शोर-प्रतिरक्षा गुहा-वर्धित ऑप्टिकल हेटेरोडाइन आणविक स्पेक्ट्रोस्कोपी: Difference between revisions

From Vigyanwiki
(Created page with "शोर-प्रतिरक्षा गुहा-वर्धित ऑप्टिकल-हेटेरोडाइन आणविक स्पेक्ट्रोस...")
 
No edit summary
 
(15 intermediate revisions by 3 users not shown)
Line 1: Line 1:
शोर-प्रतिरक्षा गुहा-वर्धित ऑप्टिकल-हेटेरोडाइन आणविक स्पेक्ट्रोस्कोपी (एनआईसीई-ओएचएमएस) एक अति-संवेदनशील लेजर [[अवशोषण स्पेक्ट्रोमेट्री]] है। लेजर-आधारित अवशोषण तकनीक जो अवशोषण स्पेक्ट्रोमेट्री द्वारा गैस चरण में एकाग्रता या प्रजातियों की मात्रा का आकलन करने के लिए लेजर प्रकाश का उपयोग करती है। (जैसा)।
शोर-प्रतिरक्षा गुहा-वर्धित ऑप्टिकल-हेटेरोडाइन आणविक स्पेक्ट्रोस्कोपी (एनआईसीई-ओएचएमएस) अति-संवेदनशील लेजर-आधारित अवशोषण प्रौद्योगिकी है जो [[अवशोषण स्पेक्ट्रोमेट्री]] (एएस) द्वारा गैस चरण में एकाग्रता या प्रजातियों की मात्रा का आकलन करने के लिए लेजर प्रकाश का उपयोग करती है।


== सिद्धांत ==
== सिद्धांत ==
NICE-OHMS तकनीक लेजर अवशोषण स्पेक्ट्रोमेट्री को जोड़ती है # कैविटी वर्धित अवशोषण स्पेक्ट्रोमेट्री | कैविटी वर्धित अवशोषण स्पेक्ट्रोमेट्री (CEAS) लंबे समय तक बातचीत की लंबाई के लिए आवृत्ति मॉड्यूलेशन (fm) स्पेक्ट्रोमेट्री FMS के साथ 1 / f शोर को कम करने के लिए। गुहा के मुक्त वर्णक्रमीय रेंज (FSR) के बराबर fm-मॉड्यूलेशन आवृत्ति का चयन करके, वर्णक्रमीय fm-ट्रिपलेट के सभी घटकों को एक समान तरीके से गुहा के माध्यम से प्रेषित किया जाता है। इसलिए, गुहा fm-triplet के संतुलन से समझौता नहीं करता है, जो अन्यथा fm-पृष्ठभूमि संकेतों को जन्म देगा। यह गुहा के संचरण मोड के संबंध में लेजर आवृत्ति के किसी भी उतार-चढ़ाव को तीव्रता मॉड्यूलेशन में परिवर्तित नहीं करता है, जो तीव्रता शोर की शुरूआत से पता लगाने की क्षमता को खराब कर देगा। इसे शोर प्रतिरक्षा कहा जाता है। इन सबका तात्पर्य यह है कि एफएमएस का प्रदर्शन किया जा सकता है जैसे कि गुहा मौजूद नहीं थे, फिर भी लंबे समय तक बातचीत की लंबाई से पूरी तरह लाभान्वित होते हैं।{{Citation needed|date=December 2010}}
एनआईसीई-ओएचएमएस प्रौद्योगिकी कैविटी वर्धित अवशोषण स्पेक्ट्रोमेट्री (सीईएएस) को लंबे समय तक सम्बन्ध की लंबाई के लिए आवृत्ति मॉड्यूलेशन (fm) स्पेक्ट्रोमेट्री एफएमएस के साथ 1 / f शोर को अल्प करने के लिए जोड़ती है। गुहा के मुक्त वर्णक्रमीय श्रेणी (एफएसआर) के समान fm-मॉड्यूलेशन आवृत्ति का चयन करके, वर्णक्रमीय fm-ट्रिपलेट के सभी घटकों को समान उपाए से गुहा के माध्यम से प्रेषित किया जाता है। इसलिए, गुहा fm-ट्रिपलेट के संतुलन से निष्कर्ष नहीं करता है, जो अन्यथा fm-पृष्ठभूमि संकेतों को उत्पति देगा। यह गुहा के संचरण मोड के संबंध में लेजर आवृत्ति के किसी भी उतार-चढ़ाव को तीव्रता मॉड्यूलेशन में परिवर्तित नहीं करता है, जो तीव्रता शोर की प्रारम्भ से ज्ञात करने की क्षमता को निकृष्ट कर देगा। इसे "शोर प्रतिरक्षा" कहा जाता है। इन सबका तात्पर्य यह है कि एफएमएस का प्रदर्शन किया जा सकता है जैसे कि गुहा सम्मलित नहीं थे, फिर भी लंबे समय तक सम्बन्ध की लंबाई से पूर्ण रूप से लाभान्वित होते हैं।{{Citation needed|date=December 2010}}




