फोकस (ज्यामिति): Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Term in geometry; special point from which certain types of curves are constructed}} Image:Excentricidad.svg|thumb|बिंदु F लाल दीर...")
 
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Term in geometry; special point from which certain types of curves are constructed}}
{{Short description|Term in geometry; special point from which certain types of curves are constructed}}
[[Image:Excentricidad.svg|thumb|बिंदु F लाल दीर्घवृत्त, हरा परवलय और नीला अतिपरवलय के लिए एक फ़ोकस बिंदु है।]][[ज्यामिति]] में, फ़ोकस या फ़ॉसी ({{IPAc-en||ˈ|f|əʊ|k|aɪ}}), एकवचन फोकस, विशेष बिंदु हैं जिनके संदर्भ में विभिन्न प्रकार के [[वक्र]]ों का निर्माण किया जाता है। उदाहरण के लिए, शंकु वर्गों को परिभाषित करने में एक या दो foci का उपयोग किया जा सकता है, जिनमें से चार प्रकार वृत्त, दीर्घवृत्त, [[परवलय]] और अतिपरवलय हैं। इसके अलावा, दो foci का उपयोग कैसिनी [[अंडाकार]] [[कार्तीय अंडाकार]] अंडाकार को परिभाषित करने के लिए किया जाता है, और दो से अधिक foci का उपयोग n-ellipse|''n''-दीर्घवृत्त को परिभाषित करने के लिए किया जाता है।
[[Image:Excentricidad.svg|thumb|बिंदु F लाल दीर्घवृत्त, हरा परवलय और नीला अतिपरवलय के लिए एक केंद्रबिन्दु बिंदु है।]][[ज्यामिति]] में, केंद्रित या फोकी ({{IPAc-en||ˈ|f|əʊ|k|aɪ}}), एकवचन केंद्रबिंदु, विशेष बिंदु हैं जिनके संदर्भ में विभिन्न प्रकार के [[वक्र|वक्रों]] का निर्माण किया जाता है। उदाहरण के लिए, शांक्व वर्गों को परिभाषित करने में एक या दो फोकी का उपयोग किया जा सकता है, जिनमें से चार प्रकार वृत्त, दीर्घवृत्त, [[परवलय]] और अतिपरवलय हैं। इसके अलावा, दो फोकी का उपयोग कैसिनी [[अंडाकार]] [[कार्तीय अंडाकार]] को परिभाषित करने के लिए किया जाता है, और दो से अधिक फोकी का उपयोग ''n''-दीर्घवृत्त को परिभाषित करने के लिए किया जाता है।


== शंक्वाकार खंड ==
== शंक्वाकार खंड ==
{{See also|Conic section#Eccentricity, focus and directrix |Ellipse#Focus|Parabola#Position of the focus|Hyperbola#Directrix and focus|Confocal conic sections}}
{{See also|शंकु परिच्छेद#उत्केन्द्रता, केंद्रबिन्दु और नियंता |दीर्घवृत्त#केंद्रबिन्दु|परवलय#केंद्रबिंदु की स्थिति|अतिपरवलय#नियंता और केंद्रबिंदु|सनाभि शंकु वर्ग}}


=== दो नाभियों के संदर्भ में शांकवों की परिभाषा ===
=== दो फोकी के संदर्भ में शांकवों को परिभाषित करना ===
[[File:locating_the_foci_of_an_ellipse.svg|thumb|एक दीर्घवृत्त (बैंगनी क्रॉस) का केंद्र [[प्रमुख अक्ष]] (लाल) और अर्ध-प्रमुख अक्ष (नीला) के बराबर त्रिज्या के एक वृत्त (सियान) के चौराहे पर होता है, जो लघु अक्ष (ग्रे) के अंत पर केंद्रित होता है।]]एक दीर्घवृत्त को बिंदुओं के स्थान (गणित) के रूप में परिभाषित किया जा सकता है, जिसके लिए दो दिए गए नाभियों की दूरियों का योग स्थिर है।
[[File:locating_the_foci_of_an_ellipse.svg|thumb|एक दीर्घवृत्त (बैंगनी तिर्यक्) का केंद्र [[प्रमुख अक्ष]] (लाल) और अर्ध-प्रमुख अक्ष (नीला) के बराबर त्रिज्या के एक वृत्त (सियान) के चौराहे पर होता है, जो लघु अक्ष (ग्रे) के अंत पर केंद्रित होता है।]]एक दीर्घवृत्त को बिंदुओं के स्थान (गणित) के रूप में परिभाषित किया जा सकता है, जिसके लिए दो दिए गए फोकी की दूरियों का योग स्थिर है।


एक वृत्त एक दीर्घवृत्त का विशेष मामला है जिसमें दो केंद्र एक दूसरे के साथ मेल खाते हैं। इस प्रकार, एक वृत्त को अधिक आसानी से उन बिंदुओं के स्थान के रूप में परिभाषित किया जा सकता है जिनमें से प्रत्येक एक दिए गए फोकस से एक निश्चित दूरी है। एक वृत्त को अपोलोनियस के मंडलियों के रूप में भी परिभाषित किया जा सकता है, दो अलग-अलग फ़ॉसी के संदर्भ में, बिंदुओं के स्थान के रूप में दो फ़ॉसी के लिए दूरी का एक निश्चित अनुपात होता है।
एक वृत्त एक दीर्घवृत्त का विशेष स्तिथि है जिसमें दो केंद्र एक दूसरे के साथ मेल खाते हैं। इस प्रकार, एक वृत्त को अधिक आसानी से उन बिंदुओं के स्थान के रूप में परिभाषित किया जा सकता है जिनमें से प्रत्येक एक दिए गए केंद्रबिन्दु से एक निश्चित दूरी है। एक वृत्त को अपोलोनियस के मंडलियों के रूप में भी परिभाषित किया जा सकता है, दो अलग-अलग फोकी के संदर्भ में, बिंदुओं के स्थान के रूप में दो फोकी के लिए दूरी का एक निश्चित अनुपात होता है।


