदर्श वर्ग नहीं है, अधिक प्रयास की आवश्यकता है।  
: जे = (2, 1 + {{radic|&minus;5}})
सिद्धांत नहीं है, जिसे विरोधाभास द्वारा निम्नानुसार सिद्ध किया जा सकता है। <math>R</math> एक [[फील्ड मानदंड]] फंक्शन है <math>N(a + b \sqrt{-5}) =  a^2 + 5 b^2 </math>, जो संतुष्ट करता है <math>N(uv) = N(u)N(v)</math>, और <math>N(u) = 1</math> अगर और केवल अगर <math>u</math> में एक इकाई है <math>R</math>. सबसे पहले, <math> J \ne R</math>, क्योंकि भागफल की अंगूठी <math>R</math> मोडुलो आदर्श <math>(1 + \sqrt{-5})</math> के लिए आइसोमॉर्फिक है <math>\mathbf{Z} / 6 \mathbf{Z}</math>, ताकि [[भागफल की अंगूठी]] <math>R</math> मापांक <math>J</math> के लिए आइसोमॉर्फिक है <math>\mathbf{Z} / 2 \mathbf{Z}</math>. यदि J को R के एक तत्व x द्वारा उत्पन्न किया गया था, तो x 2 और 1 + दोनों को विभाजित करेगा {{radic|&minus;5}}. फिर आदर्श <math>N(x)</math> दोनों को बांट देंगे <math>N(2) = 4</math> और <math>N(1 + \sqrt{-5}) = 6</math>, तो N(x) 2 को विभाजित करेगा। यदि <math>N(x) = 1</math>, तब <math>x</math> एक इकाई है, और <math>J = R</math>, एक विरोधाभास। लेकिन <math>N(x)</math> 2 या तो नहीं हो सकता, क्योंकि R में मानक 2 के कोई तत्व नहीं हैं, क्योंकि [[डायोफैंटाइन समीकरण]] <math>b^2 + 5 c^2 = 2</math> पूर्णांकों में कोई समाधान नहीं है, क्योंकि इसका कोई समाधान मॉड्यूल 5 नहीं है।


एक यह भी गणना करता है कि जे<sup>2</sup> = (2), जो प्रधान है, इसलिए आदर्श वर्ग समूह में J के वर्ग का क्रम दो है। यह दिखाने के लिए कि कोई अन्य आदर्श वर्ग नहीं है, अधिक प्रयास की आवश्यकता है। <!-- well, I can't think of any method apart from the minkowski bound off the top of my head -->
तथ्य यह है कि यह J  प्रधाननहीं है, इस तथ्य से भी संबंधित है कि तत्व 6 में दो अलग-अलग गुणनखंड हैं:
तथ्य यह है कि यह जे प्रिंसिपल नहीं है, इस तथ्य से भी संबंधित है कि तत्व 6 में दो अलग-अलग गुणनखंड हैं:
: 6 = 2 × 3 = (1 + {{radic|&minus;5}}) × (1 − {{radic|&minus;5}}).
: 6 = 2 × 3 = (1 + {{radic|&minus;5}}) × (1 − {{radic|&minus;5}}).


== क्लास फील्ड थ्योरी से कनेक्शन ==
== वर्ग क्षेत्र सिद्धांत से सम्बन्ध ==


[[वर्ग क्षेत्र सिद्धांत]] [[बीजगणितीय संख्या सिद्धांत]] की एक शाखा है जो किसी दिए गए बीजगणितीय संख्या क्षेत्र के सभी गैलोज़ सिद्धांतों को वर्गीकृत करना चाहता है, जिसका अर्थ है एबेलियन गैलोज़ समूह के साथ गैलोज़ एक्सटेंशन। एक संख्या क्षेत्र के [[हिल्बर्ट वर्ग क्षेत्र]] में एक विशेष रूप से सुंदर उदाहरण पाया जाता है, जिसे ऐसे क्षेत्र के अधिकतम असम्बद्ध एबेलियन विस्तार के रूप में परिभाषित किया जा सकता है। संख्या क्षेत्र K का हिल्बर्ट वर्ग क्षेत्र L अद्वितीय है और इसमें निम्नलिखित गुण हैं:
[[वर्ग क्षेत्र सिद्धांत|वर्ग क्षेत्र]] सिद्धांत [[बीजगणितीय संख्या सिद्धांत|बीजगणितीय संख्या]] सिद्धांत की एक शाखा है जो किसी दिए गए बीजगणितीय संख्या क्षेत्र के सभी गणित में विनिमेय समूह सिद्धांतों को वर्गीकृत करना चाहता है, जिसका अर्थ है गणित में विनिमेय समूह गाल्वा समूह के साथ गाल्वा क्षेत्र। एक संख्या क्षेत्र के [[हिल्बर्ट वर्ग क्षेत्र]] में एक विशेष रूप से सुंदर उदाहरण पाया जाता है, जिसे ऐसे क्षेत्र के अधिकतम असम्बद्ध गणित में विनिमेय समूह विस्तार के रूप में परिभाषित किया जा सकता है। हिल्बर्ट वर्ग क्षेत्र L एक संख्या क्षेत्र K अद्वितीय है और इसमें निम्नलिखित गुण हैं:


