10 की घात: Difference between revisions
No edit summary |
No edit summary |
||
(12 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Ten raised to an integer power}} | {{short description|Ten raised to an integer power}} | ||
{{about|गणितीय अवधारणा}} | {{about|गणितीय अवधारणा}} | ||
[[Image:Visualisation 1 billion.svg|thumb|480px|एक से 1 अरब तक 10 की | [[Image:Visualisation 1 billion.svg|thumb|480px|एक से 1 अरब तक 10 की घातों का दृश्य।]]'''[[1]]0 की घात''' संख्या [[10]] के [[पूर्णांक]] [[घातांक]] में से कोई भी है। अन्य अर्थ में दस [[गुणा]] स्वयं में निश्चित संख्या में सकारात्मक पूर्णांक है। परिभाषा के अनुसार संख्या दस की घात ([[शून्य शक्ति|शून्य घात]]) है। दस की पहली कुछ धनात्मक घातें हैं: | ||
: 1, 10, [[100 (संख्या)]], 1,000, 10,000, 100,000, 1,000,000, 10,000,000। | : 1, 10, [[100 (संख्या)]], 1,000, 10,000, 100,000, 1,000,000, 10,000,000। | ||
== धनात्मक | == धनात्मक घातें == | ||
[[दशमलव]] संकेतन में दस की nवीं | [[दशमलव]] संकेतन में दस की nवीं घात को '1' के रूप में लिखा जाता है और उसके बाद n शून्य लगाया जाता है। इसे 10<sup>n</sup> के रूप में भी लिखा जा सकता है या E संकेतन में 1 En के रूप में लिखा जा सकता है। दस की नाम वाली घातों के लिए परिमाण का क्रम और परिमाण के क्रम (संख्या) देखें। दस की सकारात्मक घातों के नामकरण के लिए दो नियम हैं। जो संख्यायें10<sup>9</sup> से प्रारम्भ होती है। जिसे दीर्घ और लघु मापदंड कहा जाता है। जहां दो सम्मेलनों में दस की घात के अलग-अलग नाम हैं। कोष्ठकों में लंबे मापदंड का नाम दिया गया है। | ||
एक छोटे | एक छोटे मापदंड के नाम से संबंधित सकारात्मक 10 की घात को उसके लैटिन नाम के आधार पर निम्न सूत्र का उपयोग करके निर्धारित किया जा सकता है। | ||
जेैसे : 10<sup>[(उपसर्ग-संख्या + 1) × 3] | |||
उदाहरण: | उदाहरण: | ||
* बिलियन = 10<sup>[(2 + 1) × 3] | * बिलियन = 10<sup>[(2 + 1) × 3] = 10<sup>9</sup> | ||
* ऑक्टिलियन = 10<sup>[(8 + 1) × 3]</sup> = 10<sup>27</sup> | * ऑक्टिलियन = 10<sup>[(8 + 1) × 3]</sup> = 10<sup>27</sup> | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | ! नाम !! घात !!संख्या | ||
!एसआई प्रतीक | |||
!एसआई उपसर्ग | |||
|- | |- | ||
| [[one]]||0||1|| || | | [[one|एक]]||0||1|| || | ||
|- | |- | ||
| [[10 (number)| | | [[10 (number)|दस]]||1||10||da (D)||[[Deca-|डेका]] | ||
|- | |- | ||
| [[hundred]]||2||100 ||h (H)||[[Hecto-| | | [[hundred|सैकड़ा]]||2||100 ||h (H)||[[Hecto-|हेक्टो]] | ||
|- | |- | ||
| [[thousand]] || 3 || 1,000 ||k (K)||[[Kilo-| | | [[thousand|हजार]] || 3 || 1,000 ||k (K)||[[Kilo-|किलो]] | ||
|- | |- | ||
| [[10000 (number)| | | [[10000 (number)|दस हजार (असंख्य)]] (ग्रीक) || 4 || 10,000 |||| | ||
|- | |- | ||
| [[100,000| | | [[100,000|सौ हजार (लाख (भारत))]]|| 5 || 100,000 |||| | ||
|- | |- | ||
| [[million]] || 6 || 1,000,000 ||M||[[Mega-| | | [[million|मिलियन]] || 6 || 1,000,000 ||M||[[Mega-|मेगा]] | ||
|- | |- | ||
|[[Crore| | |[[Crore|दस मिलियन]] ([[crore|करोड़]] (भारत)) | ||
|7 | |7 | ||
|10,000,000 | |10,000,000 | ||
Line 39: | Line 43: | ||
| | | | ||
|- | |- | ||
| | |सौ करोड़ | ||
|8 | |8 | ||
|100,000,000 | |100,000,000 | ||
