गैलीलियन अपरिवर्तनीयता: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Low-velocity approximation for special relativity}} {{More citations needed|date=January 2008}} गैलीलियन इनवेरिएंस या...")
 
 
(7 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{short description|Low-velocity approximation for special relativity}}
'''गैलीलियन अपरिवर्तनीयता''' अथवा '''गैलीलियन सापेक्षता''' बताती है कि गति के नियम संदर्भ के सभी जड़त्वीय वृत्ति में समान हैं। [[गैलीलियो गैलीली]] ने पहली बार 1632 में अपने ''[[दो प्रमुख विश्व प्रणालियों के संबंध में संवाद]]'' में इस सिद्धांत का वर्णन किया था, जिसमें गैलीलियो के जहाज का उपयोग किया गया था, जो एक सुचारू समुद्र पर, बिना हिले-डुले निरंतर वेग से यात्रा कर रहा था; छत के नीचे कोई भी पर्यवेक्षक यह नहीं बता पाएगा कि जहाज चल रहा था या स्थिर था।
{{More citations needed|date=January 2008}}
गैलीलियन इनवेरिएंस या गैलीलियन रिलेटिविटी बताती है कि गति के नियम संदर्भ के सभी जड़त्वीय फ्रेम में समान हैं। [[गैलीलियो गैलीली]] ने पहली बार 1632 में अपने ''[[दो प्रमुख विश्व प्रणालियों के संबंध में संवाद]]'' में इस सिद्धांत का वर्णन किया था, जिसमें गैलीलियो के जहाज का उपयोग किया गया था, जो एक चिकने समुद्र पर, बिना हिले-डुले निरंतर वेग से यात्रा कर रहा था; डेक के नीचे कोई भी पर्यवेक्षक यह नहीं बता पाएगा कि जहाज चल रहा था या स्थिर था।


== सूत्रीकरण ==
== सूत्रीकरण ==
विशेष रूप से, गैलीलियन इनवेरिएंस शब्द आज आमतौर पर इस सिद्धांत को संदर्भित करता है जैसा कि [[न्यूटोनियन यांत्रिकी]] पर लागू होता है, अर्थात न्यूटन के गति के नियम [[गैलीलियन परिवर्तन]] द्वारा एक दूसरे से संबंधित सभी फ़्रेमों में होते हैं। दूसरे शब्दों में, इस तरह के परिवर्तन से एक दूसरे से जुड़े सभी फ्रेम जड़त्वीय होते हैं (अर्थात् इन फ्रेमों में न्यूटन की गति का समीकरण मान्य है)। इस संदर्भ में इसे कभी-कभी न्यूटोनियन सापेक्षता कहा जाता है।
विशेष रूप से, गैलीलियन अपरिवर्तनीयता शब्द आज सामान्यतः उस सिद्धांत को संदर्भित करता है जैसा कि [[न्यूटोनियन यांत्रिकी|न्यूटनी यांत्रिकी]] पर लागू होता है, अर्थात न्यूटन के गति के नियम [[गैलीलियन परिवर्तन]] द्वारा एक दूसरे से संबंधित सभी वृत्तियों में होते हैं। दूसरे शब्दों में, इस तरह के परिवर्तन से एक दूसरे से जुड़े सभी वृत्ति जड़त्वीय होते हैं (अर्थात् इन वृत्तियों में न्यूटन की गति का समीकरण मान्य है)। इस संदर्भ में इसे कभी-कभी न्यूटनी सापेक्षता कहा जाता है।


न्यूटन के सिद्धांत के स्वयंसिद्धों में से हैं:
निम्न न्यूटन के सिद्धांत के स्वयंसिद्धों में से हैं:
#एक [[पूर्ण स्थान और समय]] मौजूद है, जिसमें न्यूटन के नियम सत्य हैं। जड़त्वीय ढाँचा निरपेक्ष स्थान के सापेक्ष एकसमान गति में एक संदर्भ ढाँचा है।
#एक [[पूर्ण स्थान और समय]] उपस्थित है, जिसमें न्यूटन के नियम सत्य हैं। जड़त्वीय ढाँचा निरपेक्ष स्थान के सापेक्ष एकसमान गति में एक संदर्भ ढाँचा है।
# सभी जड़त्वीय फ्रेम एक पूर्ण स्थान और समय साझा करते हैं।
# सभी जड़त्वीय वृत्ति एक पूर्ण स्थान और समय साझा करते हैं।