=== संकेतों के प्रकार ===
=== संकेतों के प्रकार ===
NICE-OHMS द्वारा विभिन्न प्रकार के संकेत प्राप्त किए जा सकते हैं।{{Citation needed|date=December 2010}} सबसे पहले, गुहा में उच्च तीव्रता वाले प्रति-प्रसार बीम की उपस्थिति के कारण, डॉपलर-चौड़ा और डॉपलर-मुक्त सिग्नल दोनों प्राप्त किए जा सकते हैं। पूर्व में उच्च इंट्राकैविटी दबावों पर मौजूद होने का लाभ होता है, जो वायुमंडलीय दबाव के नमूनों का विश्लेषण करते समय उपयुक्त होता है, जबकि उत्तरार्द्ध संकीर्ण आवृत्ति विशेषताएं प्रदान करता है, जो आवृत्ति मानक अनुप्रयोगों के लिए महत्वपूर्ण है, लेकिन हस्तक्षेप मुक्त पहचान के लिए संभावनाएं भी खोलता है। . दूसरा, एफएमएस के उपयोग के कारण, अवशोषण और फैलाव दोनों संकेतों का पता लगाया जा सकता है (या उनके संयोजन)। तीसरा, कम आवृत्ति के शोर के प्रभाव को कम करने के लिए, तरंग दैर्ध्य मॉडुलन (wm) को अतिरिक्त रूप से लागू किया जा सकता है, जिसका अर्थ है कि तकनीक को fm या wm मोड में संचालित किया जा सकता है।{{citation needed|date=February 2015}}
एनआईसीई-ओएचएमएस द्वारा विभिन्न प्रकार के संकेत प्राप्त किए जा सकते हैं।{{Citation needed|date=December 2010}} सबसे पूर्व, गुहा में उच्च तीव्रता वाले प्रति-प्रसार बीम की उपस्थिति के कारण, डॉपलर-चौड़ा और डॉपलर-मुक्त सिग्नल दोनों प्राप्त किए जा सकते हैं। पूर्व में उच्च इंट्राकैविटी दबावों पर सम्मलित होने का लाभ होता है, जो वायुमंडलीय दबाव के प्रारूप का विश्लेषण करते समय उपयुक्त होता है, जबकि उत्तरार्द्ध संकीर्ण आवृत्ति विशेषताएं प्रदान करता है, जो आवृत्ति मानक अनुप्रयोगों के लिए महत्वपूर्ण है, लेकिन हस्तक्षेप मुक्त पहचान के लिए संभावनाएं भी होती है। द्वितीय, एफएमएस के उपयोग के कारण, अवशोषण और विस्तार दोनों संकेतों को ज्ञात किया जा सकता है (या उनके संयोजन)। तृतीय, अल्प आवृत्ति के शोर के प्रभाव को अल्प करने के लिए, तरंग दैर्ध्य मॉडुलन (wm) को अतिरिक्त रूप से प्रारम्भ किया जा सकता है, जिसका अर्थ है कि प्रौद्योगिकी को fm या wm मोड में संचालित किया जा सकता है।{{citation needed|date=February 2015}}
पसंद किए जाने वाले ऑपरेशन का तरीका तकनीक के विशेष अनुप्रयोग और प्रचलित प्रायोगिक स्थितियों पर निर्भर करता है, मुख्य रूप से शोर या पृष्ठभूमि संकेत का प्रकार जो पता लगाने की क्षमता को सीमित करता है।
 
रुचि किए जाने वाले ऑपरेशन का उपाए प्रौद्योगिकी के विशेष अनुप्रयोग और प्रचलित प्रायोगिक स्थितियों पर निर्भर करता है, मुख्य रूप से शोर या पृष्ठभूमि संकेत का प्रकार जो ज्ञात करने की क्षमता को सीमित करता है।


=== संकेतों की मॉडलिंग ===
=== संकेतों की मॉडलिंग ===
[[File:NICE OHMS typical signals.jpg|thumb|350px|13 पीपीबी (10 μTorr, 13•10) से विशिष्ट (ए) फ्रीक्वेंसी मॉड्यूलेटेड और (बी) वेवलेंथ मॉड्यूलेटेड डॉप्लर-ब्रॉडेड नाइस-ओएचएमएस सिग्नल<sup>−9</sup> atm) C का<sub>2</sub>H<sub>2</sub>. व्यक्तिगत मार्कर: मापा डेटा; ठोस वक्र: सैद्धांतिक फिट।]]फ़्रीक्वेंसी मॉड्यूलेटेड डॉपलर-ब्रॉड सिग्नल को मूल रूप से साधारण fm-सिग्नल के रूप में तैयार किया जा सकता है, हालांकि यदि संक्रमण वैकल्पिक रूप से संतृप्त है तो एक विस्तारित विवरण का उपयोग किया जाना है। एफएम-सिग्नल पर वेवलेंथ मॉड्यूलेटेड डॉपलर ब्रॉडेड को तरंग दैर्ध्य मॉडुलन के लिए पारंपरिक सिद्धांत को लागू करके तैयार किया जा सकता है।
[[File:NICE OHMS typical signals.jpg|thumb|350px|13 पीपीबी (10 μTorr, 13•10) से विशिष्ट (ए) आवृत्ति संग्राहक और (बी) तरंग दैर्ध्य संग्राहक डॉप्लर-ब्रॉडेड नाइस-ओएचएमएस सिग्नल<sup>−9</sup> atm) C का<sub>2</sub>H<sub>2</sub>. व्यक्तिगत मार्कर: मापा डेटा; ठोस वक्र: सैद्धांतिक फिट।]]आवृत्ति संग्राहक डॉपलर-ब्रॉड सिग्नल को मूल रूप से साधारण fm-सिग्नल के रूप में तैयार किया जा सकता है, चूँकि यदि संक्रमण वैकल्पिक रूप से संतृप्त है तो विस्तारित विवरण का उपयोग किया जाना है। एफएम-सिग्नल पर तरंग दैर्ध्य संग्राहक डॉपलर ब्रॉडेड को तरंग दैर्ध्य मॉडुलन के लिए पारंपरिक सिद्धांत को प्रारम्भ करके तैयार किया जा सकता है।