Line 45: | Line 49: | ||
| | | | ||
|- | |- | ||
| [[1,000,000,000| | | [[1,000,000,000|अरब (मिलियन)]]|| 9 || 1,000,000,000 ||G||[[Giga-|गीगा]] | ||
|- | |- | ||
| [[Trillion (short scale)| | | [[Trillion (short scale)|खरब (अरब)]]|| 12 || 1,000,000,000,000 ||T||[[Tera-|टेरा]] | ||
|- | |- | ||
| [[quadrillion]] ( | | [[quadrillion|क्वाड्रिलियन]] [[quadrillion|(बिलियर्ड)]]||15||1,000,000,000,000,000||P||[[Peta-|पेटा]] | ||
|- | |- | ||
| [[quintillion]] ( | | [[quintillion|क्विंटिलियन]] (ट्रिलियन) ||18||1,000,000,000,000,000,000||E||[[Exa-|एक्सा]] | ||
|- | |- | ||
| | | सेक्साट्रिलियन (ट्रिलियर्ड)||21||1,000,000,000,000,000,000,000||Z||[[Zetta-|जेटा]] | ||
|- | |- | ||
| [[septillion]] ( | | [[septillion|सेप्टिलियन]] (क्वाड्रिलियन) ||24||1,000,000,000,000,000,000,000,000||Y||[[Yotta-|योटा]] | ||
|- | |- | ||
| [[octillion]] ( | | [[octillion|ऑक्टिलियन]] (क्वाड्रिलियर्ड) ||27||1,000,000,000,000,000,000,000,000,000||R||[[Ronna-|रोन्ना]] | ||
|- | |- | ||
| [[nonillion]] ( | | [[nonillion|नॉनमिलियन]] (क्विंटिलियन) ||30||1,000,000,000,000,000,000,000,000,000,000||Q||[[Quetta-|क्योट्टा]] | ||
|- | |- | ||
| [[decillion]] ( | | [[decillion|डेसीलियन]] (क्विंटिलियर्ड) ||33||1,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[undecillion]] ( | | [[undecillion|अनडेसीलियन]] (सेक्साटिलियन) ||36||1,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[duodecillion]] ( | | [[duodecillion|डुओडेसिलियन]] (सेक्सटिलियर्ड) ||39||1,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[tredecillion]] ( | | [[tredecillion|ट्रेडेसिलियन]] (सेप्टिलियन) ||42||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
|{{Nowrap| | |{{Nowrap|क्वाटुओर्डेसिलियन (सेप्टिलियर्ड)}}||45||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[quindecillion]] ( | | [[quindecillion|क्विनडेसिलियन]] (ऑक्टिलियन) ||48||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[sexdecillion]] ( | | [[sexdecillion|सेक्सडेसिलियन]] (ऑक्टिलियर्ड) ||51||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[septendecillion]] ( | | [[septendecillion|सेप्टेंडेसिलियन]] (नॉनिलियन) ||54||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[octodecillion]] ( | | [[octodecillion|ऑक्टोडेसिलियन]] (नॉनिलियर्ड) ||57||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[novemdecillion]] ( | | [[novemdecillion|नोवडेसिलियन]] (डेसीलियन) ||60||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[vigintillion]] ( | | [[vigintillion|विजिंटिलियन]] (डेसिलियर्ड) ||63||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[unvigintillion]] | | [[unvigintillion|विजिंटिलियन]] डेसिलियर्ड ||66||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[duovigintillion]] ( | | [[duovigintillion|डुओविगिंटिलियन]] (अनिसिलियर्ड) ||69||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[trevigintillion]] ( | | [[trevigintillion|ट्रेविगिन्टिलियन]] (डुओडेसिलियन) ||72||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[quattuorvigintillion]] ( | | [[quattuorvigintillion|क्वाटुओरविजिंटिलियन]] (डुओडेसिलियार्ड) ||75||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[quinvigintillion]] ( | | [[quinvigintillion|क्विनविजिंटिलियन]] (ट्रेडेसिलियन) ||78||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[sexvigintillion]] ( | | [[sexvigintillion|सेक्सविजिंटिलियन]] (ट्रेडिसिलियार्ड) ||81||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[septenvigintillion]] ( | | [[septenvigintillion|सेप्टेनविजिंटिलियन]] (क्वाट्टू ऑर्डेसिलियन) ||84||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[octovigintillion]] ( | | [[octovigintillion|ऑक्टोविजिंटिलियन]] (क्वाट्टू ऑर्डेसिलियार्ड) ||87||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[novemvigintillion]] ( | | [[novemvigintillion|नोवविजिंटिलियन]] (क्विनडिमिलियन) ||90||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[trigintillion]] ( | | [[trigintillion|ट्रिगिंटिलियन]] (क्विनडेसिलियार्ड) ||93||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
| [[googol]] ||100||10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,<br>000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|||| | | [[googol|गूगोल]] ||100||10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,<br>000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|||| | ||
|- | |- | ||
| [[centillion]] ||303||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,<br>000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,<br>000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,<br>000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,<br>000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | | [[centillion|सौ करोड़]] ||303||1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,<br>000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,<br>000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,<br>000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,<br>000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000|| || | ||
|- | |- | ||
|[[googolplex]] | |[[googolplex|गूगोलपलेक्स]] | ||
|googol | |googol | ||
|one then 10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,<br>000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | |one then 10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,<br>000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
| | | | ||
| | | | ||
Line 116: | Line 120: | ||
== | ==श्रणात्मक घातें== | ||
दस की | दस की घातों के क्रम को श्रणात्मक घातों तक भी बढ़ाया जा सकता है। | ||
सकारात्मक | सकारात्मक घातों के समान लघु मापदंड के नाम से संबंधित 10 की श्रणात्मक घात को उसके लैटिन नाम-उपसर्ग के आधार पर निम्न सूत्र का उपयोग करके निर्धारित किया जा सकता है: 10<sup>−[(उपसर्ग-संख्या + 1) × 3]</sup> | ||
10<sup>−[(उपसर्ग-संख्या + 1) × 3]</sup> | |||
उदाहरण: | उदाहरण: | ||
Line 129: | Line 132: | ||
{| class="wikitable" | {| class="wikitable" | ||
|- | |- | ||
! | !नाम | ||
!घात | |||
!संख्या | |||
!एसआई प्रतीक | |||
!एसआई उपसर्ग | |||
|- | |- | ||
| | |एक | ||
|0||1|| || | |||
|- | |- | ||
| | |दसवां | ||
|−1||0.1||d|| [[Deci-|डेसी]] | |||