* K के पूर्णांकों के वलय की प्रत्येक गुणजावली L में प्रधान बन जाती है, अर्थात, यदि I, K की एक समाकल गुणजावली है तो I की छवि L में प्रधान गुणजावली है।
* K के पूर्णांकों के वलय की प्रत्येक आदर्श L में सिद्धांत बन जाती है, अर्थात, यदि I, K की एक समाकल आदर्श है तो I की छवि L में सिद्धांत आदर्श है।
* L, K के आदर्श वर्ग समूह के लिए Galois समूह isomorphic के साथ K का एक Galois विस्तार है।
* L, K के आदर्श वर्ग समूह के लिए गाल्वा समूह समरूप के साथ K का एक गाल्वा विस्तार है।


किसी भी संपत्ति को साबित करना विशेष रूप से आसान नहीं है।
किसी भी संपत्ति को सिद्ध करना विशेष रूप से आसान नहीं है।


== यह भी देखें ==
== यह भी देखें ==
* [[वर्ग संख्या सूत्र]]
* [[वर्ग संख्या सूत्र]]
* कक्षा संख्या समस्या
* कक्षा संख्या प्रश्न
* ब्राउर-सीगल प्रमेय- वर्ग संख्या के लिए एक [[स्पर्शोन्मुख विश्लेषण]] सूत्र
* ब्राउर-सीगल प्रमेय- वर्ग संख्या के लिए एक [[स्पर्शोन्मुख विश्लेषण]] सूत्र
* [[वर्ग संख्या एक के साथ संख्या क्षेत्रों की सूची]]
* [[वर्ग संख्या एक के साथ संख्या क्षेत्रों की सूची]]
* प्रधान आदर्श डोमेन
* सिद्धांत आदर्श कार्यक्षेत्र
* बीजगणितीय के-सिद्धांत
* बीजगणितीय K-सिद्धांत
* गैल्वा सिद्धांत
* गाल्वा सिद्धांत
* फर्मेट का अंतिम प्रमेय
* फर्मेट की अंतिम प्रमेय
* संकीर्ण वर्ग समूह
* संकीर्ण वर्ग समूह
* [[पिकार्ड समूह]]—[[बीजगणितीय ज्यामिति]] में दिखने वाले वर्ग समूह का एक सामान्यीकरण
* [[पिकार्ड समूह]]—[[बीजगणितीय ज्यामिति]] में दिखने वाले वर्ग समूह का एक सामान्यीकरण
Line 112: Line 114:
}}
}}
*{{Neukirch ANT}}
*{{Neukirch ANT}}
[[Category: बीजगणितीय संख्या सिद्धांत]] [[Category: आदर्श (रिंग थ्योरी)]]


[[Category: Machine Translated Page]]
[[Category:Articles containing German-language text]]
[[Category:Created On 13/02/2023]]
[[Category:Created On 13/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:आदर्श (रिंग थ्योरी)]]
[[Category:बीजगणितीय संख्या सिद्धांत]]

Latest revision as of 11:15, 10 March 2023

संख्या सिद्धांत में, एक बीजगणितीय संख्या क्षेत्र K का आदर्श वर्ग समूह (या वर्ग समूह) भागफल समूह JK/PK है जहाँ JK पूर्णांक K और PK के भागफल आदर्शों का समूह है जो इसके प्रमुख आदर्शों का उपसमूह है। वर्ग समूह उस सीमा का माप है जिस तक पूर्णांकों के वलय में अद्वितीय गुणनखंड विफल हो जाता है। एक समूह का क्रम जो परिमित है, K का वर्ग संख्या कहलाता है।