गैलिलियन सापेक्षता को निम्नानुसार दिखाया जा सकता है। दो जड़त्वीय फ्रेम S और S' पर विचार करें। S में एक भौतिक घटना में स्थिति निर्देशांक r = (x, y, z) और S में समय t होगा, और r' = (x' , y' , z' ) और समय t' S' में होगा। ऊपर दिए गए दूसरे स्वयंसिद्ध के अनुसार, दो फ्रेम में घड़ी को सिंक्रनाइज़ किया जा सकता है और मान लिया जा सकता है कि t = t'मान लीजिए S' वेग v के साथ S के सापेक्ष समान गति में है। एक बिंदु वस्तु पर विचार करें जिसकी स्थिति S' में r' (t) और S में r(t) द्वारा दी गई है। हम देखते हैं कि
गैलिलियन सापेक्षता को निम्नानुसार दिखाया जा सकता है। दो जड़त्वीय वृत्ति S और S' पर विचार करें। S में एक भौतिक घटना में स्थिति निर्देशांक r = (x, y, z) और S में समय t होगा, और r' = (x' , y' , z' ) और समय t' S' में होगा। ऊपर दिए गए दूसरे स्वयंसिद्ध के अनुसार, दो वृत्ति में घड़ी को समकालिक किया जा सकता है और मान लिया जा सकता है कि t = t' है। मान लीजिए S' वेग v के साथ S के सापेक्ष समान गति में है। एक बिंदु वस्तु पर विचार करें जिसकी स्थिति S' में r' (t) और S में r(t) द्वारा दी गई है। हम देखते हैं कि
:<math>r'(t) = r(t) - v t.\,</math>
:<math>r'(t) = r(t) - v t.\,</math>
कण का वेग स्थिति के व्युत्पन्न समय द्वारा दिया जाता है:
कण का वेग स्थिति के व्युत्पन्न समय द्वारा दिया जाता है:
:<math>u'(t) = \frac{d}{d t} r'(t) = \frac{d}{d t} r(t) - v = u(t) - v.</math>
:<math>u'(t) = \frac{d}{d t} r'(t) = \frac{d}{d t} r(t) - v = u(t) - v.</math>
एक और अंतर दो फ़्रेमों में त्वरण देता है:
एक और अंतर दो वृत्तियों में त्वरण देता है:
:<math>a'(t) = \frac{d}{d t} u'(t) = \frac{d}{d t} u(t) - 0 = a(t).</math>
:<math>a'(t) = \frac{d}{d t} u'(t) = \frac{d}{d t} u(t) - 0 = a(t).</math>
यह सरल लेकिन महत्वपूर्ण परिणाम है जो गैलिलियन सापेक्षता को दर्शाता है। यह मानते हुए कि द्रव्यमान सभी जड़त्वीय फ्रेमों में अपरिवर्तनीय है, उपरोक्त समीकरण न्यूटन के यांत्रिकी के नियमों को दर्शाता है, यदि एक फ्रेम में मान्य है, तो सभी फ्रेमों के लिए होना चाहिए।<ref>{{cite book |last1=McComb |first1=W. D. |title=गतिशीलता और सापेक्षता|date=1999 |publisher=[[Oxford University Press]] |location=Oxford [etc.] |isbn=0-19-850112-9 |pages=22–24}}</ref> लेकिन यह माना जाता है कि यह पूर्ण स्थान में है, इसलिए गैलीलियन सापेक्षता रखती है।
यह सरल लेकिन महत्वपूर्ण परिणाम है जो गैलिलियन सापेक्षता को दर्शाता है। यह मानते हुए कि द्रव्यमान सभी जड़त्वीय वृत्तियों में अपरिवर्तनीय है, उपरोक्त समीकरण न्यूटन के यांत्रिकी के नियमों को दर्शाता है, यदि एक वृत्ति में मान्य है, तो सभी वृत्तियों के लिए मान्य होना चाहिए।<ref>{{cite book |last1=McComb |first1=W. D. |title=गतिशीलता और सापेक्षता|date=1999 |publisher=[[Oxford University Press]] |location=Oxford [etc.] |isbn=0-19-850112-9 |pages=22–24}}</ref> लेकिन यह माना जाता है कि यह पूर्ण स्थान में है, इसलिए गैलीलियन सापेक्षता रखती है।


=== न्यूटन का सिद्धांत बनाम [[विशेष सापेक्षता]] ===
=== न्यूटन का सिद्धांत बनाम [[विशेष सापेक्षता]] ===
न्यूटोनियन सापेक्षता और विशेष सापेक्षता के बीच तुलना की जा सकती है।
न्यूटनी सापेक्षता और विशेष सापेक्षता के बीच तुलना की जा सकती है।


न्यूटन के सिद्धांत की कुछ धारणाएँ और गुण हैं:
निम्न न्यूटन के सिद्धांत की कुछ धारणाएँ और गुण हैं:
# अपरिमित रूप से अनेक जड़त्वीय ढांचों का अस्तित्व। प्रत्येक फ्रेम अनंत आकार का है (संपूर्ण ब्रह्मांड को कई रैखिक समतुल्य फ्रेम द्वारा कवर किया जा सकता है)। कोई भी दो फ्रेम आपेक्षिक एकसमान गति में हो सकते हैं। (ऊपर व्युत्पन्न यांत्रिकी की सापेक्ष प्रकृति से पता चलता है कि पूर्ण स्थान धारणा आवश्यक नहीं है।)
# अपरिमित रूप से अनेक जड़त्वीय वृत्तियों का अस्तित्व है। प्रत्येक वृत्ति अनंत आकार की है (संपूर्ण ब्रह्मांड को कई रैखिक समतुल्य वृत्ति द्वारा आच्छादित किया जा सकता है)। कोई भी दो वृत्ति आपेक्षिक एकसमान गति में हो सकते हैं। (ऊपर व्युत्पन्न यांत्रिकी की सापेक्ष प्रकृति से पता चलता है कि पूर्ण स्थान धारणा आवश्यक नहीं है।)
# जड़त्वीय फ्रेम समान गति के सभी संभावित सापेक्ष रूपों में गति कर सकते हैं।
# जड़त्वीय वृत्ति समान गति के सभी संभावित सापेक्ष रूपों में गति कर सकते हैं।
# बीता हुआ समय की एक सार्वभौमिक, या निरपेक्ष, धारणा है।
# बीते हुए समय की एक सार्वभौमिक, या निरपेक्ष, धारणा है।
# दो जड़त्वीय फ्रेम गैलीलियन परिवर्तन से संबंधित हैं।
# दो जड़त्वीय वृत्ति गैलीलियन परिवर्तन से संबंधित हैं।
# सभी जड़त्वीय फ्रेम में, न्यूटन के नियम और गुरुत्वाकर्षण, धारण करते हैं।
# सभी जड़त्वीय वृत्ति में, न्यूटन के नियम और गुरुत्वाकर्षण, धारण करते हैं।