|- | |- | ||
| [[hundredth]] ||−2||0.01||c|| [[Centi-| | | [[hundredth|सौवां]] ||−2||0.01||c|| [[Centi-|सेन्टी]] | ||
|- | |- | ||
| [[thousandth]] ||−3||0.001||m|| [[Milli-| | | [[thousandth|हजारवां]] ||−3||0.001||m|| [[Milli-|मिली]] | ||
|- | |- | ||
| | | दस हजारवाँ ([[Myriad|असंख्य]] ) ||−4||0.000 1|| || | ||
|- | |- | ||
| | | सौ-हज़ारवाँ ([[Lakh|लाख]]) ||−5||0.000 01|| || | ||
|- | |- | ||
| [[millionth]] ||−6||0.000 001||μ|| [[Micro-| | | [[millionth|दस लाखवाँ]] ||−6||0.000 001||μ|| [[Micro-|माइक्रो]] | ||
|- | |- | ||
| [[billionth]] ||−9||0.000 000 001||n|| [[Nano-| | | [[billionth|बिलियन]] ||−9||0.000 000 001||n|| [[Nano-|नैनो]] | ||
|- | |- | ||
| [[trillionth]] ||−12||0.000 000 000 001||p|| [[Pico-| | | [[trillionth|खरब]] ||−12||0.000 000 000 001||p|| [[Pico-|पीको]] | ||
|- | |- | ||
| [[quadrillionth]] ||−15||0.000 000 000 000 001||f|| [[Femto-| | | [[quadrillionth|चतुर्भुज]] ||−15||0.000 000 000 000 001||f|| [[Femto-|फेम्टो]] | ||
|- | |- | ||
| [[quintillionth]] ||−18||0.000 000 000 000 000 001||a|| [[Atto-| | | [[quintillionth|चतुर्भुज]] ||−18||0.000 000 000 000 000 001||a|| [[Atto-|अट्टो]] | ||
|- | |- | ||
| | |सेक्सटिलवेंथ | ||
|−21||0.000 000 000 000 000 000 001||z|| [[Zepto-|जेप्टो]] | |||
|- | |- | ||
| | | सेप्टथिलियंथ ||−24||0.000 000 000 000 000 000 000 001||y|| [[Yocto-|योक्टो]] | ||
|- | |- | ||
| | | ऑक्थिलियंथ ||−27||0.000 000 000 000 000 000 000 000 001||r|| [[Ronto-|रोन्टो]] | ||
|- | |- | ||
| | | नॉनीलिथियंथ ||−30||0.000 000 000 000 000 000 000 000 000 001||q|| [[Quecto-|क्योक्टो]] | ||
|- | |- | ||
| | | डेसीलियंथ ||−33||0.000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | अनडेसीलियंथ ||−36||0.000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | ड्यूडेसीलियंथ ||−39||0.000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | ट्रीलिथियंथ ||−42||0.000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | क्यूट्टूट्रीलियंथ ||−45||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | क्वीडेसीलिंयंथ ||−48||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | सेक्सडेसीलियंथ||−51||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | सेप्डेसीलियंथ||−54||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | ऑक्टोडेसीलियंथ||−57||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | नोवेमडेसीलियंथ||−60||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | विजीट्रिलियंथ||−63||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | अनविजीलियंथ||−66||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | ड्यूलिजिलियंथ||−69||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | ट्रिविजीलियंथ||−72||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | क्यूट्टोओविजिलियंथ||−75||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | क्वीनविजीट्रिलीयंथ||−78||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | सेक्सक्वीजिलियंथ||−81||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | सेप्टेनविजिलियंथ||−84||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | ऑक्टोविजीट्रीलियंथ||−87||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | नोवेमविजीलियंथ||−90||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | ट्रिजीनट्रिलियंथ||−93||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | गूगोल्थ||−100||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 1|| || | ||