इस सिद्धांत को डेडेकिंड कार्यों और उनके अंशों के क्षेत्र में विस्तारित किया गया है, जिसके लिए गुणात्मक गुण वर्ग समूह की संरचना से परिचित हैं। उदाहरण के लिए, डेडेकाइंड कार्यक्षेत्र का वर्ग समूह नगण्य है और केवल वलय एक अद्वितीय गुणनखंड क्षेत्र है।

आदर्श वर्ग समूह का इतिहास और उत्पत्ति

एक आदर्श (वृत्त परिकल्पना) के विचार से कुछ समय पहले प्रभावी रूप से आदर्श वर्ग समूह का अध्ययन किया गया था। ये समूह द्विघात रूपों के सिद्धांत में दिखाई दिए: जैसा कि द्विआधारी अभिन्न द्विघात रूपों के स्थिति में कार्ल फ्रेडरिक गॉस द्वारा अंतिम रूप में रखा गया था और एक रचना कानून के रूपों के कुछ समतुल्य वर्गों पर परिभाषित किया गया था। इसने परिमित गणित में एक क्रमविनिमेय समूह दिया, जिसे उस समय मान्यता दी गई थी।

बाद में अर्न्स्ट कुमेर चक्रवाती क्षेत्रों के सिद्धांत की दिशा में काम कर रहे थे। यह सिद्ध किया गया था (सम्भवतः कई लोगों द्वारा) कि फ़र्मा के अंतिम प्रमेय के सामान्य रूपों में एकता के मूलों का उपयोग करके गुणनखंडन द्वारा पूर्ण प्रमाणों को पूरा करने में विफलता एक बहुत अच्छे कारण के लिए थी: अद्वितीय गुणनखंडन की विफलता, अर्थात, अंकगणित का मौलिक प्रमेय एकता की उन मूलों द्वारा उत्पन्न वलय(गणित) में धारण करना एक प्रमुख अवरोध था। कुमेर के कार्य में पहली बार गुणनखंडन में अवरोध का अध्ययन आया। अब हम इसे आदर्श वर्ग समूह के भाग के रूप में पहचानते हैं: वास्तव में कुमेर ने उस समूह में एकता के p-मूलों के क्षेत्र के लिए, किसी भी अभाज्य संख्या p के लिए,फ़र्मा प्रश्न पर मानक पद्धति की विफलता के कारण p- आघूर्ण बल को अलग कर दिया था।

कुछ समय बाद फिर से रिचर्ड डेडेकिंड ने आदर्श की अवधारणा विकसित की और कुमेर ने एक अलग तरीके से काम किया। इस बिंदु पर स्थित उदाहरणों को एकीकृत किया जा सकता है। यह दिखाया गया था कि बीजगणितीय पूर्णांकों के वलय में हमेशा अभाज्यों में अद्वितीय गुणनखंडन नहीं होता है (क्योंकि उन्हें प्रमुख आदर्श क्षेत्र होने की आवश्यकता नहीं है), उनके पास यह गुण होता है कि प्रत्येक उचित आदर्श सिद्धांत आदर्शों के उत्पाद के रूप में एक अद्वितीय गुणनखंडन को स्वीकार करता है (अर्थात , बीजगणितीय पूर्णांकों का प्रत्येक वलय एक डेडेकिंड क्षेत्र है)। आदर्श वर्ग समूह के आकार को एक प्रमुख आदर्श क्षेत्र होने से वलय के विचलन के लिए एक उपाय के रूप में माना जा सकता है; एक वलय एक प्रमुख क्षेत्र है यदि इसमें केवल एक नगण्य आदर्श वर्ग समूह है।

परिभाषा

जब भी R के शून्येतर अवयव a और b होते हैं जैसे कि (a)I = (b)J, तो R के शून्येतर भिन्नात्मक आदर्शों पर I ~J द्वारा एक संबंध ~ परिभाषित करें, यदि R एक पूर्णांकीय प्रांत है (यहाँ अंकन (a) का अर्थ R के प्रमुख गुणक से है, जिसमें a के सभी गुणक सम्मिलित हैं।) यह सरलता से दिखाया गया है कि यह एक तुल्यता संबंध है। एकतुल्यता वर्ग को R का एक आदर्श वर्ग कहा जाता है।