एक परवलय एक दीर्घवृत्त का एक सीमित मामला है जिसमें foci में से एक अनंत पर एक बिंदु है।
परवलय दीर्घवृत्त की एक सीमित स्तिथि है जिसमें फोकी में से एक अनंत पर एक बिंदु है।


एक अतिपरवलय को उन बिंदुओं के स्थान के रूप में परिभाषित किया जा सकता है जिनके लिए दो दिए गए नाभियों की दूरियों के बीच अंतर का निरपेक्ष मान स्थिर है।
एक अतिपरवलय को उन बिंदुओं के स्थान के रूप में परिभाषित किया जा सकता है जिनके लिए दो दिए गए फोकी की दूरियों के बीच अंतर का निरपेक्ष मान स्थिर है।


=== फोकस और डायरेक्ट्रिक्स के संदर्भ में शांकवों को परिभाषित करना ===
=== केंद्रबिन्दु और नियंता के संदर्भ में शांकवों को परिभाषित करना ===
एकल फ़ोकस और एकल शांकव अनुभाग # सनकीपन, फ़ोकस और डायरेक्ट्रिक्स के संदर्भ में सभी शंकु वर्गों का वर्णन करना भी संभव है, जो एक दी गई [[रेखा (ज्यामिति)]] है जिसमें फ़ोकस नहीं है। एक शंकु को उन बिंदुओं के स्थान के रूप में परिभाषित किया जाता है जिनमें से प्रत्येक के लिए फोकस की दूरी को डायरेक्ट्रिक्स की दूरी से विभाजित एक निश्चित सकारात्मक स्थिरांक होता है, जिसे [[विलक्षणता (गणित)]] कहा जाता है। यदि 0 <e < 1 शंकु एक दीर्घवृत्त है, यदि e = 1 शंकु एक परवलय है, और यदि e > 1 है तो शंकु एक अतिपरवलय है। यदि फोकस की दूरी निश्चित है और नियता अनंत पर एक रेखा है, इसलिए उत्केन्द्रता शून्य है, तो शंकु एक वृत्त है।
एकल केंद्रबिन्दु और एकल शांकव अनुभाग, केंद्रबिन्दु और नियंता के संदर्भ में सभी शांक्व वर्गों का वर्णन करना भी संभव है, जो एक दी गई [[रेखा (ज्यामिति)]] है जिसमें केंद्रबिन्दु नहीं है। एक शांक्व को उन बिंदुओं के स्थान के रूप में परिभाषित किया जाता है जिनमें से प्रत्येक के लिए केंद्रबिन्दु की दूरी को नियंता की दूरी से विभाजित एक निश्चित सकारात्मक स्थिरांक होता है, जिसे [[विलक्षणता (गणित)]] कहा जाता है। यदि 0 <e < 1 शांक्व एक दीर्घवृत्त है, यदि e = 1 शांक्व एक परवलय है, और यदि e > 1 है तो शांक्व एक अतिपरवलय है। यदि केंद्रबिन्दु की दूरी निश्चित है और नियता अनंत पर एक रेखा है, इसलिए उत्केन्द्रता शून्य है, तो शांक्व एक वृत्त है।


=== फोकस और डायरेक्ट्रिक्स सर्कल के संदर्भ में शांकवों को परिभाषित करना ===
=== केंद्रबिन्दु और नियंता चक्र के संदर्भ में शांकवों को परिभाषित करना ===
यह भी संभव है कि सभी शंकु वर्गों को उन बिंदुओं के लोकी के रूप में वर्णित किया जाए जो एक ही फ़ोकस और एक एकल, वृत्ताकार नियता से समान दूरी पर हों। दीर्घवृत्त के लिए, नियता वृत्त के केंद्र और केंद्र दोनों के परिमित निर्देशांक होते हैं और नियता वृत्त की त्रिज्या इस वृत्त के केंद्र और फ़ोकस के बीच की दूरी से अधिक होती है; इस प्रकार, फोकस डायरेक्ट्रिक्स सर्कल के अंदर है। इस प्रकार उत्पन्न दीर्घवृत्त का अपना दूसरा फोकस डायरेक्ट्रिक्स सर्कल के केंद्र में होता है, और दीर्घवृत्त पूरी तरह से सर्कल के भीतर स्थित होता है।
यह भी संभव है कि सभी शांक्व वर्गों को उन बिंदुओं के लोकी के रूप में वर्णित किया जाए जो एक ही केंद्रबिन्दु और एक एकल, वृत्ताकार नियता से समान दूरी पर हों। दीर्घवृत्त के लिए, नियता वृत्त के केंद्र और केंद्रबिंदु दोनों के परिमित निर्देशांक होते हैं और नियता वृत्त की त्रिज्या इस वृत्त के केंद्र और केंद्रबिन्दु के बीच की दूरी से अधिक होती है; इस प्रकार, केंद्रबिन्दु नियंता चक्र के अंदर है। इस प्रकार उत्पन्न दीर्घवृत्त का अपना दूसरा केंद्रबिन्दु नियंता चक्र के केंद्र में होता है, और दीर्घवृत्त पूरी तरह से चक्र के भीतर स्थित होता है।