|- | |- | ||
| | | सेन्ट्रिलियंथ||−303||0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001|| || | ||
|- | |- | ||
| | | गूगोलप्लेक्सक्थ||−गूगल||दस से ऋणात्मक10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 घात || || | ||
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | |||
|} | |} | ||
== गूगल == | == गूगल == | ||
{{Main| | {{Main|गूगल}} | ||
गूगोल की संख्या 10 | |||
गूगोल की संख्या 10<sup>100</sup> है। यह शब्द अमेरिकी गणितज्ञ [[एडवर्ड कास्नर]] के भतीजे 9 वर्षीय मिल्टन सिरोटा द्वारा दिया गया था। इसे कास्नर की 1940 की पुस्तक [[गणित और कल्पना]] में लोकप्रिय किया गया था। जहाँ इसका उपयोग बहुत बड़ी संख्याओं की तुलना और वर्णन करने के लिए प्रयोग किया गया था। [[Googolplex|गूगलपलेक्स]] दस की बहुत बड़ी घात (10<sup>10<sup>100</sup></sup>) का परिचय भी उस पुस्तक में दिया गया था। (नीचे पढ़ें) | |||
== गोगोलप्लेक्स == | == गोगोलप्लेक्स == | ||
{{Main| | {{Main|गूगलप्लेक्स}} | ||
संख्या गूगलप्लेक्स 10<sup>googol</sup> है या 10<sup>10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 कछाप,000,000,000,000,000,000,000,000,000,000,000,000,000,000 कछाप,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 कछाप,000,000,000,000,000,000,000,000,000,000,000,000 (ऊपरोक्त पढ़ें) | |||
== वैज्ञानिक संकेतन == | == वैज्ञानिक संकेतन == | ||
{{Main| | {{Main|वैज्ञानिक संकेतन}} | ||
वैज्ञानिक संकेतन बहुत बड़े और बहुत छोटे आकार की संख्याओं को सघन रूप से लिखने का | वैज्ञानिक संकेतन बहुत बड़े और बहुत छोटे आकार की संख्याओं को सघन रूप से लिखने का प्रकार है जब सटीकता कम [[महत्व]]पूर्ण होती है। | ||
वैज्ञानिक संकेतन में लिखी गई संख्या का महत्व (जिसे कभी-कभी मंटिसा कहा जाता है) को दस की | वैज्ञानिक संकेतन में लिखी गई संख्या का महत्व (जिसे कभी-कभी मंटिसा कहा जाता है) को दस की घात से गुणा किया जाता है। | ||
कभी-कभी रूप में लिखा जाता है: | कभी-कभी रूप में लिखा जाता है: | ||
: ''m'' × 10<sup>''n''</sup> | |||
: | |||
या अधिक कॉम्पैक्टली के रूप में: | या अधिक कॉम्पैक्टली के रूप में: | ||
: 10<sup>n</sup> | |||
: 10<sup> | यह सामान्यतः 10 की घातयों को दर्शाने के लिए प्रयोग किया जाता है। जहां n सकारात्मक है, यह संख्या के बाद शून्य की संख्या को इंगित करता है, और जहां n ऋणात्मक है, यह संख्या से पहले दशमलव स्थानों की संख्या को इंगित करता है। | ||
यह | |||
उदहारण के लिए: | उदहारण के लिए: | ||
: 10<sup>5</sup> = 100,000<ref>{{Cite web|url=http://www.mathsteacher.com.au/year7/ch02_power/08_pow10/pow.htm|title=Powers of 10|website=www.mathsteacher.com.au|access-date=2020-03-17}}</ref> | : 10<sup>5</sup> = 100,000<ref>{{Cite web|url=http://www.mathsteacher.com.au/year7/ch02_power/08_pow10/pow.htm|title=Powers of 10|website=www.mathsteacher.com.au|access-date=2020-03-17}}</ref> | ||