इसकी तुलना में, विशेष आपेक्षिकता से संगत कथन इस प्रकार हैं:
इसकी तुलना में, विशेष आपेक्षिकता से संगत कथन इस प्रकार हैं:
# अस्तित्व, साथ ही, असीम रूप से कई गैर-जड़त्वीय फ़्रेमों का, जिनमें से प्रत्येक स्पेसटाइम निर्देशांक के एक अद्वितीय सेट (और भौतिक रूप से निर्धारित) के संदर्भ में है। प्रत्येक फ्रेम अनंत आकार का हो सकता है, लेकिन इसकी परिभाषा हमेशा स्थानीय रूप से प्रासंगिक भौतिक स्थितियों द्वारा निर्धारित की जाती है। कोई भी दो फ्रेम सापेक्ष गैर-समान गति में हो सकते हैं (जब तक यह माना जाता है कि सापेक्ष गति की यह स्थिति एक सापेक्षवादी गतिशील प्रभाव का अर्थ है - और बाद में, सामान्य सापेक्षता में यांत्रिक प्रभाव - दोनों फ्रेम के बीच)।
# अस्तित्व, साथ ही, असीम रूप से कई गैर-जड़त्वीय वृत्तियों का, जिनमें से प्रत्येक दिक्काल निर्देशांक के एक अद्वितीय सम्मुच्चय (और भौतिक रूप से निर्धारित) के संदर्भ में है। प्रत्येक वृत्ति अनंत आकार का हो सकता है, लेकिन इसकी परिभाषा हमेशा स्थानीय रूप से प्रासंगिक भौतिक स्थितियों द्वारा निर्धारित की जाती है। कोई भी दो वृत्ति सापेक्ष गैर-समान गति में हो सकते हैं (जब तक यह माना जाता है कि सापेक्ष गति की यह स्थिति एक सापेक्षवादी गतिशील प्रभाव का अर्थ है - और बाद में, दोनों वृत्ति के बीच सामान्य सापेक्षता में यांत्रिक प्रभाव)।
# संदर्भ के फ्रेम के बीच सापेक्ष समान गति की सभी स्थितियों को स्वतंत्र रूप से अनुमति देने के बजाय, दो जड़त्वीय फ्रेम के बीच सापेक्ष वेग प्रकाश की गति से ऊपर की ओर बंध जाता है।
# संदर्भ के वृत्ति के बीच सापेक्ष समान गति की सभी स्थितियों को स्वतंत्र रूप से अनुमति देने के स्थान पर, दो जड़त्वीय वृत्ति के बीच सापेक्ष वेग प्रकाश की गति से ऊपर की ओर बंध जाता है।
#सार्वभौमिक बीता हुआ समय के बजाय, प्रत्येक जड़त्वीय फ्रेम के पास बीता हुआ समय की अपनी धारणा है।
#सार्वभौमिक व्यतीत काल के स्थान पर, प्रत्येक जड़त्वीय वृत्ति के पास व्यतीत काल की अपनी धारणा है।
# गैलीलियन परिवर्तनों को [[लोरेंत्ज़ परिवर्तन]]ों द्वारा प्रतिस्थापित किया जाता है।
# गैलीलियन परिवर्तनों को [[लोरेंत्ज़ परिवर्तन|लोरेंत्ज़ परिवर्तनों]] द्वारा प्रतिस्थापित किया जाता है।
#सभी जड़त्वीय फ्रेम में, भौतिकी के सभी नियम समान होते हैं।
#सभी जड़त्वीय वृत्ति में, भौतिकी के सभी नियम समान होते हैं।


दोनों सिद्धांत जड़त्वीय फ्रेम के अस्तित्व को मानते हैं। व्यवहार में, गुरुत्वाकर्षण ज्वारीय बलों के आधार पर, फ़्रेम का आकार जिसमें वे वैध रहते हैं, बहुत भिन्न होते हैं।
दोनों सिद्धांत जड़त्वीय वृत्ति के अस्तित्व को मानते हैं। व्यवहार में, गुरुत्वाकर्षण ज्वारीय बलों के आधार पर, वृत्ति का आकार जिसमें वे वैध रहते हैं, बहुत भिन्न होते हैं।


उपयुक्त संदर्भ में, एक स्थानीय न्यूटोनियन जड़त्वीय ढांचा, जहां न्यूटन का सिद्धांत एक अच्छा मॉडल बना हुआ है, मोटे तौर पर 10 तक फैला हुआ है।<sup>7</sup> प्रकाश वर्ष।
उपयुक्त संदर्भ में, एक स्थानीय न्यूटनी जड़त्वीय वृत्ति, जहां न्यूटन का सिद्धांत एक अच्छा प्रतिरूप बना हुआ है, स्थूलतः 10<sup>7</sup> प्रकाश वर्ष तक फैला हुआ है।


विशेष सापेक्षता में, आइंस्टीन के केबिनों पर विचार किया जाता है, ऐसे केबिन जो एक गुरुत्वाकर्षण क्षेत्र में मुक्त रूप से गिरते हैं। आइंस्टीन के विचार प्रयोग के अनुसार, ऐसे केबिन में एक व्यक्ति (अच्छे सन्निकटन के लिए) कोई गुरुत्वाकर्षण अनुभव नहीं करता है और इसलिए केबिन एक अनुमानित जड़त्वीय फ्रेम है। हालांकि, किसी को यह मान लेना होगा कि केबिन का आकार इतना छोटा है कि गुरुत्वाकर्षण क्षेत्र इसके इंटीरियर में लगभग समानांतर है। यह न्यूटोनियन फ़्रेमों की तुलना में ऐसे अनुमानित फ़्रेमों के आकार को बहुत कम कर सकता है। उदाहरण के लिए, पृथ्वी की परिक्रमा करने वाले एक कृत्रिम उपग्रह को एक केबिन के रूप में देखा जा सकता है। हालाँकि, यथोचित संवेदनशील उपकरण ऐसी स्थिति में सूक्ष्म गुरुत्व का पता लगा सकते हैं क्योंकि पृथ्वी के गुरुत्वाकर्षण क्षेत्र की बल रेखाएँ अभिसरित होती हैं।
विशेष सापेक्षता में, आइंस्टीन के कक्षों पर विचार किया जाता है, ऐसे कक्ष जो एक गुरुत्वाकर्षण क्षेत्र में मुक्त रूप से गिरते हैं। आइंस्टीन के विचार प्रयोग के अनुसार, ऐसे कक्ष में एक व्यक्ति (अच्छे सन्निकटन के लिए) कोई गुरुत्वाकर्षण अनुभव नहीं करता है और इसलिए कक्ष एक अनुमानित जड़त्वीय वृत्ति है। हालांकि, किसी को यह मान लेना होगा कि कक्ष का आकार इतना छोटा है कि गुरुत्वाकर्षण क्षेत्र इसके अंतस्थ में लगभग समानांतर है। यह न्यूटनी वृत्तियों की तुलना में ऐसे अनुमानित वृत्तियों के आकार को बहुत कम कर सकता है। उदाहरण के लिए, पृथ्वी की परिक्रमा करने वाले एक कृत्रिम उपग्रह को एक कक्ष के रूप में देखा जा सकता है। हालाँकि, यथोचित संवेदनशील उपकरण ऐसी स्थिति में सूक्ष्म गुरुत्व का पता लगा सकते हैं क्योंकि पृथ्वी के गुरुत्वाकर्षण क्षेत्र की बल रेखाएँ अभिसरित होती हैं।