पैराबोला के लिए, डायरेक्ट्रिक्स का केंद्र अनंत पर बिंदु पर जाता है (प्रोजेक्टिव ज्यामिति देखें)। डायरेक्ट्रिक्स सर्कल शून्य वक्रता वाला एक वक्र बन जाता है, जो एक सीधी रेखा से अप्रभेद्य होता है। परबोला की दो भुजाएँ विस्तार के साथ-साथ समानांतर होती जाती हैं, और अनंत पर समानांतर हो जाती हैं; [[प्रक्षेपी ज्यामिति]] के सिद्धांतों का उपयोग करते हुए, दो समानांतर बिंदु अनंत पर एक दूसरे को काटते हैं और परवलय एक बंद वक्र (अण्डाकार प्रक्षेपण) बन जाता है।
परवलय के लिए, नियंता का केंद्र अनंत पर बिंदु पर जाता है (प्रक्षेपीय ज्यामिति देखें)। नियंता चक्र शून्य वक्रता वाला एक वक्र बन जाता है, जो एक सीधी रेखा से अप्रभेद्य होता है। परवलय की दो भुजाएँ विस्तार के साथ-साथ समानांतर होती जाती हैं, और अनंत पर समानांतर हो जाती हैं; [[प्रक्षेपी ज्यामिति]] के सिद्धांतों का उपयोग करते हुए, दो समानांतर बिंदु अनंत पर एक दूसरे को काटते हैं और परवलय एक बंद वक्र (अण्डाकार प्रक्षेपण) बन जाता है।


अतिपरवलय उत्पन्न करने के लिए, नियता वृत्त की त्रिज्या को इस वृत्त के केंद्र और फ़ोकस के बीच की दूरी से कम चुना जाता है; इस प्रकार, फोकस डायरेक्ट्रिक्स सर्कल के बाहर है। हाइपरबोला की भुजाएँ स्पर्शोन्मुख रेखाओं तक पहुँचती हैं और हाइपरबोला की एक शाखा की दाहिनी भुजा अनंत पर बिंदु पर हाइपरबोला की दूसरी शाखा के बाएँ हाथ से मिलती है; यह इस सिद्धांत पर आधारित है कि प्रक्षेपी ज्यामिति में, एक रेखा स्वयं को अनंत पर एक बिंदु पर मिलती है। हाइपरबोला की दो शाखाएँ इस प्रकार अनंत पर बंद वक्र के दो (मुड़) भाग हैं।
अतिपरवलय उत्पन्न करने के लिए, नियता वृत्त की त्रिज्या को इस वृत्त के केंद्र और केंद्रबिन्दु के बीच की दूरी से कम चुना जाता है; इस प्रकार, केंद्रबिन्दु नियंता चक्र के बाहर है। अतिपरवलय की भुजाएँ स्पर्शोन्मुख रेखाओं तक पहुँचती हैं और अतिपरवलय की एक शाखा की दाहिनी भुजा अनंत पर बिंदु पर अतिपरवलय की दूसरी शाखा के बाएँ हाथ से मिलती है; यह इस सिद्धांत पर आधारित है कि प्रक्षेपी ज्यामिति में, एक रेखा स्वयं को अनंत पर एक बिंदु पर मिलती है। अतिपरवलय की दो शाखाएँ इस प्रकार अनंत पर बंद वक्र के दो (मुड़) भाग हैं।


प्रक्षेपी ज्यामिति में, सभी शंकु इस अर्थ में समतुल्य हैं कि प्रत्येक प्रमेय जो एक के लिए कहा जा सकता है, दूसरे के लिए कहा जा सकता है।
प्रक्षेपी ज्यामिति में, सभी शांक्व इस अर्थ में समतुल्य हैं कि प्रत्येक प्रमेय जो एक के लिए कहा जा सकता है, वह दूसरों के लिए कहा जा सकता है।


=== खगोलीय महत्व ===
=== खगोलीय महत्व ===
{{See also|Ellipse#Planetary orbits}}
{{See also|दीर्घवृत्त#ग्रह कक्षा}}


गुरुत्वीय दो-पिंड समस्या में, एक-दूसरे के बारे में दो पिंडों की कक्षाओं को दो अतिव्यापी शंक्वाकार वर्गों द्वारा वर्णित किया जाता है, जिनमें से एक का संपाती द्रव्यमान के केंद्र में दूसरे के नाभियों में से एक के साथ होता है (बैरीसेंट्रिक निर्देशांक (बैरीसेंट्रिक निर्देशांक) खगोल विज्ञान)) दो निकायों की।
गुरुत्वीय दो-पिंड समस्या में, एक-दूसरे के बारे में दो पिंडों की कक्षाओं को दो अतिव्यापी शंक्वाकार वर्गों द्वारा वर्णित किया जाता है, जिनमें दो निकायों से एक का संपाती द्रव्यमान के केंद्र में दूसरे के फोकी में से एक के साथ होता है।