: 10<sup>−5</sup> = 0.00001<ref>{{Cite web|url=https://hesperia.gsfc.nasa.gov/sftheory/power10.htm|title=Powers of Ten|website=hesperia.gsfc.nasa.gov|access-date=2020-03-17}}</ref> | : 10<sup>−5</sup> = 0.00001<ref>{{Cite web|url=https://hesperia.gsfc.nasa.gov/sftheory/power10.htm|title=Powers of Ten|website=hesperia.gsfc.nasa.gov|access-date=2020-03-17}}</ref> | ||
''m''E''n'' का अंकन, जिसे E संकेतन के रूप में जाना जाता है, का उपयोग कंप्यूटर प्रोग्रामिंग, स्प्रेडशीट और डेटाबेस में किया जाता है। किन्तु वैज्ञानिक पत्रों में इसका उपयोग नहीं किया जाता है। | |||
== यह भी देखें == | == यह भी देखें == | ||
* [[दो की शक्ति]] | * [[दो की शक्ति|दो की घात]] | ||
* [[तीन की शक्ति]] | * [[तीन की शक्ति|तीन की घात]] | ||
*[[एसआई उपसर्ग]] | *[[एसआई उपसर्ग]] | ||
*[[लौकिक दृश्य]], फ़िल्म पॉवर्स ऑफ़ टेन के लिए प्रेरणा | *[[लौकिक दृश्य]], फ़िल्म पॉवर्स ऑफ़ टेन के लिए प्रेरणा | ||
* घातांक | * घातांक | ||
*फिलिप और फिलिस मॉरिसन ने एम्स के वीडियो के साथ पॉवर्स ऑफ टेन: ए बुक अबाउट द रिलेटिव साइज ऑफ थिंग्स इन द यूनिवर्स एंड द इफेक्ट ऑफ ऐडिंग अदर जीरो नामक | *फिलिप और फिलिस मॉरिसन ने एम्स के वीडियो के साथ पॉवर्स ऑफ टेन: ए बुक अबाउट द रिलेटिव साइज ऑफ थिंग्स इन द यूनिवर्स एंड द इफेक्ट ऑफ ऐडिंग अदर जीरो नामक किताब लिखी। [https://eames.com/en/powers-of-ten] | ||
==अग्रिम पठन == | ==अग्रिम पठन == | ||
;Video | ;Video | ||
* | *पॉवर्स ऑफ़ टेन (1977) नौ मिनट की फिल्म यूएस पब्लिक ब्रॉडकास्टिंग सर्विस (पीबीएस), चार्ल्स और रे एम्स द्वारा बनाई गई। "परिमाण में एक साहसिक शिकागो में झील के किनारे एक पिकनिक से प्रारम्भ होकर यह फिल्म दर्शकों को ब्रह्मांड के बाहरी किनारों तक पहुँचाती है। हर दस सेकंड में हम प्रारम्भिक बिंदु को दस गुना दूर से देखते हैं। जब तक कि हमारी अपनी आकाशगंगा केवल दिखाई नहीं देती। कई अन्य के बीच प्रकाश का एक कण लुभावनी गति के साथ पृथ्वी पर लौटते हुए हम अंदर की ओर बढ़ते हैं। सोते हुए पिकनिक करने वाले के हाथ में हर दो सेकंड में दस गुना अधिक आवर्धन के साथ हमारी यात्रा डीएनए अणु के भीतर एक सफेद रक्त कोशिका में एक कार्बन परमाणु के एक प्रोटॉन के अंदर समाप्त होती है।" | ||
Line 259: | Line 263: | ||
{{Series (mathematics)}} | {{Series (mathematics)}} | ||
{{Classes of natural numbers |state=collapsed}} | {{Classes of natural numbers |state=collapsed}} | ||
{{Large numbers}} | {{Large numbers}} | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category: | [[Category:Collapse templates]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Mathematics navigational boxes]] | |||
[[Category:Navbox orphans]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] |
Latest revision as of 14:55, 16 March 2023
10 की घात संख्या 10 के पूर्णांक घातांक में से कोई भी है। अन्य अर्थ में दस गुणा स्वयं में निश्चित संख्या में सकारात्मक पूर्णांक है। परिभाषा के अनुसार संख्या दस की घात (शून्य घात) है। दस की पहली कुछ धनात्मक घातें हैं:
- 1, 10, 100 (संख्या), 1,000, 10,000, 100,000, 1,000,000, 10,000,000।
धनात्मक घातें
