बैंडलिमिटिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Limiting a signal to contain only low-frequency components}}
{{Short description|Limiting a signal to contain only low-frequency components}}


[[File:bandlimited.svg|thumb|300पीएक्स के फंक्शन के रूप में बैंडलिमिटेड [[बेसबैंड]] सिग्नल का स्पेक्ट्रम]]बैंडलिमिटिंग सिग्नल की [[ आवृत्ति डोमेन |आवृत्ति डोमेन]] प्रतिनिधित्व या [[वर्णक्रमीय घनत्व]] को निश्चित परिमित [[आवृत्ति]] से ऊपर शून्य तक सीमित करना होता है।
[[File:bandlimited.svg|thumb|300 पीएक्स के फंक्शन के रूप में बैंडलिमिटेड [[बेसबैंड]] सिग्नल का स्पेक्ट्रम]]बैंडलिमिटिंग सिग्नल की [[ आवृत्ति डोमेन |आवृत्ति डोमेन]] प्रतिनिधित्व या [[वर्णक्रमीय घनत्व]] को निश्चित परिमित [[आवृत्ति]] से ऊपर शून्य तक सीमित करना होता है।


बैंड-लिमिटेड सिग्नल वह होता है, जिसका [[फूरियर रूपांतरण]] या स्पेक्ट्रल डेंसिटी में बाउंड सपोर्ट होता है।
बैंड-लिमिटेड सिग्नल वह होता है, जिसका [[फूरियर रूपांतरण]] या स्पेक्ट्रल डेंसिटी में बाउंड सपोर्ट होता है।
Line 7: Line 7:
बैंड-सीमित संकेत या तो यादृच्छिक ([[स्टोकेस्टिक]]) या गैर-यादृच्छिक ([[नियतात्मक]]) हो सकता है।
बैंड-सीमित संकेत या तो यादृच्छिक ([[स्टोकेस्टिक]]) या गैर-यादृच्छिक ([[नियतात्मक]]) हो सकता है।


सामान्यतः, सिग्नल के निरंतर फूरियर श्रृंखला के प्रतिनिधित्व में असीम रूप से कई शर्तों की आवश्यकता होती है, किन्तु यदि उस सिग्नल से फूरियर श्रृंखला की शर्तों की सीमित संख्या की गणना की जा सकती है, तो उस संकेत को बैंड-सीमित माना जाता है।
सामान्यतः, सिग्नल के निरंतर फूरियर श्रृंखला के प्रतिनिधित्व में अनंत रूप से कई नियमो की आवश्यकता होती है, किन्तु यदि उस सिग्नल से फूरियर श्रृंखला की सीमित संख्या की गणना की जा सकती है, तो उस संकेत को बैंड-सीमित माना जाता है।


== सैंपलिंग बैंडलिमिटेड सिग्नल ==
== सैंपलिंग बैंडलिमिटेड सिग्नल ==
Line 13: Line 13:
बैंडलिमिटेड सिग्नल को इसके प्रतिरूप से पूर्ण रूप से पुनः निर्मित किया जा सकता है, इसके अनुसार [[नमूना दर|प्रतिरूप दर]] बैंडलिमिटेड सिग्नल में अधिकतम आवृत्ति के दोगुने से अधिक होनी चाहिए। इस न्यूनतम प्रतिरूप दर को [[निक्विस्ट दर]] कहा जाता है। यह परिणाम, सामान्यतः [[हैरी निक्विस्ट]] और क्लाउड ई. शैनन के लिए उत्तरदाई कहा जाता है, जिसे न्यक्विस्ट-शैनन प्रतिरूप प्रमेय के रूप में जाना जाता है।
बैंडलिमिटेड सिग्नल को इसके प्रतिरूप से पूर्ण रूप से पुनः निर्मित किया जा सकता है, इसके अनुसार [[नमूना दर|प्रतिरूप दर]] बैंडलिमिटेड सिग्नल में अधिकतम आवृत्ति के दोगुने से अधिक होनी चाहिए। इस न्यूनतम प्रतिरूप दर को [[निक्विस्ट दर]] कहा जाता है। यह परिणाम, सामान्यतः [[हैरी निक्विस्ट]] और क्लाउड ई. शैनन के लिए उत्तरदाई कहा जाता है, जिसे न्यक्विस्ट-शैनन प्रतिरूप प्रमेय के रूप में जाना जाता है।