इस प्रकार, उदाहरण के लिए, छोटे ग्रह [[प्लूटो]] के सबसे बड़े [[प्राकृतिक उपग्रह]] चारोन ([[चंद्रमा]]) की एक अण्डाकार कक्षा है जिसका एक फोकस प्लूटो-चारोन प्रणाली के बेरिकेंटर पर है, जो एक बिंदु है जो दो पिंडों के बीच अंतरिक्ष में है; और प्लूटो भी पिंडों के बीच उसी बेरिकेंटर पर अपने फोकस में से एक के साथ दीर्घवृत्त में चलता है। प्लूटो का दीर्घवृत्त पूरी तरह से चारोन के दीर्घवृत्त के अंदर है, जैसा कि चारोन (चंद्रमा) # सिस्टम की कक्षा में दिखाया गया है।
इस प्रकार, उदाहरण के लिए, छोटे ग्रह [[प्लूटो]] के सबसे बड़े [[प्राकृतिक उपग्रह]] चारोन ([[चंद्रमा]]) की एक अण्डाकार कक्षा है जिसका एक केंद्रबिन्दु प्लूटो-चारोन प्रणाली के बेरिकेंटर पर है, जो एक बिंदु है जो दो पिंडों के बीच अंतरिक्ष में है; और प्लूटो भी पिंडों के बीच उसी बेरिकेंटर पर अपने केंद्रबिन्दु में से एक के साथ दीर्घवृत्त में चलता है। प्लूटो का दीर्घवृत्त पूरी तरह से चारोन के दीर्घवृत्त के अंदर है, जैसा कि चारोन (चंद्रमा) की कक्षा में दिखाया गया है।


तुलनात्मक रूप से, पृथ्वी का चंद्रमा एक दीर्घवृत्त में चलता है, जिसका एक फोकस चंद्रमा और पृथ्वी के बायर्सेंटर पर होता है, यह बायर्सेंटर पृथ्वी के भीतर ही होता है, जबकि पृथ्वी (अधिक सटीक रूप से, इसका केंद्र) एक फोकस के साथ दीर्घवृत्त में चलता है। पृथ्वी के भीतर उसी बेरिकेंटर पर। बैरीसेंटर पृथ्वी के केंद्र से इसकी सतह तक की दूरी का लगभग तीन-चौथाई है।
तुलनात्मक रूप से, पृथ्वी का चंद्रमा एक दीर्घवृत्त में चलता है, जिसका एक केंद्रबिन्दु चंद्रमा और पृथ्वी के बायर्सेंटर पर होता है, यह बायर्सेंटर पृथ्वी के भीतर ही होता है, जबकि पृथ्वी (अधिक सटीक रूप से, इसका केंद्र) एक केंद्रबिन्दु के साथ दीर्घवृत्त में चलता है। बैरीसेंटर पृथ्वी के केंद्र से इसकी सतह तक की दूरी का लगभग तीन-चौथाई है।


इसके अलावा, प्लूटो-चारोन प्रणाली सूर्य के साथ अपने बेरिकेंटर के चारों ओर एक दीर्घवृत्त में चलती है, जैसा कि पृथ्वी-चंद्रमा प्रणाली (और हर दूसरे ग्रह-चंद्रमा प्रणाली या सौर मंडल में चंद्रमा रहित ग्रह) करती है। दोनों ही मामलों में सूर्य के शरीर के भीतर बेरिकेंटर अच्छी तरह से है।
इसके अलावा, प्लूटो-चारोन प्रणाली सूर्य के साथ अपने बेरिकेंटर के चारों ओर एक दीर्घवृत्त में चलती है, जैसा कि पृथ्वी-चंद्रमा प्रणाली (और हर दूसरे ग्रह-चंद्रमा प्रणाली या सौर मंडल में चंद्रमा रहित ग्रह) करती है। दोनों ही स्तिथि में सूर्य के शरीर के भीतर बेरिकेंटर अच्छी तरह से है।


दो बाइनरी सितारे भी दीर्घवृत्त में गति करते हैं जो उनके बेरिकेंटर पर फोकस साझा करते हैं; एनिमेशन के लिए, [[बाइनरी स्टार]]#एस्ट्रोफिजिक्स देखें।
दो युग्मक सितारे भी दीर्घवृत्त में गति करते हैं जो उनके बेरिकेंटर पर केंद्रबिन्दु साझा करते हैं; सजीवता के लिए, [[बाइनरी स्टार|युग्मक स्टार]] देखें।


== कार्तीय और कैसिनी अंडाकार ==
== कार्तीय और कैसिनी अंडाकार ==
एक कार्तीय अंडाकार उन बिंदुओं का समूह होता है जिनमें से प्रत्येक के लिए दो दिए गए नाभियों की दूरियों का भारित योग स्थिर होता है। यदि भार समान हैं, तो दीर्घवृत्त परिणाम का विशेष मामला।
एक कार्तीय अंडाकार उन बिंदुओं का समूह होता है जिनमें से प्रत्येक के लिए दो दिए गए नाभियों की दूरियों का भारित योग स्थिर होता है। यदि भार समान हैं, तो दीर्घवृत्त की विशेष स्तिथि परिणाम देती है।


एक कैसिनी अंडाकार उन बिंदुओं का समूह है जिनमें से प्रत्येक के लिए दो दिए गए नाभियों की दूरियों का गुणनफल स्थिर होता है।
एक कैसिनी अंडाकार उन बिंदुओं का समूह है जिनमें से प्रत्येक के लिए दो दिए गए फोकी की दूरियों का गुणनफल स्थिर होता है।


== सामान्यीकरण ==
== सामान्यीकरण ==
एक n-दीर्घवृत्त | n-दीर्घवृत्त उन सभी बिंदुओं का समूह है जिनकी दूरी n foci के समान है (n = 2 मामला पारंपरिक दीर्घवृत्त है)।
n-दीर्घवृत्त उन सभी बिंदुओं का समूह है जिनकी दूरी n फोकी के समान है (n = 2 स्तिथि पारंपरिक दीर्घवृत्त है)।