दशमलव संकेतन में दस की nवीं घात को '1' के रूप में लिखा जाता है और उसके बाद n शून्य लगाया जाता है। इसे 10n के रूप में भी लिखा जा सकता है या E संकेतन में 1 En के रूप में लिखा जा सकता है। दस की नाम वाली घातों के लिए परिमाण का क्रम और परिमाण के क्रम (संख्या) देखें। दस की सकारात्मक घातों के नामकरण के लिए दो नियम हैं। जो संख्यायें109 से प्रारम्भ होती है। जिसे दीर्घ और लघु मापदंड कहा जाता है। जहां दो सम्मेलनों में दस की घात के अलग-अलग नाम हैं। कोष्ठकों में लंबे मापदंड का नाम दिया गया है।
एक छोटे मापदंड के नाम से संबंधित सकारात्मक 10 की घात को उसके लैटिन नाम के आधार पर निम्न सूत्र का उपयोग करके निर्धारित किया जा सकता है।
जेैसे : 10[(उपसर्ग-संख्या + 1) × 3]
उदाहरण:
- बिलियन = 10[(2 + 1) × 3] = 109
- ऑक्टिलियन = 10[(8 + 1) × 3] = 1027
नाम | घात | संख्या | एसआई प्रतीक | एसआई उपसर्ग |
---|---|---|---|---|
एक | 0 | 1 | ||
दस | 1 | 10 | da (D) | डेका |
सैकड़ा | 2 | 100 | h (H) | हेक्टो |
हजार | 3 | 1,000 | k (K) | किलो |
दस हजार (असंख्य) (ग्रीक) | 4 | 10,000 | ||
सौ हजार (लाख (भारत)) | 5 | 100,000 | ||
मिलियन | 6 | 1,000,000 | M | मेगा |
दस मिलियन (करोड़ (भारत)) | 7 | 10,000,000 | ||
सौ करोड़ | 8 | 100,000,000 | ||
अरब (मिलियन) | 9 | 1,000,000,000 | G | गीगा |
खरब (अरब) | 12 | 1,000,000,000,000 | T | टेरा |
क्वाड्रिलियन (बिलियर्ड) | 15 | 1,000,000,000,000,000 | P | पेटा |
क्विंटिलियन (ट्रिलियन) | 18 | 1,000,000,000,000,000,000 | E | एक्सा |
सेक्साट्रिलियन (ट्रिलियर्ड) | 21 | 1,000,000,000,000,000,000,000 | Z | जेटा |
सेप्टिलियन (क्वाड्रिलियन) | 24 | 1,000,000,000,000,000,000,000,000 | Y | योटा |
ऑक्टिलियन (क्वाड्रिलियर्ड) | 27 | 1,000,000,000,000,000,000,000,000,000 | R | रोन्ना |
नॉनमिलियन (क्विंटिलियन) | 30 | 1,000,000,000,000,000,000,000,000,000,000 | Q | क्योट्टा |
डेसीलियन (क्विंटिलियर्ड) | 33 | 1,000,000,000,000,000,000,000,000,000,000,000 | ||
अनडेसीलियन (सेक्साटिलियन) | 36 | 1,000,000,000,000,000,000,000,000,000,000,000,000 | ||
डुओडेसिलियन (सेक्सटिलियर्ड) | 39 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
ट्रेडेसिलियन (सेप्टिलियन) | 42 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
क्वाटुओर्डेसिलियन (सेप्टिलियर्ड) | 45 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
क्विनडेसिलियन (ऑक्टिलियन) | 48 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
सेक्सडेसिलियन (ऑक्टिलियर्ड) | 51 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
सेप्टेंडेसिलियन (नॉनिलियन) | 54 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
ऑक्टोडेसिलियन (नॉनिलियर्ड) | 57 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
नोवडेसिलियन (डेसीलियन) | 60 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
विजिंटिलियन (डेसिलियर्ड) | 63 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
विजिंटिलियन डेसिलियर्ड | 66 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
डुओविगिंटिलियन (अनिसिलियर्ड) | 69 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
ट्रेविगिन्टिलियन (डुओडेसिलियन) | 72 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
क्वाटुओरविजिंटिलियन (डुओडेसिलियार्ड) | 75 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
क्विनविजिंटिलियन (ट्रेडेसिलियन) | 78 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