चूंकि NICE-OHMS में विद्युत क्षेत्र में तीन मोड, एक वाहक और दो साइडबैंड होते हैं, जो गुहा में सकारात्मक और नकारात्मक दिशाओं में फैलते हैं, नौ उप-डॉपलर सिग्नल तक दिखाई दे सकते हैं; चार अवशोषण में दिखाई देते हैं और पांच फैलाव चरण में। इन संकेतों में से प्रत्येक, बदले में, अणुओं के कई समूहों के बीच विभिन्न प्रकार के मोड (जैसे वाहक-वाहक, साइडबैंड-वाहक, विभिन्न संयोजनों में साइडबैंड-साइडबैंड) के बीच बातचीत से उत्पन्न हो सकता है। इसके अलावा, चूंकि उप-डॉपलर संकेतों में आवश्यक रूप से ऑप्टिकल संतृप्ति शामिल होती है, इसलिए इनमें से प्रत्येक इंटरैक्शन को अधिक व्यापक विवरण द्वारा तैयार किया जाना चाहिए। इसका तात्पर्य है कि स्थिति जटिल हो सकती है। वास्तव में, अभी भी कुछ प्रकार के उप-डॉपलर संकेत हैं जिनके लिए अभी तक कोई पर्याप्त सैद्धांतिक विवरण नहीं है।{{Citation needed|date=December 2010}}
चूंकि एनआईसीई-ओएचएमएस में विद्युत क्षेत्र में तीन मोड, वाहक और दो साइडबैंड होते हैं, जो गुहा में सकारात्मक और नकारात्मक दिशाओं में विस्तारित होते हैं, नौ उप-डॉपलर सिग्नल तक दिखाई दे सकते हैं; चार अवशोषण में दिखाई देते हैं और पांच विस्तार चरण में। इन संकेतों में से प्रत्येक, परिवर्तन में, अणुओं के कई समूहों के मध्य विभिन्न प्रकार के मोड (जैसे वाहक-वाहक, साइडबैंड-वाहक, विभिन्न संयोजनों में साइडबैंड-साइडबैंड) के मध्य सम्बन्ध से उत्पन्न हो सकता है। इसके अतिरिक्त, चूंकि उप-डॉपलर संकेतों में आवश्यक रूप से ऑप्टिकल संतृप्ति सम्मलित  होते है, इसलिए इनमें से प्रत्येक इंटरैक्शन को अधिक व्यापक विवरण द्वारा तैयार किया जाना चाहिए। इसका तात्पर्य है कि स्थिति जटिल हो सकती है। वास्तव में, अभी भी कुछ प्रकार के उप-डॉपलर संकेत हैं जिनके लिए अभी तक कोई पर्याप्त सैद्धांतिक विवरण नहीं है।{{Citation needed|date=December 2010}}




=== विशिष्ट संकेत ===
=== विशिष्ट संकेत ===
13 पीपीबी (10 μTorr, 13•10) से कुछ विशिष्ट डॉप्लर-विस्तृत NICE-OHMS सिग्नल<sup>−9</sup> atm) C का<sub>2</sub>H<sub>2</sub> 4800 की चालाकी के साथ एक गुहा में पाया गया, चित्र में दिखाया गया है। (ए) एफएम- और (बी) डब्ल्यूएम-सिग्नल। व्यक्तिगत मार्कर: मापा डेटा; ठोस वक्र: सैद्धांतिक फिट।
13 पीपीबी (10 μTorr, 13•10<sup>−9</sup> atm) से कुछ विशिष्ट डॉप्लर-विस्तृत एनआईसीई-ओएचएमएस सिग्नल C<sub>2</sub>H<sub>2</sub> से 4800 की सूक्ष्मता के साथ कैविटी में पाए गए, चित्र में दिखाया गया है। (ए) एफएम- और (बी) डब्ल्यूएम-सिग्नल व्यक्तिगत मार्कर: मापा डेटा; ठोस वक्र: सैद्धांतिक फिट है।