फोकस की अवधारणा को मनमाना [[बीजगणितीय वक्र]]ों के लिए सामान्यीकृत किया जा सकता है। C को वर्ग m का एक वक्र होने दें और I और J को अनंत पर वृत्ताकार बिंदुओं को निरूपित करने दें। I और J में से प्रत्येक के माध्यम से C पर m स्पर्श रेखाएँ खींचें। m रेखाओं के दो सेट हैं जिनमें m होगा<sup>2</sup> प्रतिच्छेदन बिंदु, विलक्षणताओं आदि के कारण कुछ मामलों में अपवादों के साथ। प्रतिच्छेदन के इन बिंदुओं को C के फोकस के रूप में परिभाषित किया गया है। दूसरे शब्दों में, एक बिंदु P एक फोकस है यदि PI और PJ दोनों हैं सी के लिए स्पर्शरेखा। जब सी एक वास्तविक वक्र है, तो केवल संयुग्म जोड़े के चौराहे वास्तविक हैं, इसलिए वास्तविक नाभियों में एम हैं और एम<sup>2</sup> − m काल्पनिक फोकस। जब C एक शांकव होता है, तो इस तरह से परिभाषित वास्तविक foci ठीक वही foci होते हैं जिनका उपयोग C के ज्यामितीय निर्माण में किया जा सकता है।
केंद्रबिन्दु की अवधारणा को व्यापक [[बीजगणितीय वक्र|बीजगणितीय वक्रों]] के लिए सामान्यीकृत किया जा सकता है। C को वर्ग m का एक वक्र होने दें और I और J को अनंत पर वृत्ताकार बिंदुओं को निरूपित करने दें। और J में से प्रत्येक के माध्यम से C पर m स्पर्श रेखाएँ खींचें। m रेखाओं के दो सम्मुच्चय हैं जिनमें m<sup>2</sup> प्रतिच्छेदन बिंदु होगा, कुछ स्तिथियों में विलक्षणताओं आदि के कारण अपवाद होंगे। प्रतिच्छेदन के इन बिंदुओं को C के केंद्रबिन्दु के रूप में परिभाषित किया गया है। दूसरे शब्दों में, एक बिंदु P एक केंद्रबिन्दु है यदि PI और PJ दोनों C के लिए स्पर्शरेखा हैं। जब C एक वास्तविक वक्र है, तो केवल संयुग्म जोड़े के चौराहे वास्तविक हैं, इसलिए वास्तविक नाभियों में m और m<sup>2</sup> हैं − m काल्पनिक केंद्रबिन्दु। जब C एक शांकव होता है, तो इस तरह से परिभाषित वास्तविक फोकी ठीक वही फोकी होते हैं जिनका उपयोग C के ज्यामितीय निर्माण में किया जा सकता है।


== कन्फोकल कर्व्स ==
== सनाभि वक्र ==
चलो पी<sub>1</sub>, पी<sub>2</sub>, ..., पी<sub>''m''</sub> वर्ग m के बीजगणितीय वक्र C के foci के रूप में दिया जाना चाहिए। बता दें कि P इन बिंदुओं के स्पर्शरेखा समीकरणों का गुणनफल है और Q अनंत पर वृत्ताकार बिंदुओं के स्पर्शरेखा समीकरणों का गुणनफल है। फिर सभी रेखाएँ जो P = 0 और Q = 0 दोनों के लिए सामान्य स्पर्शरेखाएँ हैं, C की स्पर्शरेखा हैं। इसलिए, AF+BG प्रमेय के अनुसार, C के स्पर्शरेखा समीकरण का रूप HP + KQ = 0 है। चूँकि C का वर्ग m है , H एक स्थिरांक होना चाहिए और K लेकिन उसकी डिग्री m−2 से कम या उसके बराबर होनी चाहिए। स्थिति H = 0 को पतित के रूप में समाप्त किया जा सकता है, इसलिए C के स्पर्शरेखा समीकरण को P + fQ = 0 के रूप में लिखा जा सकता है, जहाँ f एक [[बहुपद]] m2 की डिग्री का एक मनमाना बहुपद है।<ref>Follows Hilton p. 69 with an appeal to AF+BG for simplification.</ref>
मान लीजिए P<sub>1</sub>, P<sub>2</sub>, ..., P<sub>''m''</sub> वर्ग m के बीजगणितीय वक्र C के फोकी के रूप में दिए गए हैं। बता दें कि P इन बिंदुओं के स्पर्शरेखा समीकरणों का गुणनफल है और Q अनंत पर वृत्ताकार बिंदुओं के स्पर्शरेखा समीकरणों का गुणनफल है। फिर सभी रेखाएँ जो P = 0 और Q = 0 दोनों के लिए सामान्य स्पर्शरेखाएँ हैं, C की स्पर्शरेखा हैं। इसलिए, AF+BG प्रमेय के अनुसार, C के स्पर्शरेखा समीकरण का रूप HP + KQ = 0 है। चूँकि C का वर्ग m है , H एक स्थिरांक होना चाहिए और K लेकिन उसकी घात m−2 से कम या उसके बराबर होनी चाहिए। स्थिति H = 0 को पतित के रूप में समाप्त किया जा सकता है, इसलिए C के स्पर्शरेखा समीकरण को P + fQ = 0 के रूप में लिखा जा सकता है, जहाँ f एक [[बहुपद]] m2 की घात का एक स्वेच्छाचारी बहुपद है।<ref>Follows Hilton p. 69 with an appeal to AF+BG for simplification.</ref>
उदाहरण के लिए, मान लीजिए m = 2, P<sub>1</sub> = (1,0), और पी<sub>2</sub> = (−1,0). स्पर्शरेखा समीकरण X + 1 = 0 और X − 1 = 0 हैं इसलिए P = X<sup>2</sup> − 1 = 0. अनंत पर गोलाकार बिंदुओं के लिए स्पर्शरेखा समीकरण हैं X + iY = 0 और X − iY = 0 इसलिए Q = X<sup>2</सुप> +वाई<sup>2</उप>। इसलिए, दी गई नाभियों वाले शंकु के लिए स्पर्शरेखा समीकरण X है<sup>2</sup> − 1 + c(X<sup>2</सुप> +वाई<sup>2</sup>) = 0, या (1+ c)X<sup>2</sup> + सीवाई<sup>2</sup> = 1 जहाँ c एक स्वेच्छ स्थिरांक है। बिंदु निर्देशांक में यह बन जाता है
 