साधारण नियतात्मक बैंडलिमिटेड सिग्नल का उदाहरण फॉर्म की [[ साइन लहर |साइन लहर]] <math>x(t) = \sin(2 \pi ft + \theta) \ </math>है I यदि यह संकेत दर पर प्रतिरूप <math>f_s =\frac{1}{T} > 2f </math> है, जिससे निकट प्रतिरूप <math>x(nT) \ </math>प्राप्त हों, सभी पूर्णांकों के लिए <math>n</math> हैं I <math>x(t) \ </math>विभिन्न आवृत्तियों और चरणों के साथ साइनसोइड्स की रकम भी उनकी आवृत्तियों के उच्चतम स्तर तक सीमित होती है।
साधारण निर्धारक बैंडलिमिटेड सिग्नल का उदाहरण [[ साइन लहर |साइन लहर]] <math>x(t) = \sin(2 \pi ft + \theta) \ </math>है I यदि यह संकेत दर पर प्रतिरूप <math>f_s =\frac{1}{T} > 2f </math> है, जिससे निकट प्रतिरूप <math>x(nT) \ </math>प्राप्त हों, सभी पूर्णांकों के लिए <math>n</math> हैं I <math>x(t) \ </math>विभिन्न आवृत्तियों और चरणों के साथ साइनसोइड्स की मात्रा भी उनकी आवृत्तियों के उच्चतम स्तर तक सीमित होती है।


जिस सिग्नल का फूरियर रूपांतरण चित्र में दिखाया गया है, वह भी बैंड-लिमिटेड है। कल्पना करना <math>x(t)\ </math>संकेत है, जिसका फूरियर रूपांतरण <math>X(f)\ </math>है, जिसका परिमाण चित्र में दिखाया गया है। उच्चतम आवृत्ति घटक <math>x(t)\ </math>में  <math>B \ </math>है I परिणामतः, नीक्वीस्ट दर इस प्रकार है:
जिस सिग्नल का फूरियर रूपांतरण चित्र में दिखाया गया है, वह भी बैंड-लिमिटेड है। कल्पना करना <math>x(t)\ </math>संकेत है, जिसका फूरियर रूपांतरण <math>X(f)\ </math>है, जिसका परिमाण चित्र में दिखाया गया है। उच्चतम आवृत्ति घटक <math>x(t)\ </math>में  <math>B \ </math>है I परिणामतः, नीक्वीस्ट दर इस प्रकार है:
Line 20: Line 20:
या सिग्नल में दो बार उच्चतम आवृत्ति घटक है, जैसा कि चित्र में दिखाया गया है। प्रतिरूप प्रमेय के अनुसार, पूर्ण रूप से और प्रतिरूप का उपयोग करके <math>x(t)\ </math>का पुनर्निर्माण करना संभव होता है:  
या सिग्नल में दो बार उच्चतम आवृत्ति घटक है, जैसा कि चित्र में दिखाया गया है। प्रतिरूप प्रमेय के अनुसार, पूर्ण रूप से और प्रतिरूप का उपयोग करके <math>x(t)\ </math>का पुनर्निर्माण करना संभव होता है:  


:<math> x[n] \ \stackrel{\mathrm{def}}{=}\  x(nT) = x \left( { n \over f_s  } \right)  </math> सभी पूर्णांकों के लिए <math>n \, </math> और <math>T \ \stackrel{\mathrm{def}}{=}\  { 1 \over f_s } </math>
:<math> x[n] \ \stackrel{\mathrm{def}}{=}\  x(nT) = x \left( { n \over f_s  } \right)  </math> सभी पूर्णांकों के लिए <math>n \, </math> और   <math>T \ \stackrel{\mathrm{def}}{=}\  { 1 \over f_s } </math>
जहाँ  
जहाँ  


:<math>f_s > R_N  \, </math>
:<math>f_s > R_N  \, </math>
इसके प्रतिरूपों से संकेत के पुनर्निर्माण को व्हिटेकर-शैनन प्रक्षेप सूत्र का उपयोग करके पूरा किया जा सकता है।
इसके प्रतिरूपों से संकेत के पुनर्निर्माण को व्हिटेकर-शैनन प्रक्षेप सूत्र का उपयोग करके पूर्ण किया जा सकता है।