सामान्य तौर पर, ब्रह्मांड में गुरुत्वाकर्षण क्षेत्रों का अभिसरण उस पैमाने को निर्धारित करता है जिस पर कोई ऐसे (स्थानीय) जड़त्वीय फ्रेम पर विचार कर सकता है। उदाहरण के लिए, एक ब्लैक होल या न्यूट्रॉन तारे में गिरने वाला एक अंतरिक्ष यान (एक निश्चित दूरी पर) ज्वारीय बलों के अधीन होगा जो इसे चौड़ाई में कुचलने और लंबाई में अलग करने के लिए पर्याप्त मजबूत होगा।<ref name="taylowwheeler">Taylor and Wheeler's [https://www.eftaylor.com/pub/chapter2.pdf ''Exploring Black Holes - Introduction to General Relativity'', Chapter 2], 2000, p. 2:6.</ref> इसकी तुलना में, हालांकि, ऐसी ताकतें अंतरिक्ष यात्रियों के लिए केवल असहज हो सकती हैं (उनके जोड़ों को संकुचित करना, जिससे उनके अंगों को किसी भी दिशा में सीधा करना मुश्किल हो जाता है जो कि तारे के गुरुत्वाकर्षण क्षेत्र में होता है)। पैमाने को और कम करने पर, उस दूरी पर बलों का माउस पर लगभग कोई प्रभाव नहीं पड़ सकता है। यह इस विचार को दिखाता है कि यदि स्केल सही ढंग से चुना गया है तो सभी स्वतंत्र रूप से गिरने वाले फ्रेम स्थानीय रूप से जड़त्वीय (त्वरण और गुरुत्वाकर्षण मुक्त) हैं।<ref name="taylowwheeler"/>
सामान्यतः, ब्रह्मांड में गुरुत्वाकर्षण क्षेत्रों का अभिसरण उस मापक्रम को निर्धारित करता है जिस पर कोई ऐसे (स्थानीय) जड़त्वीय वृत्ति पर विचार कर सकता है। उदाहरण के लिए, एक अंध विवर या न्यूट्रॉन तारे में गिरने वाला एक अंतरिक्ष यान (एक निश्चित दूरी पर) ज्वारीय बलों के अधीन होगा जो इसे चौड़ाई में कुचलने और लंबाई में अलग करने के लिए पर्याप्त प्रबल होगा।<ref name="taylowwheeler">Taylor and Wheeler's [https://www.eftaylor.com/pub/chapter2.pdf ''Exploring Black Holes - Introduction to General Relativity'', Chapter 2], 2000, p. 2:6.</ref> इसकी तुलना में, हालांकि, ऐसी ताकतें अंतरिक्ष यात्रियों के लिए केवल असहज हो सकती हैं (उनके जोड़ों को संकुचित करना, जिससे उनके अंगों को किसी भी दिशा में सीधा करना कठिन हो जाता है जो कि तारे के गुरुत्वाकर्षण क्षेत्र में होता है)। मापक्रम को और कम करने पर, उस दूरी पर बलों का व्यक्ति पर लगभग कोई प्रभाव नहीं पड़ सकता है। यह इस विचार को दिखाता है कि यदि मापक्रम सही ढंग से चुना गया है तो सभी स्वतंत्र रूप से गिरने वाले वृत्ति स्थानीय रूप से जड़त्वीय (त्वरण और गुरुत्वाकर्षण मुक्त) हैं।<ref name="taylowwheeler"/>




Line 47: Line 45:
दो सुसंगत गैलिलियन परिवर्तन हैं जिनका उपयोग कुछ स्थितियों में विद्युत चुम्बकीय क्षेत्रों के साथ किया जा सकता है।
दो सुसंगत गैलिलियन परिवर्तन हैं जिनका उपयोग कुछ स्थितियों में विद्युत चुम्बकीय क्षेत्रों के साथ किया जा सकता है।


एक परिवर्तन <math> T \{ *, v \}</math> यदि संगत नहीं है <math> T \{ *, v_1+v_2 \} \ne T \{ *, v_1 \} + T \{ *, v_2 \}</math> कहाँ <math> v_1</math> और <math> v_2</math> वेग हैं। एक चरण या एकाधिक चरणों में एक नए वेग में परिवर्तित होने पर एक सतत परिवर्तन समान परिणाम उत्पन्न करेगा। निरंतर गैलिलियन रूपांतरण संभव नहीं है जो चुंबकीय और विद्युत दोनों क्षेत्रों को रूपांतरित करता है। <ref name="Woodson">{{Cite book |last1=Woodson |first1=Herbert H. |last2=Melcher |first2=James R. |url=http://uilis.unsyiah.ac.id/oer/files/original/a447802044bfa2aa083db80457e1f9a7.pdf |title=इलेक्ट्रोमैकेनिकल डायनेमिक्स|date=1968 |publisher=Wiley |edition=1 |location=New York |pages=251–329 }}</ref>{{rp|256}} उपयोगी सुसंगत गैलिलियन परिवर्तन हैं जो चुंबकीय क्षेत्र या विद्युत क्षेत्र के प्रमुख होने पर लागू किए जा सकते हैं।
एक परिवर्तन <math> T \{ *, v \}</math> यदि <math> T \{ *, v_1+v_2 \} \ne T \{ *, v_1 \} + T \{ *, v_2 \}</math> संगत नहीं है जहाँ <math> v_1</math> और <math> v_2</math> वेग हैं। एक चरण या एकाधिक चरणों में एक नए वेग में परिवर्तित होने पर एक सतत परिवर्तन समान परिणाम उत्पन्न करेगा। निरंतर गैलिलियन रूपांतरण संभव नहीं है जो चुंबकीय और विद्युत दोनों क्षेत्रों को रूपांतरित करता है। <ref name="Woodson">{{Cite book |last1=Woodson |first1=Herbert H. |last2=Melcher |first2=James R. |url=http://uilis.unsyiah.ac.id/oer/files/original/a447802044bfa2aa083db80457e1f9a7.pdf |title=इलेक्ट्रोमैकेनिकल डायनेमिक्स|date=1968 |publisher=Wiley |edition=1 |location=New York |pages=251–329 }}</ref>{{rp|256}} उपयोगी सुसंगत गैलिलियन परिवर्तन हैं जो चुंबकीय क्षेत्र या विद्युत क्षेत्र के प्रमुख होने पर लागू किए जा सकते हैं।


==== चुंबकीय क्षेत्र प्रणाली ====
==== चुंबकीय क्षेत्र प्रणाली ====
चुंबकीय क्षेत्र प्रणालियां वे प्रणालियां हैं जिनमें संदर्भ के प्रारंभिक फ्रेम में विद्युत क्षेत्र नगण्य है, लेकिन चुंबकीय क्षेत्र मजबूत है। जब चुंबकीय क्षेत्र प्रमुख होता है और सापेक्ष वेग, <math>v^\mathbf{r}</math>, कम है, तो निम्न रूपांतरण उपयोगी हो सकता है:
चुंबकीय क्षेत्र प्रणालियां वे प्रणालियां हैं जिनमें संदर्भ के प्रारंभिक वृत्ति में विद्युत क्षेत्र नगण्य है, लेकिन चुंबकीय क्षेत्र प्रबल है। जब चुंबकीय क्षेत्र प्रमुख होता है और सापेक्ष वेग, <math>v^\mathbf{r}</math>, कम है, तो निम्न रूपांतरण उपयोगी हो सकता है:


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 58: Line 56:
   \mathbf{M^'} &= \mathbf{M} \\
   \mathbf{M^'} &= \mathbf{M} \\
   \mathbf{E^'} &= \mathbf{E} +  v^\mathbf{r} \times \mathbf{B} \\
   \mathbf{E^'} &= \mathbf{E} +  v^\mathbf{r} \times \mathbf{B} \\
\end{align}</math> कहाँ <math>\mathbf{J_f}</math> मुक्त वर्तमान घनत्व है, <math>\mathbf{M}</math> चुंबकीयकरण घनत्व है। संदर्भ के फ्रेम बदलते समय इस परिवर्तन के तहत विद्युत क्षेत्र रूपांतरित हो जाता है, लेकिन चुंबकीय क्षेत्र और संबंधित मात्राएं अपरिवर्तित रहती हैं।<ref name="Woodson"/>{{rp|261}} इस स्थिति का एक उदाहरण है एक तार एक चुंबकीय क्षेत्र में घूम रहा है जैसे कि एक साधारण जनरेटर या मोटर में होता है। संदर्भ के गतिमान फ्रेम में परिवर्तित विद्युत क्षेत्र तार में करंट उत्पन्न कर सकता है।
\end{align}</math> जहाँ <math>\mathbf{J_f}</math> मुक्त वर्तमान घनत्व है, <math>\mathbf{M}</math> चुंबकीयकरण घनत्व है। संदर्भ के वृत्ति बदलते समय इस परिवर्तन के तहत विद्युत क्षेत्र रूपांतरित हो जाता है, लेकिन चुंबकीय क्षेत्र और संबंधित मात्राएं अपरिवर्तित रहती हैं।<ref name="Woodson"/>{{rp|261}} इस स्थिति का एक उदाहरण है एक तार एक चुंबकीय क्षेत्र में घूम रहा है जैसे कि एक साधारण जनरेटर या मोटर में होता है। संदर्भ के गतिमान वृत्ति में परिवर्तित विद्युत क्षेत्र तार में विद्युत प्रवाह उत्पन्न कर सकता है।


==== इलेक्ट्रिक फील्ड सिस्टम ====
==== चुंबकीय क्षेत्र प्रणाली ====
विद्युत क्षेत्र प्रणालियाँ वे प्रणालियाँ हैं जिनमें संदर्भ के प्रारंभिक फ्रेम में चुंबकीय क्षेत्र नगण्य है, लेकिन विद्युत क्षेत्र प्रबल है। जब विद्युत क्षेत्र प्रमुख होता है और सापेक्ष वेग, <math>v^r</math>, कम है, तो निम्न रूपांतरण उपयोगी हो सकता है:
विद्युत क्षेत्र प्रणालियाँ वे प्रणालियाँ हैं जिनमें संदर्भ के प्रारंभिक वृत्ति में चुंबकीय क्षेत्र नगण्य है, लेकिन विद्युत क्षेत्र प्रबल है। जब विद्युत क्षेत्र प्रमुख होता है और सापेक्ष वेग, <math>v^r</math>, कम है, तो निम्न रूपांतरण उपयोगी हो सकता है:


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 72: Line 70:
   \mathbf{J_f^'} &= \mathbf{J_f} - \rho_\mathbf{f} v^\mathbf{r} \\
   \mathbf{J_f^'} &= \mathbf{J_f} - \rho_\mathbf{f} v^\mathbf{r} \\


\end{align}</math> कहाँ <math>\rho_\mathbf{f}</math> फ्री चार्ज घनत्व है, <math>\mathbf{P}</math> ध्रुवीकरण घनत्व है। संदर्भ के फ्रेम बदलते समय चुंबकीय क्षेत्र और मुक्त वर्तमान घनत्व इस परिवर्तन के तहत रूपांतरित हो जाते हैं, लेकिन विद्युत क्षेत्र और संबंधित मात्राएं अपरिवर्तित रहती हैं<ref name="Woodson"/>{{rp|265}}
\end{align}</math> जहाँ <math>\rho_\mathbf{f}</math> मुक्त प्रभार घनत्व है, <math>\mathbf{P}</math> ध्रुवीकरण घनत्व है। संदर्भ के वृत्ति बदलते समय चुंबकीय क्षेत्र और मुक्त वर्तमान घनत्व इस परिवर्तन के तहत रूपांतरित हो जाते हैं, लेकिन विद्युत क्षेत्र और संबंधित मात्राएं अपरिवर्तित रहती हैं<ref name="Woodson"/>{{rp|265}}


== कार्य, गतिज ऊर्जा और संवेग ==
== कार्य, गतिज ऊर्जा और संवेग ==
{{Unreferenced section|date=January 2020}}
क्योंकि किसी वस्तु पर बल लगाते समय तय की गई दूरी संदर्भ के जड़त्वीय वृत्ति पर निर्भर करती है, इसलिए किए गए [[यांत्रिक कार्य]] पर निर्भर करती है। न्यूटन के [[गति]] के नियमों के कारण न्यूटन की पारस्परिक क्रियाओं का नियम एक प्रतिक्रिया बल है; यह विपरीत तरीके से संदर्भ के जड़त्वीय वृत्ति के आधार पर काम करता है। किया गया कुल कार्य संदर्भ के जड़त्वीय वृत्ति से स्वतंत्र है।
क्योंकि किसी वस्तु पर बल लगाते समय तय की गई दूरी जड़त्वीय फ्रेम ऑफ रेफरेंस पर निर्भर करती है, इसलिए किए गए [[यांत्रिक कार्य]] पर निर्भर करती है। न्यूटन के [[गति]] के नियमों के कारण#न्यूटन का तीसरा नियम|न्यूटन की पारस्परिक क्रियाओं का नियम एक प्रतिक्रिया बल है; यह विपरीत तरीके से संदर्भ के जड़त्वीय फ्रेम के आधार पर काम करता है। किया गया कुल कार्य संदर्भ के जड़त्वीय फ्रेम से स्वतंत्र है।