उदाहरण के लिए, मान लीजिए m = 2, P<sub>1</sub> = (1,0), और P<sub>2</sub> = (−1,0)स्पर्शरेखा समीकरण X + 1 = 0 और X − 1 = 0 हैं इसलिए P = X<sup>2</sup> − 1 = 0. अनंत पर गोलाकार बिंदुओं के लिए स्पर्शरेखा समीकरण हैं X + iY = 0 और X − iY = 0 इसलिए Q = X इसलिए, दिए गए फोकस के साथ शंकु के लिए स्पर्शरेखा समीकरण ''X''<sup>2</sup> − 1 + ''c''(''X''<sup>2</sup> +''Y''<sup>2</sup>) = 0, or (1+ ''c'')''X''<sup>2</sup> + ''cY''<sup>2</sup> = 1 है जहां c एक स्वेच्छाचारी स्थिरांक है। बिंदु निर्देशांक में यह निम्न बन जाता है
:<math>\frac{x^2}{1+c} + \frac{y^2}{c} = 1.</math>
:<math>\frac{x^2}{1+c} + \frac{y^2}{c} = 1.</math>


Line 59: Line 60:
*{{cite book |title=Plane Algebraic Curves|first=Harold|last=Hilton|publisher=Oxford|year=1920|page=[https://archive.org/details/cu31924001544216/page/n88 69]
*{{cite book |title=Plane Algebraic Curves|first=Harold|last=Hilton|publisher=Oxford|year=1920|page=[https://archive.org/details/cu31924001544216/page/n88 69]
|url=https://archive.org/details/cu31924001544216}}
|url=https://archive.org/details/cu31924001544216}}
*{{Mathworld| title=Focus|urlname=Focus}}[[Category: शांकव खंड]] [[Category: ज्यामितीय केंद्र]]
*{{Mathworld| title=Focus|urlname=Focus}}
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 28/02/2023]]
[[Category:Created On 28/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:ज्यामितीय केंद्र]]
[[Category:शांकव खंड]]

Latest revision as of 10:27, 15 March 2023

बिंदु F लाल दीर्घवृत्त, हरा परवलय और नीला अतिपरवलय के लिए एक केंद्रबिन्दु बिंदु है।

ज्यामिति में, केंद्रित या फोकी (/ˈfk/), एकवचन केंद्रबिंदु, विशेष बिंदु हैं जिनके संदर्भ में विभिन्न प्रकार के वक्रों का निर्माण किया जाता है। उदाहरण के लिए, शांक्व वर्गों को परिभाषित करने में एक या दो फोकी का उपयोग किया जा सकता है, जिनमें से चार प्रकार वृत्त, दीर्घवृत्त, परवलय और अतिपरवलय हैं। इसके अलावा, दो फोकी का उपयोग कैसिनी अंडाकार कार्तीय अंडाकार को परिभाषित करने के लिए किया जाता है, और दो से अधिक फोकी का उपयोग n-दीर्घवृत्त को परिभाषित करने के लिए किया जाता है।

शंक्वाकार खंड

दो फोकी के संदर्भ में शांकवों को परिभाषित करना

एक दीर्घवृत्त (बैंगनी तिर्यक्) का केंद्र प्रमुख अक्ष (लाल) और अर्ध-प्रमुख अक्ष (नीला) के बराबर त्रिज्या के एक वृत्त (सियान) के चौराहे पर होता है, जो लघु अक्ष (ग्रे) के अंत पर केंद्रित होता है।

एक दीर्घवृत्त को बिंदुओं के स्थान (गणित) के रूप में परिभाषित किया जा सकता है, जिसके लिए दो दिए गए फोकी की दूरियों का योग स्थिर है।

एक वृत्त एक दीर्घवृत्त का विशेष स्तिथि है जिसमें दो केंद्र एक दूसरे के साथ मेल खाते हैं। इस प्रकार, एक वृत्त को अधिक आसानी से उन बिंदुओं के स्थान के रूप में परिभाषित किया जा सकता है जिनमें से प्रत्येक एक दिए गए केंद्रबिन्दु से एक निश्चित दूरी है। एक वृत्त को अपोलोनियस के मंडलियों के रूप में भी परिभाषित किया जा सकता है, दो अलग-अलग फोकी के संदर्भ में, बिंदुओं के स्थान के रूप में दो फोकी के लिए दूरी का एक निश्चित अनुपात होता है।

परवलय दीर्घवृत्त की एक सीमित स्तिथि है जिसमें फोकी में से एक अनंत पर एक बिंदु है।