आदर्श वर्गों को गुणा किया जा सकता है: यदि [I] आदर्श I के तुल्यता वर्ग को दर्शाता है, तो गुणन [I] [J] = [IJ] अच्छी तरह से परिभाषित और क्रमविनिमेय है। प्रमुख गुण आदर्श वर्ग [R] बनाते हैं जो इस गुणन के लिए एक पहचान तत्व के रूप में कार्य करता है। यदि एक आदर्श J है जैसे कि IJ एक प्रमुख आदर्श है तो इस प्रकार एक वर्ग [I] का व्युत्क्रम [J] होता है। सामान्यता, J का अस्तित्व नहीं हो सकता है और फलस्वरूप R के आदर्श वर्गों का समूह केवल एक एकाभ हो सकता है।

हालाँकि, यदि R एक बीजगणितीय संख्या क्षेत्र में बीजगणितीय पूर्णांकों का वलय है, या R का आदर्श वर्ग समूह अधिक सामान्यतः का एक डेडेकिंड क्षेत्र है, तो ऊपर परिभाषित गुणन भिन्नात्मक आदर्श वर्गों के समूह को एक गणित में विनिमेय समूह में बदल देता है। व्युत्क्रम तत्वों के अस्तित्व की समूह संपत्ति इस तथ्य से सरलता से अनुसरण करती है कि, डेडेकिंड कार्यक्षेत्र में, प्रत्येक शून्येतर आदर्श (R को छोड़कर) प्रमुख आदर्शों का एक उत्पाद है।

गुण

एक आदर्श वर्ग समूह नगण्य है (अर्थात् केवल एक तत्व है) यदि और केवल R के सभी आदर्श प्रमुख हैं। इस अर्थ में, आदर्श वर्ग समूह यह मापता है कि R एक प्रमुख आदर्श क्षेत्र होने से कितना दूर है और इसलिए अद्वितीय सिद्धांत गुणनखंड को संतुष्ट करने से (डेडेकिंड कार्यक्षेत्र अद्वितीय गुणनखंड क्षेत्र हैं, यदि केवल वे प्रमुख आदर्श क्षेत्र हैं)।

आदर्श वर्गों की संख्या (R की वर्ग संख्या) सामान्य रूप से अनंत हो सकती है। वास्तव में, गणित में प्रत्येक क्रमविनिमेय समूह किसी डेडेकाइंड कार्यक्षेत्र के आदर्श वर्ग समूह का समरूप है।[1] लेकिन यदि R वास्तव में बीजगणितीय पूर्णांकों का एक वलय है, तो वर्ग संख्या हमेशा परिमित होती है। यह पूर्ण बीजगणितीय संख्या सिद्धांत के मुख्य परिणामों में से एक है।

मिन्कोव्स्की की सीमा का उपयोग करते हुए वर्ग समूह की गणना साधारण छोटे विभेदक के बीजगणितीय संख्या क्षेत्र में पूर्णांकों के वलय के लिए हाथ से किया जा सकता है। यह परिणाम वलय के आधार पर एक सीमा देता है, जैसे कि प्रत्येक आदर्श वर्ग में सीमा से कम एक आदर्श मानदंड होता है। सामान्यतः सीमा बहुत प्रखर नहीं है कि बड़े विभेदक वाले क्षेत्रों के लिए गणना को व्यावहारिक बनाया जा सके, लेकिन कंप्यूटर इस कार्य के लिए उपयुक्त हैं।

पूर्णांक R के वलय से उनके संबंधित वर्ग समूहों के लिए मानचित्रण क्रियात्मक है, और वर्ग समूह को बीजगणितीय K- सिद्धांत के शीर्षक के तहत सम्मिलित किया जा सकता है, K0(R)) R को इसके आदर्श वर्ग समूह को नियत करने वाला कारकीय है; अधिक शुद्ध रुप से, K0(R) =Z×C(R), जहां C(R) वर्ग समूह है। पूर्णांकों के वलयों के संबंध में उच्च K समूहों को अंकगणितीय रूप से नियोजित और व्याख्यायित किया जा सकता है।