== बैंडलिमिटेड बनाम टाइमलिमिटेड ==
== बैंडलिमिटेड के प्रति टाइमलिमिटेड ==
{{main article|Fourier transform#Uncertainty principle}}
{{main article|फूरियर रूपांतरण अनिश्चितता सिद्धांत}}
एक बैंड-सीमित सिग्नल भी समय-सीमित नहीं हो सकता। अधिक सटीक रूप से, एक समारोह और उसके फूरियर रूपांतरण दोनों में परिमित समर्थन (गणित) नहीं हो सकता है जब तक कि यह समान रूप से शून्य न हो। फूरियर रूपांतरण के जटिल विश्लेषण और गुणों का उपयोग करके इस तथ्य को सिद्ध किया जा सकता है।


प्रमाण: मान लें कि एक संकेत f(t) जिसका दोनों डोमेन में परिमित समर्थन है और समान रूप से शून्य नहीं है, मौजूद है। आइए इसे न्यक्विस्ट आवृत्ति से तेज़ी से नमूना लें, और संबंधित फूरियर ट्रांसफॉर्म की गणना करें <math> FT(f) = F_1(w) </math> और [[असतत-समय फूरियर रूपांतरण]] <math> DTFT(f) = F_2(w)</math>. DTFT के गुणों के अनुसार, <math> F_2(w) = \sum_{n=-\infty}^{+\infty} F_1(w+n f_x) </math>, कहाँ <math>f_x</math> विवेक के लिए उपयोग की जाने वाली आवृत्ति है। यदि f बैंड-सीमित है, <math> F_1 </math> एक निश्चित अंतराल के बाहर शून्य है, इसलिए काफी बड़ा है <math> f_x </math>, <math> F_2 </math> कुछ अंतरालों में भी शून्य होगा, क्योंकि व्यक्तिगत सहायता (गणित)। <math> F_1 </math> के योग में <math> F_2 </math> ओवरलैप नहीं होगा। DTFT परिभाषा के अनुसार, <math> F_2 </math> त्रिकोणमितीय कार्यों का एक योग है, और चूंकि f(t) समय-सीमित है, यह राशि परिमित होगी, इसलिए <math> F_2 </math> वास्तव में एक [[त्रिकोणमितीय बहुपद]] होगा। सभी त्रिकोणमितीय बहुपद संपूर्ण कार्य हैं, और जटिल विश्लेषण में एक सरल प्रमेय है जो कहता है कि [[शून्य (जटिल विश्लेषण)]] | गैर-निरंतर होलोमोर्फिक फ़ंक्शन के सभी शून्य पृथक हैं। लेकिन यह हमारी पहले की खोज का खंडन करता है <math> F_2 </math> शून्य से भरा अंतराल है, क्योंकि ऐसे अंतराल में बिंदु पृथक नहीं होते हैं। इस प्रकार एकमात्र समय- और बैंडविड्थ-सीमित संकेत एक स्थिर शून्य है।
बैंड-सीमित सिग्नल भी समय-सीमित नहीं हो सकता है। फंक्शन और उसके फूरियर रूपांतरण दोनों में परिमित समर्थन नहीं हो सकता है, जब तक कि यह समान रूप से शून्य न हो जाये। फूरियर रूपांतरण के जटिल विश्लेषण और गुणों का उपयोग करके इस तथ्य को सिद्ध किया जा सकता है।