== प्रदर्शन ==
== प्रदर्शन ==
NICE-OHMS की अनूठी विशेषताओं, विशेष रूप से इसकी उच्च संवेदनशीलता, का अर्थ है कि इसमें विभिन्न प्रकार के अनुप्रयोगों के लिए बड़ी क्षमता है। पहले आवृत्ति मानक अनुप्रयोगों के लिए विकसित किया गया,<ref>J. Ye, L. S. Ma, and J. L. Hall, "Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy," ''Journal of the Optical Society of America B-Optical Physics (JOSA B)'' '''15''' (1), 6-15 (1998)</ref><ref>L. S. Ma, J. Ye, P. Dube, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C<sub>2</sub>H<sub>2</sub> and C<sub>2</sub>HD," ''JOSA B'' '''16''' (12), 2255-2268 (1999)</ref> 10 की आश्चर्यजनक पहचान के साथ<sup>−14</sup> सेमी<sup>-1</sup>, इसे बाद में स्पेक्ट्रोस्कोपिक जांच के साथ-साथ रासायनिक संवेदन और ट्रेस प्रजातियों का पता लगाने के लिए इस्तेमाल किया गया है, जिसमें 10 में पता लगाने की क्षमता है<sup>−11</sup> - 10<sup>-10</sup> सेमी<sup>−1</sup> श्रेणी।<ref>L. Gianfrani, R. W. Fox, and L. Hollberg, "Cavity-enhanced absorption spectroscopy of molecular oxygen," ''JOSA B'' '''16''' (12), 2247-2254 (1999)</ref><ref>C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 mm tunable diode laser," ''Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers'' '''38''' (2A), 920-922 (1999)</ref><ref>J. Bood, A. McIlroy, and D. L. Osborn, "Cavity-enhanced frequency modulation absorption spectroscopy of the sixth overtone band of nitric oxide," presented at the Manipulation and Analysis of Bio-molecules, Cells and Tissues, 2003</ref><ref>N. J. van Leeuwen and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," ''JOSA B'' '''21''' (10), 1713-1721 (2004)</ref><ref>N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, "Measurement of ultraweak transitions in the visible region of molecular oxygen," ''Journal of Molecular Spectroscopy'' '''228''' (1), 83-91 (2004)</ref><ref>M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," ''Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy'' '''60''' (14), 3457-3468 (2004)</ref><ref>J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," ''Journal of Chemical Physics'' '''124''' (8)(2006)</ref><ref>F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C<sub>2</sub>H<sub>2</sub> in the parts per trillion range," ''JOSA B'' '''24''' (6), 1392-1405 (2007)</ref><ref>F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, "Doppler-broadened fiber-laser-based NICE-OHMS - Improved detectability," ''Optics Express'' '''15''' (17), 10822-10831 (2007)</ref> हालाँकि, हालांकि NICE-OHMS तकनीक ने अत्यधिक उच्च पहचान क्षमता प्रदर्शित की है, यह अब तक ट्रेस गैस विश्लेषण के लिए बहुत कम विकसित हुई है।
एनआईसीई-ओएचएमएस की अदभूत विशेषताओं, विशेष रूप से इसकी उच्च संवेदनशीलता, का अर्थ है कि इसमें विभिन्न प्रकार के अनुप्रयोगों के लिए बड़ी क्षमता है। पूर्व आवृत्ति मानक अनुप्रयोगों के लिए विकसित किया गया,<ref>J. Ye, L. S. Ma, and J. L. Hall, "Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy," ''Journal of the Optical Society of America B-Optical Physics (JOSA B)'' '''15''' (1), 6-15 (1998)</ref><ref>L. S. Ma, J. Ye, P. Dube, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C<sub>2</sub>H<sub>2</sub> and C<sub>2</sub>HD," ''JOSA B'' '''16''' (12), 2255-2268 (1999)</ref> 10<sup>−14</sup> cm<sup>−1</sup> की आश्चर्यजनक पहचान के साथ, इसे पश्चात में स्पेक्ट्रोस्कोपिक परीक्षण के साथ-साथ रासायनिक संवेदन और ट्रेस प्रजातियों का ज्ञात करने के लिए उपयोग किया गया है, जिसमें 10<sup>−11</sup> - 10<sup>−10</sup> cm<sup>−1</sup> में ज्ञात करने की क्षमता है।<ref>L. Gianfrani, R. W. Fox, and L. Hollberg, "Cavity-enhanced absorption spectroscopy of molecular oxygen," ''JOSA B'' '''16''' (12), 2247-2254 (1999)</ref><ref>C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 mm tunable diode laser," ''Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers'' '''38''' (2A), 920-922 (1999)</ref><ref>J. Bood, A. McIlroy, and D. L. Osborn, "Cavity-enhanced frequency modulation absorption spectroscopy of the sixth overtone band of nitric oxide," presented at the Manipulation and Analysis of Bio-molecules, Cells and Tissues, 2003</ref><ref>N. J. van Leeuwen and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," ''JOSA B'' '''21''' (10), 1713-1721 (2004)</ref><ref>N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, "Measurement of ultraweak transitions in the visible region of molecular oxygen," ''Journal of Molecular Spectroscopy'' '''228''' (1), 83-91 (2004)</ref><ref>M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," ''Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy'' '''60''' (14), 3457-3468 (2004)</ref><ref>J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," ''Journal of Chemical Physics'' '''124''' (8)(2006)</ref><ref>F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C<sub>2</sub>H<sub>2</sub> in the parts per trillion range," ''JOSA B'' '''24''' (6), 1392-1405 (2007)</ref><ref>F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, "Doppler-broadened fiber-laser-based NICE-OHMS - Improved detectability," ''Optics Express'' '''15''' (17), 10822-10831 (2007)</ref>चूँकि एनआईसीई-ओएचएमएस प्रौद्योगिकी ने अत्यधिक उच्च पहचान क्षमता प्रदर्शित की है, यह अब तक ट्रेस गैस विश्लेषण के लिए अधिक अल्प विकसित हुई है।
 
एनआईसीई-ओएचएमएस प्रौद्योगिकी के कार्यान्वयन के लिए सबसे बड़ी बाधाओं में से निर्विवाद रूप से लेजर की आवृत्ति को कैविटी मोड में लॉक करना है। यद्यपि लॉक के प्रदर्शन के लिए आवश्यकताएं अन्य प्रत्यक्ष cw-CEAS प्रौद्योगिकीों (शोर-प्रतिरक्षा सिद्धांत के कारण) की तुलना में अल्प कठोर हैं, सिग्नल अधिग्रहण के समय लेजर आवृत्ति को अभी भी कैविटी मोड में लॉक रखा जाना चाहिए, अर्थात इसे चाहिए मोड का पालन करें जबकि कैविटी स्कैन की जाती है, जिसमें संभावित तरंग दैर्ध्य मॉड्यूलेशन भी सम्मलित  है। इन लक्ष्यों को प्राप्त करना जटिल हो सकता है यदि लेजर की फ्री-रनिंग रेखा की चौडाई कैविटी मोड की चौड़ाई से अधिक बड़ी है और यदि लेजर निकट के प्रौद्योगिकीी शोर के कारण अज्ञात आवृत्ति भ्रमण के लिए प्रवण है। यह सामान्यतः तब होता है जब मध्यम या उच्च चालाकी गुहाओं (अल्प  kHz श्रेणी  में ट्रांसमिशन मोड चौड़ाई के साथ) और मानक प्रकार के लेज़रों के साथ कार्य करते हैं,उदाहरण के लिए: बाहरी कैविटी डायोड लेजर (ईसीडीएल), मेगाहर्ट्ज श्रेणी में फ्री-रनिंग रेखा की चौडाई के साथ है। उच्च बैंडविथ (सामान्यतः पर कुछ मेगाहर्ट्ज) और उच्च लाभ के साथ इलेक्ट्रॉनिक फीडबैक लूप को लेज़र शक्ति की पर्याप्त मात्रा को कैविटी मोड में जोड़ने और लॉक के स्थिर प्रदर्शन को सुनिश्चित करने के लिए आवश्यक है।{{citation needed|date=February 2015}}
 