इकाइयों के समूह के साथ संबंध

ऊपर यह टिप्पणी की गई थी कि आदर्श वर्ग समूह इस प्रश्न के उत्तर का एक भाग प्रदान करता है कि डेडेकाइंड क्षेत्र में कितने आदर्श तत्वों की तरह व्यवहार करते हैं। उत्तर का दूसरा भाग डेडेकाइंड कार्यक्षेत्र की इकाइयों के गुणात्मक समूह द्वारा प्रदान किया गया है, क्योंकि प्रमुख आदर्शों से उनके जनित्र तक जाने के लिए इकाइयों के उपयोग की आवश्यकता होती है (और यह भिन्नात्मक आदर्श की अवधारणा को प्रस्तुत करने का शेष कारण है):

प्रत्येक तत्व के उत्पन्न होने वाले प्रमुख(आंशिक) आदर्श के लिए भेजकर R× से R के सभी शून्येतर आंशिक आदर्शों के समूह में एक मानचित्र परिभाषित करें। यह एक समूह समरूपता है; इसका मध्यभाग (बीजगणित) R की इकाइयों का समूह है, और इसका सह मध्यभाग R का आदर्श वर्ग समूह है। इन समूहों के नगण्य होने की विफलता एक समरूपता होने के लिए मानचित्र की विफलता का एक उपाय है: यह आदर्शों की विफलता है जो वलय तत्वों की तरह कार्य करती है, अर्थात संख्याओं की तरह।

आदर्श वर्ग समूहों के उदाहरण

  • वलय Z, Z[ω], और Z[i], जहां ω 1 का घनमूल है और i 1 का चौथा मूल है (अर्थात् −1 का वर्गमूल), सभी प्रमुख आदर्श कार्यक्षेत्र हैं (और वास्तव में सभी यूक्लिडीय क्षेत्र हैं), और इसलिए वर्ग संख्या 1 है: अर्थात, उनके पास नगण्य आदर्श वर्ग समूह हैं।
  • यदि k एक क्षेत्र है, तो बहुपद वलय k[X1, X2, X3, ...] एक अभिन्न क्षेत्र है। इसमें आदर्श वर्गों का एक अनगिनत अनंत समूह है।

द्विघात क्षेत्रों की वर्ग संख्या

यदि d 1 के अतिरिक्त एक वर्ग-मुक्त पूर्णांक (विभिन्न अभाज्य संख्याओं का गुणनफल) है, तो 'Q'(d) Q का द्विघात विस्तार है। यदि d < 0, तो Q(√d) के बीजगणितीय पूर्णांकों के वलय R की वर्ग संख्या 1 के बराबर है, ठीक d के निम्नलिखित मानों के लिए: d = −1, −2, −3, −7, −11 , -19, -43, -67, और -163। यह परिणाम पहले गॉस द्वारा अनुमान लगाया गया था और कर्ट हेगनर द्वारा सिद्ध किया गया था, हालांकि हेगनेर के प्रमाण पर तब तक विश्वास नहीं किया गया था जब तक हेरोल्ड स्टार्क ने 1967 में बाद का प्रमाण नहीं दिया था। ((देखें स्टार्क-हेगनेर प्रमेय।) यह प्रसिद्ध वर्ग संख्या प्रश्न की एक विशेष स्थिति है। .

यदि, दूसरी ओर, d > 0, तो यह अज्ञात है कि कक्षा संख्या 1 के साथ अपरिमित रूप से अनेक क्षेत्र Q(√d) हैं या नहीं। अभिकलनात्‍मक परिणाम बताते हैं कि बहुत ऐसे क्षेत्र हैं। हालाँकि, यह भी ज्ञात नहीं है कि वर्ग संख्या 1 के साथ असीम रूप से कई संख्याएँ हैं।[2][3]

d< 0 के लिए, Q(√d) का आदर्श वर्ग समूह, Q(√d) के विभेदक के बराबर विभेदक के अभिन्न द्विआधारी द्विघात रूपों के वर्ग समूह के लिए समरूप है। d > 0 के लिए, आदर्श वर्ग समूह आधे आकार का हो सकता है क्योंकि पूर्णांक द्विघात रूपों का वर्ग समूह Q(√d) के संकीर्ण वर्ग समूह के लिए समरूप है।[4]

वास्तविक द्विघात पूर्णांक वलयों के लिए, वर्ग संख्या OEIS A003649 में दी गई है; काल्पनिक स्थिति के लिए, उन्हें OEIS A000924 में दिया गया है।