तदनुसार किसी वस्तु की [[गतिज ऊर्जा]], और यहाँ तक कि वेग में परिवर्तन के कारण इस ऊर्जा में परिवर्तन, संदर्भ के जड़त्वीय फ्रेम पर निर्भर करता है। एक पृथक प्रणाली की कुल गतिज ऊर्जा संदर्भ के जड़त्वीय फ्रेम पर भी निर्भर करती है: यह गति के केंद्र में कुल गतिज ऊर्जा का योग है और केंद्र में केंद्रित होने पर कुल द्रव्यमान की गतिज ऊर्जा होती है। द्रव्यमान का। संवेग के संरक्षण के कारण बाद वाला समय के साथ नहीं बदलता है, इसलिए कुल गतिज ऊर्जा के समय के साथ परिवर्तन संदर्भ के जड़त्वीय फ्रेम पर निर्भर नहीं करता है।
तदनुसार किसी वस्तु की [[गतिज ऊर्जा]], और यहाँ तक कि वेग में परिवर्तन के कारण इस ऊर्जा में परिवर्तन, संदर्भ के जड़त्वीय वृत्ति पर निर्भर करता है। एक पृथक प्रणाली की कुल गतिज ऊर्जा संदर्भ के जड़त्वीय वृत्ति पर भी निर्भर करती है: यह गति के केंद्र में कुल गतिज ऊर्जा का योग है और केंद्र में केंद्रित होने पर कुल द्रव्यमान की गतिज ऊर्जा होती है। संवेग के संरक्षण के कारण बाद वाला समय के साथ नहीं बदलता है, इसलिए कुल गतिज ऊर्जा के समय के साथ परिवर्तन संदर्भ के जड़त्वीय वृत्ति पर निर्भर नहीं करता है।


इसके विपरीत, जबकि एक वस्तु की गति भी संदर्भ के जड़त्वीय फ्रेम पर निर्भर करती है, वेग में परिवर्तन के कारण इसका परिवर्तन नहीं होता है।
इसके विपरीत, जबकि एक वस्तु की गति भी संदर्भ के जड़त्वीय वृत्ति पर निर्भर करती है, वेग में परिवर्तन के कारण इसका परिवर्तन नहीं होता है।


== यह भी देखें ==
== यह भी देखें ==
* पूर्ण स्थान और समय
* पूर्ण स्थान और समय
*[[प्रकाश की तुलना में तेज़]]
*[[प्रकाश की तुलना में तेज़]]
*गैलीली-सहसंयोजक टेंसर सूत्रीकरण (गैलीलियो से कोई संबंध नहीं)
*गैलीली-सहसंयोजक प्रदिश सूत्रीकरण (गैलीलियो से कोई संबंध नहीं)
* [[सुपरल्यूमिनल मोशन]]
* [[सुपरल्यूमिनल मोशन|सुपरल्यूमिनल चाल]]


== नोट्स और संदर्भ ==
== नोट्स और संदर्भ ==
{{Reflist}}
{{Reflist}}
{{Galileo Galilei}}
{{Relativity|state=expanded}}


{{DEFAULTSORT:Galilean Invariance}}
{{DEFAULTSORT:Galilean Invariance}}
श्रेणी: शास्त्रीय यांत्रिकी
श्रेणी:गैलीलियो गैलीली
वह: एट्रिब्यूशन सिस्टम # गैलीलियो का सापेक्षता का सिद्धांत


[[Category: Machine Translated Page]]
[[Category:Created On 02/03/2023|Galilean Invariance]]
[[Category:Created On 02/03/2023]]
[[Category:Lua-based templates|Galilean Invariance]]
[[Category:Machine Translated Page|Galilean Invariance]]
[[Category:Pages with script errors|Galilean Invariance]]
[[Category:Short description with empty Wikidata description|Galilean Invariance]]
[[Category:Templates Vigyan Ready|Galilean Invariance]]
[[Category:Templates that add a tracking category|Galilean Invariance]]
[[Category:Templates that generate short descriptions|Galilean Invariance]]
[[Category:Templates using TemplateData|Galilean Invariance]]

Latest revision as of 11:22, 6 November 2023

गैलीलियन अपरिवर्तनीयता अथवा गैलीलियन सापेक्षता बताती है कि गति के नियम संदर्भ के सभी जड़त्वीय वृत्ति में समान हैं। गैलीलियो गैलीली ने पहली बार 1632 में अपने दो प्रमुख विश्व प्रणालियों के संबंध में संवाद में इस सिद्धांत का वर्णन किया था, जिसमें गैलीलियो के जहाज का उपयोग किया गया था, जो एक सुचारू समुद्र पर, बिना हिले-डुले निरंतर वेग से यात्रा कर रहा था; छत के नीचे कोई भी पर्यवेक्षक यह नहीं बता पाएगा कि जहाज चल रहा था या स्थिर था।

सूत्रीकरण

विशेष रूप से, गैलीलियन अपरिवर्तनीयता शब्द आज सामान्यतः उस सिद्धांत को संदर्भित करता है जैसा कि न्यूटनी यांत्रिकी पर लागू होता है, अर्थात न्यूटन के गति के नियम गैलीलियन परिवर्तन द्वारा एक दूसरे से संबंधित सभी वृत्तियों में होते हैं। दूसरे शब्दों में, इस तरह के परिवर्तन से एक दूसरे से जुड़े सभी वृत्ति जड़त्वीय होते हैं (अर्थात् इन वृत्तियों में न्यूटन की गति का समीकरण मान्य है)। इस संदर्भ में इसे कभी-कभी न्यूटनी सापेक्षता कहा जाता है।

निम्न न्यूटन के सिद्धांत के स्वयंसिद्धों में से हैं:

  1. एक पूर्ण स्थान और समय उपस्थित है, जिसमें न्यूटन के नियम सत्य हैं। जड़त्वीय ढाँचा निरपेक्ष स्थान के सापेक्ष एकसमान गति में एक संदर्भ ढाँचा है।
  2. सभी जड़त्वीय वृत्ति एक पूर्ण स्थान और समय साझा करते हैं।

गैलिलियन सापेक्षता को निम्नानुसार दिखाया जा सकता है। दो जड़त्वीय वृत्ति S और S' पर विचार करें। S में एक भौतिक घटना में स्थिति निर्देशांक r = (x, y, z) और S में समय t होगा, और r' = (x' , y' , z' ) और समय t' S' में होगा। ऊपर दिए गए दूसरे स्वयंसिद्ध के अनुसार, दो वृत्ति में घड़ी को समकालिक किया जा सकता है और मान लिया जा सकता है कि t = t' है। मान लीजिए S' वेग v के साथ S के सापेक्ष समान गति में है। एक बिंदु वस्तु पर विचार करें जिसकी स्थिति S' में r' (t) और S में r(t) द्वारा दी गई है। हम देखते हैं कि