इस परिणाम का एक महत्वपूर्ण परिणाम यह है कि किसी भी वास्तविक दुनिया की स्थिति में सही मायने में बैंडलिमिटेड सिग्नल उत्पन्न करना असंभव है, क्योंकि एक बैंडलिमिटेड सिग्नल को संचारित करने के लिए अनंत समय की आवश्यकता होगी। सभी वास्तविक दुनिया के संकेत, आवश्यकता से, समय-सीमित हैं, जिसका अर्थ है कि उन्हें बैंड-सीमित नहीं किया जा सकता है। फिर भी, एक बैंड-सीमित संकेत की अवधारणा सैद्धांतिक और विश्लेषणात्मक उद्देश्यों के लिए एक उपयोगी आदर्शीकरण है। इसके अलावा, वांछित सटीकता के किसी भी मनमाना स्तर के लिए एक बैंडलिमिटेड सिग्नल का अनुमान लगाना संभव है।
प्रमाण: मान लें कि संकेत f(t) जिसका दोनों डोमेन में परिमित समर्थन है, और समान रूप से शून्य उपस्तिथ नहीं है। आइए इसे न्यक्विस्ट आवृत्ति से तीव्रता से प्रतिरूप लें, और संबंधित फूरियर ट्रांसफॉर्म की गणना करें I <math> FT(f) = F_1(w) </math> और [[असतत-समय फूरियर रूपांतरण]] <math> DTFT(f) = F_2(w)</math>. डीटीएफटी के गुणों के अनुसार, <math> F_2(w) = \sum_{n=-\infty}^{+\infty} F_1(w+n f_x) </math>, जहाँ <math>f_x</math> विवेक के लिए उपयोग की जाने वाली आवृत्ति है। यदि f बैंड-सीमित है, <math> F_1 </math> निश्चित अंतराल के बाहर शून्य है, इसलिए बड़ा <math> f_x </math> है I <math> F_2 </math> कुछ अंतरालों में शून्य होगा, क्योंकि व्यक्तिगत सहायता <math> F_1 </math> के योग में <math> F_2 </math> ओवरलैप नहीं होता है। डीटीएफटी परिभाषा के अनुसार, <math> F_2 </math> त्रिकोणमितीय कार्यों का योग है, और चूंकि f(t) समय-सीमित है I यह राशि परिमित होगी, इसलिए <math> F_2 </math> वास्तव में [[त्रिकोणमितीय बहुपद]] होता है। सभी त्रिकोणमितीय बहुपद संपूर्ण कार्य हैं, और जटिल विश्लेषण में सरल प्रमेय होते है, जो कहते है कि [[शून्य (जटिल विश्लेषण)]] गैर-निरंतर होलोमोर्फिक फ़ंक्शन के सभी शून्य पृथक हैं। किन्तु यह हमारी पूर्व में किये गए अनुसन्धान में प्राप्त <math> F_2 </math> का खंडन करता है I जो शून्य से भरा अंतराल होता है, क्योंकि ऐसे अंतराल में बिंदु पृथक नहीं होते हैं। इस प्रकार एकमात्र समय- और बैंडविड्थ-सीमित संकेत स्थिर शून्य होता है।


समय में अवधि और आवृत्ति में [[बैंडविड्थ (सिग्नल प्रोसेसिंग)]] के बीच समान संबंध भी [[क्वांटम यांत्रिकी]] में अनिश्चितता सिद्धांत के लिए गणितीय आधार बनाता है। उस सेटिंग में, समय डोमेन और फ़्रीक्वेंसी डोमेन फ़ंक्शंस की चौड़ाई का मूल्यांकन भिन्नता-जैसी माप के साथ किया जाता है। मात्रात्मक रूप से, अनिश्चितता सिद्धांत किसी भी वास्तविक तरंग पर निम्नलिखित शर्त लगाता है:
इस परिणाम का महत्वपूर्ण परिणाम यह है कि किसी भी वास्तविक विश्व की स्थिति में बैंडलिमिटेड सिग्नल उत्पन्न करना असंभव है, क्योंकि बैंडलिमिटेड सिग्नल को संचारित करने के लिए अनंत समय की आवश्यकता होती है। वास्तविक विश्व के संकेत, आवश्यकता से, समय-सीमित हैं, जिसका अर्थ है कि उन्हें बैंड-सीमित नहीं किया जा सकता है। फिर भी, बैंड-सीमित संकेत की अवधारणा सैद्धांतिक और विश्लेषणात्मक उद्देश्यों के लिए उपयोगी आदर्शीकरण है। इसके अतिरिक्त, वांछित प्रकार से किसी भी स्तर के लिए बैंडलिमिटेड सिग्नल का अनुमान लगाना संभव है।
 
समय में अवधि और आवृत्ति में [[बैंडविड्थ (सिग्नल प्रोसेसिंग)]] के मध्य समान संबंध भी [[क्वांटम यांत्रिकी]] में अनिश्चितता सिद्धांत के लिए गणितीय आधार बनाता है। उस सेटिंग में, समय डोमेन और फ़्रीक्वेंसी डोमेन फ़ंक्शंस की चौड़ाई का मूल्यांकन भिन्नता-जैसी माप के साथ किया जाता है। मात्रात्मक रूप से, अनिश्चितता सिद्धांत किसी भी वास्तविक तरंग पर निम्नलिखित शर्त लगाता है:


:<math> W_B T_D \ge 1 </math>
:<math> W_B T_D \ge 1 </math>
कहाँ
जहाँ


:<math>W_B</math> बैंडविड्थ (हर्ट्ज में) का एक (उपयुक्त रूप से चुना गया) माप है, और
:<math>W_B</math> बैंडविड्थ (हर्ट्ज में) का माप है, और