संकीर्ण रेखा की चौडाई फाइबर लेज़रों के आगमन के साथ, लेज़र लॉकिंग से जुड़ी समस्याओं को अधिक अल्प किया जा सकता है। फ्री-रनिंग रेखा की चौडाई के साथ फाइबर लेसर 1 kHz (एक सेकंड के अंश पर मापा जाता है) के रूप में संकीर्ण है, इस प्रकार ईसीडीएल के नीचे परिमाण के दो से तीन आदेश आज उपलब्ध हैं। ज्ञात है, यह सुविधा फीडबैक इलेक्ट्रॉनिक्स (10 kHz जितनी अल्प बैंडविड्थ पर्याप्त है) और लॉकिंग प्रक्रिया को अधिक सरल बनाती है। इसके अतिरिक्त, फाइबर लेसरों के डिजाइन और कार्य सिद्धांत उन्हें बाहरी अनियमित से अल्प प्रभावित करते हैं, उदाहरण के लिए: यांत्रिक और ध्वनिक शोर, अन्य ठोस अवस्था लेजर या ईसीडीएल की तुलना में है। इसके अतिरिक्त, फाइबर आधारित इलेक्ट्रो-ऑप्टिक न्यूनाधिक (फाइबर ईओएम) जैसे एकीकृत-ऑप्टिक्स घटकों की उपलब्धता, सेटअप की जटिलता को और अल्प करने की संभावना प्रदान करती है। [[फाइबर लेजर]] और फाइबर ईओएम पर आधारित एनआईसीई-ओएचएमएस प्रणाली की प्रथम प्राप्ति प्रदर्शित की गई है। यह दिखाया गया कि C<sub>2</sub>H<sub>2</sub> को 4.5•10<sup>−12</sup> atm (4.5 पीपीटी) तक ज्ञात लगाया जा सकता है ऐसे उपकरण के साथ जो अधिक शक्तिशाली है।<ref>F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C<sub>2</sub>H<sub>2</sub> in the parts per trillion range," ''JOSA B'' '''24''' (6), 1392-1405 (2007)</ref> यह स्पष्ट है कि यह एनआईसीई-ओएचएमएस को अल्ट्रा-सेंसिटिव ट्रेस स्पीशीज़ डिटेक्शन के लिए व्यावहारिक रूप से उपयोगी प्रौद्योगिकी बनने के निकट ले आया है!<ref>A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, "Noise-immune cavity-enhanced optical heterodyne molecular spectrometry: Current status and future potential," ''Applied Physics B'' '''92''', 313-326 (2008).</ref>


एनआईसीई-ओएचएमएस तकनीक के कार्यान्वयन के लिए सबसे बड़ी बाधाओं में से एक निर्विवाद रूप से लेजर की आवृत्ति को कैविटी मोड में लॉक करना है। यद्यपि लॉक के प्रदर्शन के लिए आवश्यकताएं अन्य प्रत्यक्ष cw-CEAS तकनीकों (शोर-प्रतिरक्षा सिद्धांत के कारण) की तुलना में कम कठोर हैं, सिग्नल अधिग्रहण के दौरान लेजर आवृत्ति को अभी भी कैविटी मोड में लॉक रखा जाना चाहिए, अर्थात इसे चाहिए मोड का पालन करें जबकि कैविटी स्कैन की जाती है, जिसमें संभावित वेवलेंथ मॉड्यूलेशन भी शामिल है। इन लक्ष्यों को प्राप्त करना मुश्किल हो सकता है यदि लेजर की फ्री-रनिंग लाइनविड्थ कैविटी मोड की चौड़ाई से काफी बड़ी है और यदि लेजर आसपास के तकनीकी शोर के कारण अचानक आवृत्ति भ्रमण के लिए प्रवण है। यह आमतौर पर तब होता है जब मध्यम या उच्च चालाकी गुहाओं (कम kHz रेंज में ट्रांसमिशन मोड चौड़ाई के साथ) और मानक प्रकार के लेज़रों के साथ काम करते हैं, उदा। बाहरी कैविटी डायोड लेजर (ECDLs), मेगाहर्ट्ज रेंज में फ्री-रनिंग लाइनविड्थ के साथ। उच्च बैंडविथ (आमतौर पर कुछ मेगाहर्ट्ज) और उच्च लाभ के साथ इलेक्ट्रॉनिक फीडबैक लूप को लेज़र पावर की पर्याप्त मात्रा को कैविटी मोड में जोड़ने और लॉक के स्थिर प्रदर्शन को सुनिश्चित करने के लिए आवश्यक है।{{citation needed|date=February 2015}}
संकीर्ण लाइनविड्थ फाइबर लेज़रों के आगमन के साथ, लेज़र लॉकिंग से जुड़ी समस्याओं को काफी कम किया जा सकता है। फ्री-रनिंग लिनिविड्थ के साथ फाइबर लेसर 1 kHz (एक सेकंड के एक अंश पर मापा जाता है) के रूप में संकीर्ण है, इस प्रकार ईसीडीएल के नीचे परिमाण के दो से तीन आदेश आज उपलब्ध हैं। जाहिर है, यह सुविधा फीडबैक इलेक्ट्रॉनिक्स (10 kHz जितनी कम बैंडविड्थ पर्याप्त है) और लॉकिंग प्रक्रिया को काफी सरल बनाती है। इसके अलावा, फाइबर लेसरों के डिजाइन और कार्य सिद्धांत उन्हें बाहरी गड़बड़ी से कम प्रभावित करते हैं, उदा। यांत्रिक और ध्वनिक शोर, अन्य ठोस अवस्था लेजर या ईसीडीएल की तुलना में। इसके अलावा, फाइबर आधारित इलेक्ट्रो-ऑप्टिक मॉड्यूलेटर (फाइबर ईओएम) जैसे एकीकृत-ऑप्टिक्स घटकों की उपलब्धता, सेटअप की जटिलता को और कम करने की संभावना प्रदान करती है। [[फाइबर लेजर]] और फाइबर ईओएम पर आधारित एनआईसीई-ओएचएमएस प्रणाली की पहली प्राप्ति हाल ही में प्रदर्शित की गई है। यह दिखाया गया कि सी<sub>2</sub>H<sub>2</sub> 4.5•10 तक पता लगाया जा सकता है<sup>−12</sup> एटीएम (4.5 पीपीटी) एक ऐसे उपकरण के साथ जो बहुत मजबूत है।<ref>F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C<sub>2</sub>H<sub>2</sub> in the parts per trillion range," ''JOSA B'' '''24''' (6), 1392-1405 (2007)</ref> यह स्पष्ट है कि यह NICE-OHMS को अल्ट्रा-सेंसिटिव ट्रेस स्पीशीज़ डिटेक्शन के लिए व्यावहारिक रूप से उपयोगी तकनीक बनने के करीब ले आया है!<ref>A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, "Noise-immune cavity-enhanced optical heterodyne molecular spectrometry: Current status and future potential," ''Applied Physics B'' '''92''', 313-326 (2008).</ref>