कण का वेग स्थिति के व्युत्पन्न समय द्वारा दिया जाता है:

एक और अंतर दो वृत्तियों में त्वरण देता है:

यह सरल लेकिन महत्वपूर्ण परिणाम है जो गैलिलियन सापेक्षता को दर्शाता है। यह मानते हुए कि द्रव्यमान सभी जड़त्वीय वृत्तियों में अपरिवर्तनीय है, उपरोक्त समीकरण न्यूटन के यांत्रिकी के नियमों को दर्शाता है, यदि एक वृत्ति में मान्य है, तो सभी वृत्तियों के लिए मान्य होना चाहिए।[1] लेकिन यह माना जाता है कि यह पूर्ण स्थान में है, इसलिए गैलीलियन सापेक्षता रखती है।

न्यूटन का सिद्धांत बनाम विशेष सापेक्षता

न्यूटनी सापेक्षता और विशेष सापेक्षता के बीच तुलना की जा सकती है।

निम्न न्यूटन के सिद्धांत की कुछ धारणाएँ और गुण हैं:

  1. अपरिमित रूप से अनेक जड़त्वीय वृत्तियों का अस्तित्व है। प्रत्येक वृत्ति अनंत आकार की है (संपूर्ण ब्रह्मांड को कई रैखिक समतुल्य वृत्ति द्वारा आच्छादित किया जा सकता है)। कोई भी दो वृत्ति आपेक्षिक एकसमान गति में हो सकते हैं। (ऊपर व्युत्पन्न यांत्रिकी की सापेक्ष प्रकृति से पता चलता है कि पूर्ण स्थान धारणा आवश्यक नहीं है।)
  2. जड़त्वीय वृत्ति समान गति के सभी संभावित सापेक्ष रूपों में गति कर सकते हैं।
  3. बीते हुए समय की एक सार्वभौमिक, या निरपेक्ष, धारणा है।
  4. दो जड़त्वीय वृत्ति गैलीलियन परिवर्तन से संबंधित हैं।
  5. सभी जड़त्वीय वृत्ति में, न्यूटन के नियम और गुरुत्वाकर्षण, धारण करते हैं।

इसकी तुलना में, विशेष आपेक्षिकता से संगत कथन इस प्रकार हैं:

  1. अस्तित्व, साथ ही, असीम रूप से कई गैर-जड़त्वीय वृत्तियों का, जिनमें से प्रत्येक दिक्काल निर्देशांक के एक अद्वितीय सम्मुच्चय (और भौतिक रूप से निर्धारित) के संदर्भ में है। प्रत्येक वृत्ति अनंत आकार का हो सकता है, लेकिन इसकी परिभाषा हमेशा स्थानीय रूप से प्रासंगिक भौतिक स्थितियों द्वारा निर्धारित की जाती है। कोई भी दो वृत्ति सापेक्ष गैर-समान गति में हो सकते हैं (जब तक यह माना जाता है कि सापेक्ष गति की यह स्थिति एक सापेक्षवादी गतिशील प्रभाव का अर्थ है - और बाद में, दोनों वृत्ति के बीच सामान्य सापेक्षता में यांत्रिक प्रभाव)।
  2. संदर्भ के वृत्ति के बीच सापेक्ष समान गति की सभी स्थितियों को स्वतंत्र रूप से अनुमति देने के स्थान पर, दो जड़त्वीय वृत्ति के बीच सापेक्ष वेग प्रकाश की गति से ऊपर की ओर बंध जाता है।
  3. सार्वभौमिक व्यतीत काल के स्थान पर, प्रत्येक जड़त्वीय वृत्ति के पास व्यतीत काल की अपनी धारणा है।
  4. गैलीलियन परिवर्तनों को लोरेंत्ज़ परिवर्तनों द्वारा प्रतिस्थापित किया जाता है।
  5. सभी जड़त्वीय वृत्ति में, भौतिकी के सभी नियम समान होते हैं।

दोनों सिद्धांत जड़त्वीय वृत्ति के अस्तित्व को मानते हैं। व्यवहार में, गुरुत्वाकर्षण ज्वारीय बलों के आधार पर, वृत्ति का आकार जिसमें वे वैध रहते हैं, बहुत भिन्न होते हैं।

उपयुक्त संदर्भ में, एक स्थानीय न्यूटनी जड़त्वीय वृत्ति, जहां न्यूटन का सिद्धांत एक अच्छा प्रतिरूप बना हुआ है, स्थूलतः 107 प्रकाश वर्ष तक फैला हुआ है।

विशेष सापेक्षता में, आइंस्टीन के कक्षों पर विचार किया जाता है, ऐसे कक्ष जो एक गुरुत्वाकर्षण क्षेत्र में मुक्त रूप से गिरते हैं। आइंस्टीन के विचार प्रयोग के अनुसार, ऐसे कक्ष में एक व्यक्ति (अच्छे सन्निकटन के लिए) कोई गुरुत्वाकर्षण अनुभव नहीं करता है और इसलिए कक्ष एक अनुमानित जड़त्वीय वृत्ति है। हालांकि, किसी को यह मान लेना होगा कि कक्ष का आकार इतना छोटा है कि गुरुत्वाकर्षण क्षेत्र इसके अंतस्थ में लगभग समानांतर है। यह न्यूटनी वृत्तियों की तुलना में ऐसे अनुमानित वृत्तियों के आकार को बहुत कम कर सकता है। उदाहरण के लिए, पृथ्वी की परिक्रमा करने वाले एक कृत्रिम उपग्रह को एक कक्ष के रूप में देखा जा सकता है। हालाँकि, यथोचित संवेदनशील उपकरण ऐसी स्थिति में सूक्ष्म गुरुत्व का पता लगा सकते हैं क्योंकि पृथ्वी के गुरुत्वाकर्षण क्षेत्र की बल रेखाएँ अभिसरित होती हैं।