:<math>T_D</math> समय अवधि (सेकंड में) का एक (उपयुक्त रूप से चुना गया) माप है।
:<math>T_D</math> समय अवधि (सेकंड में) का माप है।


समय-आवृत्ति विश्लेषण में, इन सीमाओं को गैबोर सीमा के रूप में जाना जाता है, और एक साथ प्राप्त होने वाले समय-आवृत्ति संकल्प पर एक सीमा के रूप में व्याख्या की जाती है।
समय-आवृत्ति विश्लेषण में, इन सीमाओं को गैबोर सीमा के रूप में जाना जाता है, और साथ में प्राप्त होने वाले समय-आवृत्ति संकल्प पर सीमा के रूप में व्याख्या की जाती है।


==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
*{{cite book | author = William McC. Siebert | title = Circuits, Signals, and Systems | year = 1986 |  location = Cambridge, MA | publisher = MIT Press }}
*{{cite book | author = William McC. Siebert | title = Circuits, Signals, and Systems | year = 1986 |  location = Cambridge, MA | publisher = MIT Press }}
[[Category: अंकीय संकेत प्रक्रिया]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 02/03/2023]]
[[Category:Created On 02/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अंकीय संकेत प्रक्रिया]]

Latest revision as of 10:23, 15 March 2023

300 पीएक्स के फंक्शन के रूप में बैंडलिमिटेड बेसबैंड सिग्नल का स्पेक्ट्रम

बैंडलिमिटिंग सिग्नल की आवृत्ति डोमेन प्रतिनिधित्व या वर्णक्रमीय घनत्व को निश्चित परिमित आवृत्ति से ऊपर शून्य तक सीमित करना होता है।

बैंड-लिमिटेड सिग्नल वह होता है, जिसका फूरियर रूपांतरण या स्पेक्ट्रल डेंसिटी में बाउंड सपोर्ट होता है।

बैंड-सीमित संकेत या तो यादृच्छिक (स्टोकेस्टिक) या गैर-यादृच्छिक (नियतात्मक) हो सकता है।

सामान्यतः, सिग्नल के निरंतर फूरियर श्रृंखला के प्रतिनिधित्व में अनंत रूप से कई नियमो की आवश्यकता होती है, किन्तु यदि उस सिग्नल से फूरियर श्रृंखला की सीमित संख्या की गणना की जा सकती है, तो उस संकेत को बैंड-सीमित माना जाता है।

सैंपलिंग बैंडलिमिटेड सिग्नल

बैंडलिमिटेड सिग्नल को इसके प्रतिरूप से पूर्ण रूप से पुनः निर्मित किया जा सकता है, इसके अनुसार प्रतिरूप दर बैंडलिमिटेड सिग्नल में अधिकतम आवृत्ति के दोगुने से अधिक होनी चाहिए। इस न्यूनतम प्रतिरूप दर को निक्विस्ट दर कहा जाता है। यह परिणाम, सामान्यतः हैरी निक्विस्ट और क्लाउड ई. शैनन के लिए उत्तरदाई कहा जाता है, जिसे न्यक्विस्ट-शैनन प्रतिरूप प्रमेय के रूप में जाना जाता है।

साधारण निर्धारक बैंडलिमिटेड सिग्नल का उदाहरण साइन लहर है I यदि यह संकेत दर पर प्रतिरूप है, जिससे निकट प्रतिरूप प्राप्त हों, सभी पूर्णांकों के लिए हैं I विभिन्न आवृत्तियों और चरणों के साथ साइनसोइड्स की मात्रा भी उनकी आवृत्तियों के उच्चतम स्तर तक सीमित होती है।

जिस सिग्नल का फूरियर रूपांतरण चित्र में दिखाया गया है, वह भी बैंड-लिमिटेड है। कल्पना करना संकेत है, जिसका फूरियर रूपांतरण है, जिसका परिमाण चित्र में दिखाया गया है। उच्चतम आवृत्ति घटक में है I परिणामतः, नीक्वीस्ट दर इस प्रकार है:

या सिग्नल में दो बार उच्चतम आवृत्ति घटक है, जैसा कि चित्र में दिखाया गया है। प्रतिरूप प्रमेय के अनुसार, पूर्ण रूप से और प्रतिरूप का उपयोग करके का पुनर्निर्माण करना संभव होता है:

सभी पूर्णांकों के लिए और

जहाँ

इसके प्रतिरूपों से संकेत के पुनर्निर्माण को व्हिटेकर-शैनन प्रक्षेप सूत्र का उपयोग करके पूर्ण किया जा सकता है।