== यह भी देखें ==
== यह भी देखें ==
* [[ऑप्टिकल हेटेरोडाइन का पता लगाना]]
* [[ऑप्टिकल हेटेरोडाइन का पता लगाना|ऑप्टिकल हेटेरोडाइन का ज्ञात लगाना]]
* [[कैविटी रिंग डाउन स्पेक्ट्रोस्कोपी]]|कैविटी रिंग डाउन स्पेक्ट्रोस्कोपी (CRDS)
* [[कैविटी रिंग डाउन स्पेक्ट्रोस्कोपी]] (सीआरडीएस)
* लेजर अवशोषण स्पेक्ट्रोमेट्री
* लेजर अवशोषण स्पेक्ट्रोमेट्री
* [[लेज़र डायोड]]
* [[लेज़र डायोड]]
* [[ट्यून करने योग्य डायोड लेजर अवशोषण स्पेक्ट्रोस्कोपी]] | ट्यून करने योग्य डायोड लेजर अवशोषण स्पेक्ट्रोस्कोपी (टीडीएलएएस)
* [[ट्यून करने योग्य डायोड लेजर अवशोषण स्पेक्ट्रोस्कोपी]] (टीडीएलएएस)
* लेजर लेख की सूची
* लेजर लेख की सूची


Line 37: Line 40:


{{Lasers}}
{{Lasers}}
[[Category: स्पेक्ट्रोस्कोपी]]


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with unsourced statements from December 2010]]
[[Category:Articles with unsourced statements from February 2015]]
[[Category:Collapse templates]]
[[Category:Created On 14/02/2023]]
[[Category:Created On 14/02/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:स्पेक्ट्रोस्कोपी]]

Latest revision as of 10:34, 12 March 2023

शोर-प्रतिरक्षा गुहा-वर्धित ऑप्टिकल-हेटेरोडाइन आणविक स्पेक्ट्रोस्कोपी (एनआईसीई-ओएचएमएस) अति-संवेदनशील लेजर-आधारित अवशोषण प्रौद्योगिकी है जो अवशोषण स्पेक्ट्रोमेट्री (एएस) द्वारा गैस चरण में एकाग्रता या प्रजातियों की मात्रा का आकलन करने के लिए लेजर प्रकाश का उपयोग करती है।

सिद्धांत

एनआईसीई-ओएचएमएस प्रौद्योगिकी कैविटी वर्धित अवशोषण स्पेक्ट्रोमेट्री (सीईएएस) को लंबे समय तक सम्बन्ध की लंबाई के लिए आवृत्ति मॉड्यूलेशन (fm) स्पेक्ट्रोमेट्री एफएमएस के साथ 1 / f शोर को अल्प करने के लिए जोड़ती है। गुहा के मुक्त वर्णक्रमीय श्रेणी (एफएसआर) के समान fm-मॉड्यूलेशन आवृत्ति का चयन करके, वर्णक्रमीय fm-ट्रिपलेट के सभी घटकों को समान उपाए से गुहा के माध्यम से प्रेषित किया जाता है। इसलिए, गुहा fm-ट्रिपलेट के संतुलन से निष्कर्ष नहीं करता है, जो अन्यथा fm-पृष्ठभूमि संकेतों को उत्पति देगा। यह गुहा के संचरण मोड के संबंध में लेजर आवृत्ति के किसी भी उतार-चढ़ाव को तीव्रता मॉड्यूलेशन में परिवर्तित नहीं करता है, जो तीव्रता शोर की प्रारम्भ से ज्ञात करने की क्षमता को निकृष्ट कर देगा। इसे "शोर प्रतिरक्षा" कहा जाता है। इन सबका तात्पर्य यह है कि एफएमएस का प्रदर्शन किया जा सकता है जैसे कि गुहा सम्मलित नहीं थे, फिर भी लंबे समय तक सम्बन्ध की लंबाई से पूर्ण रूप से लाभान्वित होते हैं।[citation needed]