सामान्यतः, ब्रह्मांड में गुरुत्वाकर्षण क्षेत्रों का अभिसरण उस मापक्रम को निर्धारित करता है जिस पर कोई ऐसे (स्थानीय) जड़त्वीय वृत्ति पर विचार कर सकता है। उदाहरण के लिए, एक अंध विवर या न्यूट्रॉन तारे में गिरने वाला एक अंतरिक्ष यान (एक निश्चित दूरी पर) ज्वारीय बलों के अधीन होगा जो इसे चौड़ाई में कुचलने और लंबाई में अलग करने के लिए पर्याप्त प्रबल होगा।[2] इसकी तुलना में, हालांकि, ऐसी ताकतें अंतरिक्ष यात्रियों के लिए केवल असहज हो सकती हैं (उनके जोड़ों को संकुचित करना, जिससे उनके अंगों को किसी भी दिशा में सीधा करना कठिन हो जाता है जो कि तारे के गुरुत्वाकर्षण क्षेत्र में होता है)। मापक्रम को और कम करने पर, उस दूरी पर बलों का व्यक्ति पर लगभग कोई प्रभाव नहीं पड़ सकता है। यह इस विचार को दिखाता है कि यदि मापक्रम सही ढंग से चुना गया है तो सभी स्वतंत्र रूप से गिरने वाले वृत्ति स्थानीय रूप से जड़त्वीय (त्वरण और गुरुत्वाकर्षण मुक्त) हैं।[2]


विद्युत चुंबकत्व

दो सुसंगत गैलिलियन परिवर्तन हैं जिनका उपयोग कुछ स्थितियों में विद्युत चुम्बकीय क्षेत्रों के साथ किया जा सकता है।

एक परिवर्तन यदि संगत नहीं है जहाँ और वेग हैं। एक चरण या एकाधिक चरणों में एक नए वेग में परिवर्तित होने पर एक सतत परिवर्तन समान परिणाम उत्पन्न करेगा। निरंतर गैलिलियन रूपांतरण संभव नहीं है जो चुंबकीय और विद्युत दोनों क्षेत्रों को रूपांतरित करता है। [3]: 256  उपयोगी सुसंगत गैलिलियन परिवर्तन हैं जो चुंबकीय क्षेत्र या विद्युत क्षेत्र के प्रमुख होने पर लागू किए जा सकते हैं।

चुंबकीय क्षेत्र प्रणाली

चुंबकीय क्षेत्र प्रणालियां वे प्रणालियां हैं जिनमें संदर्भ के प्रारंभिक वृत्ति में विद्युत क्षेत्र नगण्य है, लेकिन चुंबकीय क्षेत्र प्रबल है। जब चुंबकीय क्षेत्र प्रमुख होता है और सापेक्ष वेग, , कम है, तो निम्न रूपांतरण उपयोगी हो सकता है:

जहाँ मुक्त वर्तमान घनत्व है, चुंबकीयकरण घनत्व है। संदर्भ के वृत्ति बदलते समय इस परिवर्तन के तहत विद्युत क्षेत्र रूपांतरित हो जाता है, लेकिन चुंबकीय क्षेत्र और संबंधित मात्राएं अपरिवर्तित रहती हैं।[3]: 261  इस स्थिति का एक उदाहरण है एक तार एक चुंबकीय क्षेत्र में घूम रहा है जैसे कि एक साधारण जनरेटर या मोटर में होता है। संदर्भ के गतिमान वृत्ति में परिवर्तित विद्युत क्षेत्र तार में विद्युत प्रवाह उत्पन्न कर सकता है।

चुंबकीय क्षेत्र प्रणाली

विद्युत क्षेत्र प्रणालियाँ वे प्रणालियाँ हैं जिनमें संदर्भ के प्रारंभिक वृत्ति में चुंबकीय क्षेत्र नगण्य है, लेकिन विद्युत क्षेत्र प्रबल है। जब विद्युत क्षेत्र प्रमुख होता है और सापेक्ष वेग, , कम है, तो निम्न रूपांतरण उपयोगी हो सकता है:

जहाँ मुक्त प्रभार घनत्व है, ध्रुवीकरण घनत्व है। संदर्भ के वृत्ति बदलते समय चुंबकीय क्षेत्र और मुक्त वर्तमान घनत्व इस परिवर्तन के तहत रूपांतरित हो जाते हैं, लेकिन विद्युत क्षेत्र और संबंधित मात्राएं अपरिवर्तित रहती हैं[3]: 265 

कार्य, गतिज ऊर्जा और संवेग

क्योंकि किसी वस्तु पर बल लगाते समय तय की गई दूरी संदर्भ के जड़त्वीय वृत्ति पर निर्भर करती है, इसलिए किए गए यांत्रिक कार्य पर निर्भर करती है। न्यूटन के गति के नियमों के कारण न्यूटन की पारस्परिक क्रियाओं का नियम एक प्रतिक्रिया बल है; यह विपरीत तरीके से संदर्भ के जड़त्वीय वृत्ति के आधार पर काम करता है। किया गया कुल कार्य संदर्भ के जड़त्वीय वृत्ति से स्वतंत्र है।

तदनुसार किसी वस्तु की गतिज ऊर्जा, और यहाँ तक कि वेग में परिवर्तन के कारण इस ऊर्जा में परिवर्तन, संदर्भ के जड़त्वीय वृत्ति पर निर्भर करता है। एक पृथक प्रणाली की कुल गतिज ऊर्जा संदर्भ के जड़त्वीय वृत्ति पर भी निर्भर करती है: यह गति के केंद्र में कुल गतिज ऊर्जा का योग है और केंद्र में केंद्रित होने पर कुल द्रव्यमान की गतिज ऊर्जा होती है। संवेग के संरक्षण के कारण बाद वाला समय के साथ नहीं बदलता है, इसलिए कुल गतिज ऊर्जा के समय के साथ परिवर्तन संदर्भ के जड़त्वीय वृत्ति पर निर्भर नहीं करता है।

इसके विपरीत, जबकि एक वस्तु की गति भी संदर्भ के जड़त्वीय वृत्ति पर निर्भर करती है, वेग में परिवर्तन के कारण इसका परिवर्तन नहीं होता है।

यह भी देखें

नोट्स और संदर्भ

  1. McComb, W. D. (1999). गतिशीलता और सापेक्षता. Oxford [etc.]: Oxford University Press. pp. 22–24. ISBN 0-19-850112-9.
  2. 2.0 2.1 Taylor and Wheeler's Exploring Black Holes - Introduction to General Relativity, Chapter 2, 2000, p. 2:6.
  3. 3.0 3.1 3.2 Woodson, Herbert H.; Melcher, James R. (1968). इलेक्ट्रोमैकेनिकल डायनेमिक्स (PDF) (1 ed.). New York: Wiley. pp. 251–329.