एक अतिपरवलय को उन बिंदुओं के स्थान के रूप में परिभाषित किया जा सकता है जिनके लिए दो दिए गए फोकी की दूरियों के बीच अंतर का निरपेक्ष मान स्थिर है।

केंद्रबिन्दु और नियंता के संदर्भ में शांकवों को परिभाषित करना

एकल केंद्रबिन्दु और एकल शांकव अनुभाग, केंद्रबिन्दु और नियंता के संदर्भ में सभी शांक्व वर्गों का वर्णन करना भी संभव है, जो एक दी गई रेखा (ज्यामिति) है जिसमें केंद्रबिन्दु नहीं है। एक शांक्व को उन बिंदुओं के स्थान के रूप में परिभाषित किया जाता है जिनमें से प्रत्येक के लिए केंद्रबिन्दु की दूरी को नियंता की दूरी से विभाजित एक निश्चित सकारात्मक स्थिरांक होता है, जिसे विलक्षणता (गणित) कहा जाता है। यदि 0 <e < 1 शांक्व एक दीर्घवृत्त है, यदि e = 1 शांक्व एक परवलय है, और यदि e > 1 है तो शांक्व एक अतिपरवलय है। यदि केंद्रबिन्दु की दूरी निश्चित है और नियता अनंत पर एक रेखा है, इसलिए उत्केन्द्रता शून्य है, तो शांक्व एक वृत्त है।

केंद्रबिन्दु और नियंता चक्र के संदर्भ में शांकवों को परिभाषित करना

यह भी संभव है कि सभी शांक्व वर्गों को उन बिंदुओं के लोकी के रूप में वर्णित किया जाए जो एक ही केंद्रबिन्दु और एक एकल, वृत्ताकार नियता से समान दूरी पर हों। दीर्घवृत्त के लिए, नियता वृत्त के केंद्र और केंद्रबिंदु दोनों के परिमित निर्देशांक होते हैं और नियता वृत्त की त्रिज्या इस वृत्त के केंद्र और केंद्रबिन्दु के बीच की दूरी से अधिक होती है; इस प्रकार, केंद्रबिन्दु नियंता चक्र के अंदर है। इस प्रकार उत्पन्न दीर्घवृत्त का अपना दूसरा केंद्रबिन्दु नियंता चक्र के केंद्र में होता है, और दीर्घवृत्त पूरी तरह से चक्र के भीतर स्थित होता है।

परवलय के लिए, नियंता का केंद्र अनंत पर बिंदु पर जाता है (प्रक्षेपीय ज्यामिति देखें)। नियंता चक्र शून्य वक्रता वाला एक वक्र बन जाता है, जो एक सीधी रेखा से अप्रभेद्य होता है। परवलय की दो भुजाएँ विस्तार के साथ-साथ समानांतर होती जाती हैं, और अनंत पर समानांतर हो जाती हैं; प्रक्षेपी ज्यामिति के सिद्धांतों का उपयोग करते हुए, दो समानांतर बिंदु अनंत पर एक दूसरे को काटते हैं और परवलय एक बंद वक्र (अण्डाकार प्रक्षेपण) बन जाता है।

अतिपरवलय उत्पन्न करने के लिए, नियता वृत्त की त्रिज्या को इस वृत्त के केंद्र और केंद्रबिन्दु के बीच की दूरी से कम चुना जाता है; इस प्रकार, केंद्रबिन्दु नियंता चक्र के बाहर है। अतिपरवलय की भुजाएँ स्पर्शोन्मुख रेखाओं तक पहुँचती हैं और अतिपरवलय की एक शाखा की दाहिनी भुजा अनंत पर बिंदु पर अतिपरवलय की दूसरी शाखा के बाएँ हाथ से मिलती है; यह इस सिद्धांत पर आधारित है कि प्रक्षेपी ज्यामिति में, एक रेखा स्वयं को अनंत पर एक बिंदु पर मिलती है। अतिपरवलय की दो शाखाएँ इस प्रकार अनंत पर बंद वक्र के दो (मुड़) भाग हैं।

प्रक्षेपी ज्यामिति में, सभी शांक्व इस अर्थ में समतुल्य हैं कि प्रत्येक प्रमेय जो एक के लिए कहा जा सकता है, वह दूसरों के लिए कहा जा सकता है।

खगोलीय महत्व

गुरुत्वीय दो-पिंड समस्या में, एक-दूसरे के बारे में दो पिंडों की कक्षाओं को दो अतिव्यापी शंक्वाकार वर्गों द्वारा वर्णित किया जाता है, जिनमें दो निकायों से एक का संपाती द्रव्यमान के केंद्र में दूसरे के फोकी में से एक के साथ होता है।

इस प्रकार, उदाहरण के लिए, छोटे ग्रह प्लूटो के सबसे बड़े प्राकृतिक उपग्रह चारोन (चंद्रमा) की एक अण्डाकार कक्षा है जिसका एक केंद्रबिन्दु प्लूटो-चारोन प्रणाली के बेरिकेंटर पर है, जो एक बिंदु है जो दो पिंडों के बीच अंतरिक्ष में है; और प्लूटो भी पिंडों के बीच उसी बेरिकेंटर पर अपने केंद्रबिन्दु में से एक के साथ दीर्घवृत्त में चलता है। प्लूटो का दीर्घवृत्त पूरी तरह से चारोन के दीर्घवृत्त के अंदर है, जैसा कि चारोन (चंद्रमा) की कक्षा में दिखाया गया है।