संकेतों के प्रकार

एनआईसीई-ओएचएमएस द्वारा विभिन्न प्रकार के संकेत प्राप्त किए जा सकते हैं।[citation needed] सबसे पूर्व, गुहा में उच्च तीव्रता वाले प्रति-प्रसार बीम की उपस्थिति के कारण, डॉपलर-चौड़ा और डॉपलर-मुक्त सिग्नल दोनों प्राप्त किए जा सकते हैं। पूर्व में उच्च इंट्राकैविटी दबावों पर सम्मलित होने का लाभ होता है, जो वायुमंडलीय दबाव के प्रारूप का विश्लेषण करते समय उपयुक्त होता है, जबकि उत्तरार्द्ध संकीर्ण आवृत्ति विशेषताएं प्रदान करता है, जो आवृत्ति मानक अनुप्रयोगों के लिए महत्वपूर्ण है, लेकिन हस्तक्षेप मुक्त पहचान के लिए संभावनाएं भी होती है। द्वितीय, एफएमएस के उपयोग के कारण, अवशोषण और विस्तार दोनों संकेतों को ज्ञात किया जा सकता है (या उनके संयोजन)। तृतीय, अल्प आवृत्ति के शोर के प्रभाव को अल्प करने के लिए, तरंग दैर्ध्य मॉडुलन (wm) को अतिरिक्त रूप से प्रारम्भ किया जा सकता है, जिसका अर्थ है कि प्रौद्योगिकी को fm या wm मोड में संचालित किया जा सकता है।[citation needed]

रुचि किए जाने वाले ऑपरेशन का उपाए प्रौद्योगिकी के विशेष अनुप्रयोग और प्रचलित प्रायोगिक स्थितियों पर निर्भर करता है, मुख्य रूप से शोर या पृष्ठभूमि संकेत का प्रकार जो ज्ञात करने की क्षमता को सीमित करता है।

संकेतों की मॉडलिंग

13 पीपीबी (10 μTorr, 13•10) से विशिष्ट (ए) आवृत्ति संग्राहक और (बी) तरंग दैर्ध्य संग्राहक डॉप्लर-ब्रॉडेड नाइस-ओएचएमएस सिग्नल−9 atm) C का2H2. व्यक्तिगत मार्कर: मापा डेटा; ठोस वक्र: सैद्धांतिक फिट।

आवृत्ति संग्राहक डॉपलर-ब्रॉड सिग्नल को मूल रूप से साधारण fm-सिग्नल के रूप में तैयार किया जा सकता है, चूँकि यदि संक्रमण वैकल्पिक रूप से संतृप्त है तो विस्तारित विवरण का उपयोग किया जाना है। एफएम-सिग्नल पर तरंग दैर्ध्य संग्राहक डॉपलर ब्रॉडेड को तरंग दैर्ध्य मॉडुलन के लिए पारंपरिक सिद्धांत को प्रारम्भ करके तैयार किया जा सकता है।

चूंकि एनआईसीई-ओएचएमएस में विद्युत क्षेत्र में तीन मोड, वाहक और दो साइडबैंड होते हैं, जो गुहा में सकारात्मक और नकारात्मक दिशाओं में विस्तारित होते हैं, नौ उप-डॉपलर सिग्नल तक दिखाई दे सकते हैं; चार अवशोषण में दिखाई देते हैं और पांच विस्तार चरण में। इन संकेतों में से प्रत्येक, परिवर्तन में, अणुओं के कई समूहों के मध्य विभिन्न प्रकार के मोड (जैसे वाहक-वाहक, साइडबैंड-वाहक, विभिन्न संयोजनों में साइडबैंड-साइडबैंड) के मध्य सम्बन्ध से उत्पन्न हो सकता है। इसके अतिरिक्त, चूंकि उप-डॉपलर संकेतों में आवश्यक रूप से ऑप्टिकल संतृप्ति सम्मलित होते है, इसलिए इनमें से प्रत्येक इंटरैक्शन को अधिक व्यापक विवरण द्वारा तैयार किया जाना चाहिए। इसका तात्पर्य है कि स्थिति जटिल हो सकती है। वास्तव में, अभी भी कुछ प्रकार के उप-डॉपलर संकेत हैं जिनके लिए अभी तक कोई पर्याप्त सैद्धांतिक विवरण नहीं है।[citation needed]


विशिष्ट संकेत

13 पीपीबी (10 μTorr, 13•10−9 atm) से कुछ विशिष्ट डॉप्लर-विस्तृत एनआईसीई-ओएचएमएस सिग्नल C2H2 से 4800 की सूक्ष्मता के साथ कैविटी में पाए गए, चित्र में दिखाया गया है। (ए) एफएम- और (बी) डब्ल्यूएम-सिग्नल व्यक्तिगत मार्कर: मापा डेटा; ठोस वक्र: सैद्धांतिक फिट है।

प्रदर्शन

एनआईसीई-ओएचएमएस की अदभूत विशेषताओं, विशेष रूप से इसकी उच्च संवेदनशीलता, का अर्थ है कि इसमें विभिन्न प्रकार के अनुप्रयोगों के लिए बड़ी क्षमता है। पूर्व आवृत्ति मानक अनुप्रयोगों के लिए विकसित किया गया,[1][2] 10−14 cm−1 की आश्चर्यजनक पहचान के साथ, इसे पश्चात में स्पेक्ट्रोस्कोपिक परीक्षण के साथ-साथ रासायनिक संवेदन और ट्रेस प्रजातियों का ज्ञात करने के लिए उपयोग किया गया है, जिसमें 10−11 - 10−10 cm−1 में ज्ञात करने की क्षमता है।[3][4][5][6][7][8][9][10][11]चूँकि एनआईसीई-ओएचएमएस प्रौद्योगिकी ने अत्यधिक उच्च पहचान क्षमता प्रदर्शित की है, यह अब तक ट्रेस गैस विश्लेषण के लिए अधिक अल्प विकसित हुई है।