बैंडलिमिटेड के प्रति टाइमलिमिटेड

बैंड-सीमित सिग्नल भी समय-सीमित नहीं हो सकता है। फंक्शन और उसके फूरियर रूपांतरण दोनों में परिमित समर्थन नहीं हो सकता है, जब तक कि यह समान रूप से शून्य न हो जाये। फूरियर रूपांतरण के जटिल विश्लेषण और गुणों का उपयोग करके इस तथ्य को सिद्ध किया जा सकता है।

प्रमाण: मान लें कि संकेत f(t) जिसका दोनों डोमेन में परिमित समर्थन है, और समान रूप से शून्य उपस्तिथ नहीं है। आइए इसे न्यक्विस्ट आवृत्ति से तीव्रता से प्रतिरूप लें, और संबंधित फूरियर ट्रांसफॉर्म की गणना करें I और असतत-समय फूरियर रूपांतरण . डीटीएफटी के गुणों के अनुसार, , जहाँ विवेक के लिए उपयोग की जाने वाली आवृत्ति है। यदि f बैंड-सीमित है, निश्चित अंतराल के बाहर शून्य है, इसलिए बड़ा है I कुछ अंतरालों में शून्य होगा, क्योंकि व्यक्तिगत सहायता के योग में ओवरलैप नहीं होता है। डीटीएफटी परिभाषा के अनुसार, त्रिकोणमितीय कार्यों का योग है, और चूंकि f(t) समय-सीमित है I यह राशि परिमित होगी, इसलिए वास्तव में त्रिकोणमितीय बहुपद होता है। सभी त्रिकोणमितीय बहुपद संपूर्ण कार्य हैं, और जटिल विश्लेषण में सरल प्रमेय होते है, जो कहते है कि शून्य (जटिल विश्लेषण) गैर-निरंतर होलोमोर्फिक फ़ंक्शन के सभी शून्य पृथक हैं। किन्तु यह हमारी पूर्व में किये गए अनुसन्धान में प्राप्त का खंडन करता है I जो शून्य से भरा अंतराल होता है, क्योंकि ऐसे अंतराल में बिंदु पृथक नहीं होते हैं। इस प्रकार एकमात्र समय- और बैंडविड्थ-सीमित संकेत स्थिर शून्य होता है।

इस परिणाम का महत्वपूर्ण परिणाम यह है कि किसी भी वास्तविक विश्व की स्थिति में बैंडलिमिटेड सिग्नल उत्पन्न करना असंभव है, क्योंकि बैंडलिमिटेड सिग्नल को संचारित करने के लिए अनंत समय की आवश्यकता होती है। वास्तविक विश्व के संकेत, आवश्यकता से, समय-सीमित हैं, जिसका अर्थ है कि उन्हें बैंड-सीमित नहीं किया जा सकता है। फिर भी, बैंड-सीमित संकेत की अवधारणा सैद्धांतिक और विश्लेषणात्मक उद्देश्यों के लिए उपयोगी आदर्शीकरण है। इसके अतिरिक्त, वांछित प्रकार से किसी भी स्तर के लिए बैंडलिमिटेड सिग्नल का अनुमान लगाना संभव है।

समय में अवधि और आवृत्ति में बैंडविड्थ (सिग्नल प्रोसेसिंग) के मध्य समान संबंध भी क्वांटम यांत्रिकी में अनिश्चितता सिद्धांत के लिए गणितीय आधार बनाता है। उस सेटिंग में, समय डोमेन और फ़्रीक्वेंसी डोमेन फ़ंक्शंस की चौड़ाई का मूल्यांकन भिन्नता-जैसी माप के साथ किया जाता है। मात्रात्मक रूप से, अनिश्चितता सिद्धांत किसी भी वास्तविक तरंग पर निम्नलिखित शर्त लगाता है:

जहाँ

बैंडविड्थ (हर्ट्ज में) का माप है, और
समय अवधि (सेकंड में) का माप है।

समय-आवृत्ति विश्लेषण में, इन सीमाओं को गैबोर सीमा के रूप में जाना जाता है, और साथ में प्राप्त होने वाले समय-आवृत्ति संकल्प पर सीमा के रूप में व्याख्या की जाती है।

संदर्भ

  • William McC. Siebert (1986). Circuits, Signals, and Systems. Cambridge, MA: MIT Press.