गैर-नगण्य वर्ग समूह का उदाहरण

द्विघात पूर्णांक वलय R = 'Z' [−5] Q(−5) के पूर्णांकों का वलय है। इसमें अद्वितीय गुणनखंड नहीं है; वास्तव में R का वर्ग समूह क्रम 2 का चक्रीय है। वास्तव में, आदर्श

J = (2, 1 + −5)

सिद्धांत नहीं है, जिसे विरोधाभास द्वारा निम्नानुसार सिद्ध किया जा सकता है। का एक आदर्श कार्य है , जो संतुष्ट करता है , और अगर और केवल अगर में एक इकाई है। सबसे पहले, , क्योंकि भागफल का वलय मापांक आदर्श के लिए समरूप है , ताकि भागफल का वलय मापांक के लिए समरूप है . यदि J को R के एक तत्व x द्वारा उत्पन्न किया गया था, तो x 2 और 1 + √−5 दोनों को विभाजित करेगा। फिर आदर्श दोनों को विभाजित करेगा और , इसलिए N(x) 2 को विभाजित करेगा। यदि , तब एक इकाई है, और , एक विरोधाभास। लेकिन 2 भी नहीं हो सकता है, क्योंकि R में मानक 2 के कोई तत्व नहीं हैं, क्योंकि डायोफैंटाइन समीकरण का पूर्णांकों में कोई समाधान नहीं है, क्योंकि इसका कोई समाधान मापांक 5 नहीं है।

एक यह भी गणना करता है कि J2 = (2), जो कि सिद्धांत है, इसलिए आदर्श वर्ग समूह में J के वर्ग का क्रम दो है। यह दिखाने के लिए कि कोई अन्य आदर्श वर्ग नहीं है, अधिक प्रयास की आवश्यकता है।

तथ्य यह है कि यह J प्रधाननहीं है, इस तथ्य से भी संबंधित है कि तत्व 6 में दो अलग-अलग गुणनखंड हैं:

6 = 2 × 3 = (1 + −5) × (1 − −5).

वर्ग क्षेत्र सिद्धांत से सम्बन्ध

वर्ग क्षेत्र सिद्धांत बीजगणितीय संख्या सिद्धांत की एक शाखा है जो किसी दिए गए बीजगणितीय संख्या क्षेत्र के सभी गणित में विनिमेय समूह सिद्धांतों को वर्गीकृत करना चाहता है, जिसका अर्थ है गणित में विनिमेय समूह गाल्वा समूह के साथ गाल्वा क्षेत्र। एक संख्या क्षेत्र के हिल्बर्ट वर्ग क्षेत्र में एक विशेष रूप से सुंदर उदाहरण पाया जाता है, जिसे ऐसे क्षेत्र के अधिकतम असम्बद्ध गणित में विनिमेय समूह विस्तार के रूप में परिभाषित किया जा सकता है। हिल्बर्ट वर्ग क्षेत्र L एक संख्या क्षेत्र K अद्वितीय है और इसमें निम्नलिखित गुण हैं:

  • K के पूर्णांकों के वलय की प्रत्येक आदर्श L में सिद्धांत बन जाती है, अर्थात, यदि I, K की एक समाकल आदर्श है तो I की छवि L में सिद्धांत आदर्श है।
  • L, K के आदर्श वर्ग समूह के लिए गाल्वा समूह समरूप के साथ K का एक गाल्वा विस्तार है।

किसी भी संपत्ति को सिद्ध करना विशेष रूप से आसान नहीं है।

यह भी देखें

टिप्पणियाँ

  1. Claborn 1966
  2. Neukirch 1999
  3. Gauss 1700
  4. Fröhlich & Taylor 1993, Theorem 58


संदर्भ

  • Claborn, Luther (1966), "Every abelian group is a class group", Pacific Journal of Mathematics, 18 (2): 219–222, doi:10.2140/pjm.1966.18.219
  • Fröhlich, Albrecht; Taylor, Martin (1993), Algebraic number theory, Cambridge Studies in Advanced Mathematics, vol. 27, Cambridge University Press, ISBN 978-0-521-43834-6, MR 1215934
  • Neukirch, Jürgen (1999). Algebraische Zahlentheorie. Grundlehren der mathematischen Wissenschaften. Vol. 322. Berlin: Springer-Verlag. ISBN 978-3-540-65399-8. MR 1697859. Zbl 0956.11021.