एनआईसीई-ओएचएमएस प्रौद्योगिकी के कार्यान्वयन के लिए सबसे बड़ी बाधाओं में से निर्विवाद रूप से लेजर की आवृत्ति को कैविटी मोड में लॉक करना है। यद्यपि लॉक के प्रदर्शन के लिए आवश्यकताएं अन्य प्रत्यक्ष cw-CEAS प्रौद्योगिकीों (शोर-प्रतिरक्षा सिद्धांत के कारण) की तुलना में अल्प कठोर हैं, सिग्नल अधिग्रहण के समय लेजर आवृत्ति को अभी भी कैविटी मोड में लॉक रखा जाना चाहिए, अर्थात इसे चाहिए मोड का पालन करें जबकि कैविटी स्कैन की जाती है, जिसमें संभावित तरंग दैर्ध्य मॉड्यूलेशन भी सम्मलित है। इन लक्ष्यों को प्राप्त करना जटिल हो सकता है यदि लेजर की फ्री-रनिंग रेखा की चौडाई कैविटी मोड की चौड़ाई से अधिक बड़ी है और यदि लेजर निकट के प्रौद्योगिकीी शोर के कारण अज्ञात आवृत्ति भ्रमण के लिए प्रवण है। यह सामान्यतः तब होता है जब मध्यम या उच्च चालाकी गुहाओं (अल्प kHz श्रेणी में ट्रांसमिशन मोड चौड़ाई के साथ) और मानक प्रकार के लेज़रों के साथ कार्य करते हैं,उदाहरण के लिए: बाहरी कैविटी डायोड लेजर (ईसीडीएल), मेगाहर्ट्ज श्रेणी में फ्री-रनिंग रेखा की चौडाई के साथ है। उच्च बैंडविथ (सामान्यतः पर कुछ मेगाहर्ट्ज) और उच्च लाभ के साथ इलेक्ट्रॉनिक फीडबैक लूप को लेज़र शक्ति की पर्याप्त मात्रा को कैविटी मोड में जोड़ने और लॉक के स्थिर प्रदर्शन को सुनिश्चित करने के लिए आवश्यक है।[citation needed]

संकीर्ण रेखा की चौडाई फाइबर लेज़रों के आगमन के साथ, लेज़र लॉकिंग से जुड़ी समस्याओं को अधिक अल्प किया जा सकता है। फ्री-रनिंग रेखा की चौडाई के साथ फाइबर लेसर 1 kHz (एक सेकंड के अंश पर मापा जाता है) के रूप में संकीर्ण है, इस प्रकार ईसीडीएल के नीचे परिमाण के दो से तीन आदेश आज उपलब्ध हैं। ज्ञात है, यह सुविधा फीडबैक इलेक्ट्रॉनिक्स (10 kHz जितनी अल्प बैंडविड्थ पर्याप्त है) और लॉकिंग प्रक्रिया को अधिक सरल बनाती है। इसके अतिरिक्त, फाइबर लेसरों के डिजाइन और कार्य सिद्धांत उन्हें बाहरी अनियमित से अल्प प्रभावित करते हैं, उदाहरण के लिए: यांत्रिक और ध्वनिक शोर, अन्य ठोस अवस्था लेजर या ईसीडीएल की तुलना में है। इसके अतिरिक्त, फाइबर आधारित इलेक्ट्रो-ऑप्टिक न्यूनाधिक (फाइबर ईओएम) जैसे एकीकृत-ऑप्टिक्स घटकों की उपलब्धता, सेटअप की जटिलता को और अल्प करने की संभावना प्रदान करती है। फाइबर लेजर और फाइबर ईओएम पर आधारित एनआईसीई-ओएचएमएस प्रणाली की प्रथम प्राप्ति प्रदर्शित की गई है। यह दिखाया गया कि C2H2 को 4.5•10−12 atm (4.5 पीपीटी) तक ज्ञात लगाया जा सकता है ऐसे उपकरण के साथ जो अधिक शक्तिशाली है।[12] यह स्पष्ट है कि यह एनआईसीई-ओएचएमएस को अल्ट्रा-सेंसिटिव ट्रेस स्पीशीज़ डिटेक्शन के लिए व्यावहारिक रूप से उपयोगी प्रौद्योगिकी बनने के निकट ले आया है![13]


यह भी देखें

संदर्भ

  1. J. Ye, L. S. Ma, and J. L. Hall, "Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy," Journal of the Optical Society of America B-Optical Physics (JOSA B) 15 (1), 6-15 (1998)
  2. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD," JOSA B 16 (12), 2255-2268 (1999)
  3. L. Gianfrani, R. W. Fox, and L. Hollberg, "Cavity-enhanced absorption spectroscopy of molecular oxygen," JOSA B 16 (12), 2247-2254 (1999)
  4. C. Ishibashi and H. Sasada, "Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 mm tunable diode laser," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 38 (2A), 920-922 (1999)
  5. J. Bood, A. McIlroy, and D. L. Osborn, "Cavity-enhanced frequency modulation absorption spectroscopy of the sixth overtone band of nitric oxide," presented at the Manipulation and Analysis of Bio-molecules, Cells and Tissues, 2003
  6. N. J. van Leeuwen and A. C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," JOSA B 21 (10), 1713-1721 (2004)
  7. N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, "Measurement of ultraweak transitions in the visible region of molecular oxygen," Journal of Molecular Spectroscopy 228 (1), 83-91 (2004)
  8. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared," Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy 60 (14), 3457-3468 (2004)
  9. J. Bood, A. McIlroy, and D. L. Osborn, "Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy," Journal of Chemical Physics 124 (8)(2006)
  10. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range," JOSA B 24 (6), 1392-1405 (2007)
  11. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, "Doppler-broadened fiber-laser-based NICE-OHMS - Improved detectability," Optics Express 15 (17), 10822-10831 (2007)
  12. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, "Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range," JOSA B 24 (6), 1392-1405 (2007)
  13. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, "Noise-immune cavity-enhanced optical heterodyne molecular spectrometry: Current status and future potential," Applied Physics B 92, 313-326 (2008).