तुलनात्मक रूप से, पृथ्वी का चंद्रमा एक दीर्घवृत्त में चलता है, जिसका एक केंद्रबिन्दु चंद्रमा और पृथ्वी के बायर्सेंटर पर होता है, यह बायर्सेंटर पृथ्वी के भीतर ही होता है, जबकि पृथ्वी (अधिक सटीक रूप से, इसका केंद्र) एक केंद्रबिन्दु के साथ दीर्घवृत्त में चलता है। बैरीसेंटर पृथ्वी के केंद्र से इसकी सतह तक की दूरी का लगभग तीन-चौथाई है।

इसके अलावा, प्लूटो-चारोन प्रणाली सूर्य के साथ अपने बेरिकेंटर के चारों ओर एक दीर्घवृत्त में चलती है, जैसा कि पृथ्वी-चंद्रमा प्रणाली (और हर दूसरे ग्रह-चंद्रमा प्रणाली या सौर मंडल में चंद्रमा रहित ग्रह) करती है। दोनों ही स्तिथि में सूर्य के शरीर के भीतर बेरिकेंटर अच्छी तरह से है।

दो युग्मक सितारे भी दीर्घवृत्त में गति करते हैं जो उनके बेरिकेंटर पर केंद्रबिन्दु साझा करते हैं; सजीवता के लिए, युग्मक स्टार देखें।

कार्तीय और कैसिनी अंडाकार

एक कार्तीय अंडाकार उन बिंदुओं का समूह होता है जिनमें से प्रत्येक के लिए दो दिए गए नाभियों की दूरियों का भारित योग स्थिर होता है। यदि भार समान हैं, तो दीर्घवृत्त की विशेष स्तिथि परिणाम देती है।

एक कैसिनी अंडाकार उन बिंदुओं का समूह है जिनमें से प्रत्येक के लिए दो दिए गए फोकी की दूरियों का गुणनफल स्थिर होता है।

सामान्यीकरण

n-दीर्घवृत्त उन सभी बिंदुओं का समूह है जिनकी दूरी n फोकी के समान है (n = 2 स्तिथि पारंपरिक दीर्घवृत्त है)।

केंद्रबिन्दु की अवधारणा को व्यापक बीजगणितीय वक्रों के लिए सामान्यीकृत किया जा सकता है। C को वर्ग m का एक वक्र होने दें और I और J को अनंत पर वृत्ताकार बिंदुओं को निरूपित करने दें। और J में से प्रत्येक के माध्यम से C पर m स्पर्श रेखाएँ खींचें। m रेखाओं के दो सम्मुच्चय हैं जिनमें m2 प्रतिच्छेदन बिंदु होगा, कुछ स्तिथियों में विलक्षणताओं आदि के कारण अपवाद होंगे। प्रतिच्छेदन के इन बिंदुओं को C के केंद्रबिन्दु के रूप में परिभाषित किया गया है। दूसरे शब्दों में, एक बिंदु P एक केंद्रबिन्दु है यदि PI और PJ दोनों C के लिए स्पर्शरेखा हैं। जब C एक वास्तविक वक्र है, तो केवल संयुग्म जोड़े के चौराहे वास्तविक हैं, इसलिए वास्तविक नाभियों में m और m2 हैं − m काल्पनिक केंद्रबिन्दु। जब C एक शांकव होता है, तो इस तरह से परिभाषित वास्तविक फोकी ठीक वही फोकी होते हैं जिनका उपयोग C के ज्यामितीय निर्माण में किया जा सकता है।

सनाभि वक्र

मान लीजिए P1, P2, ..., Pm वर्ग m के बीजगणितीय वक्र C के फोकी के रूप में दिए गए हैं। बता दें कि P इन बिंदुओं के स्पर्शरेखा समीकरणों का गुणनफल है और Q अनंत पर वृत्ताकार बिंदुओं के स्पर्शरेखा समीकरणों का गुणनफल है। फिर सभी रेखाएँ जो P = 0 और Q = 0 दोनों के लिए सामान्य स्पर्शरेखाएँ हैं, C की स्पर्शरेखा हैं। इसलिए, AF+BG प्रमेय के अनुसार, C के स्पर्शरेखा समीकरण का रूप HP + KQ = 0 है। चूँकि C का वर्ग m है , H एक स्थिरांक होना चाहिए और K लेकिन उसकी घात m−2 से कम या उसके बराबर होनी चाहिए। स्थिति H = 0 को पतित के रूप में समाप्त किया जा सकता है, इसलिए C के स्पर्शरेखा समीकरण को P + fQ = 0 के रूप में लिखा जा सकता है, जहाँ f एक बहुपद m2 की घात का एक स्वेच्छाचारी बहुपद है।[1]

उदाहरण के लिए, मान लीजिए m = 2, P1 = (1,0), और P2 = (−1,0)। स्पर्शरेखा समीकरण X + 1 = 0 और X − 1 = 0 हैं इसलिए P = X2 − 1 = 0. अनंत पर गोलाकार बिंदुओं के लिए स्पर्शरेखा समीकरण हैं X + iY = 0 और X − iY = 0 इसलिए Q = X इसलिए, दिए गए फोकस के साथ शंकु के लिए स्पर्शरेखा समीकरण X2 − 1 + c(X2 +Y2) = 0, or (1+ c)X2 + cY2 = 1 है जहां c एक स्वेच्छाचारी स्थिरांक है। बिंदु निर्देशांक में यह निम्न बन जाता है


संदर्भ

  1. Follows Hilton p. 69 with an appeal to AF+BG for simplification.
  • Hilton, Harold (1920). Plane Algebraic Curves. Oxford. p. 69.
  • Weisstein, Eric W. "Focus". MathWorld.