सेक्सविजिंटिलियन (ट्रेडिसिलियार्ड) | 81 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
सेप्टेनविजिंटिलियन (क्वाट्टू ऑर्डेसिलियन) | 84 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
ऑक्टोविजिंटिलियन (क्वाट्टू ऑर्डेसिलियार्ड) | 87 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
नोवविजिंटिलियन (क्विनडिमिलियन) | 90 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
ट्रिगिंटिलियन (क्विनडेसिलियार्ड) | 93 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 | ||
गूगोल | 100 | 10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 |
||
सौ करोड़ | 303 | 1,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 |
||
गूगोलपलेक्स | googol | one then 10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 |
श्रणात्मक घातें
दस की घातों के क्रम को श्रणात्मक घातों तक भी बढ़ाया जा सकता है।
सकारात्मक घातों के समान लघु मापदंड के नाम से संबंधित 10 की श्रणात्मक घात को उसके लैटिन नाम-उपसर्ग के आधार पर निम्न सूत्र का उपयोग करके निर्धारित किया जा सकता है: 10−[(उपसर्ग-संख्या + 1) × 3]
उदाहरण:
- अरबवाँ = 10−[(2 + 1) × 3] = 10−9
- पंचमांश = 10−[(5 + 1) × 3] = 10-18
नाम | घात | संख्या | एसआई प्रतीक | एसआई उपसर्ग |
---|---|---|---|---|
एक | 0 | 1 | ||
दसवां | −1 | 0.1 | d | डेसी |
सौवां | −2 | 0.01 | c | सेन्टी |
हजारवां | −3 | 0.001 | m | मिली |
दस हजारवाँ (असंख्य ) | −4 | 0.000 1 | ||
सौ-हज़ारवाँ (लाख) | −5 | 0.000 01 | ||
दस लाखवाँ | −6 | 0.000 001 | μ | माइक्रो |
बिलियन | −9 | 0.000 000 001 | n | नैनो |
खरब | −12 | 0.000 000 000 001 | p | पीको |
चतुर्भुज | −15 | 0.000 000 000 000 001 | f | फेम्टो |
चतुर्भुज | −18 | 0.000 000 000 000 000 001 | a | अट्टो |
सेक्सटिलवेंथ | −21 | 0.000 000 000 000 000 000 001 | z | जेप्टो |
सेप्टथिलियंथ | −24 | 0.000 000 000 000 000 000 000 001 | y | योक्टो |
ऑक्थिलियंथ | −27 | 0.000 000 000 000 000 000 000 000 001 | r | रोन्टो |
नॉनीलिथियंथ | −30 | 0.000 000 000 000 000 000 000 000 000 001 | q | क्योक्टो |
डेसीलियंथ | −33 | 0.000 000 000 000 000 000 000 000 000 000 001 | ||
अनडेसीलियंथ | −36 | 0.000 000 000 000 000 000 000 000 000 000 000 001 | ||
ड्यूडेसीलियंथ | −39 | 0.000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
ट्रीलिथियंथ | −42 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
क्यूट्टूट्रीलियंथ | −45 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
क्वीडेसीलिंयंथ | −48 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
सेक्सडेसीलियंथ | −51 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
सेप्डेसीलियंथ | −54 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
ऑक्टोडेसीलियंथ | −57 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
नोवेमडेसीलियंथ | −60 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
विजीट्रिलियंथ | −63 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
अनविजीलियंथ | −66 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
ड्यूलिजिलियंथ | −69 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
ट्रिविजीलियंथ | −72 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
क्यूट्टोओविजिलियंथ | −75 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
क्वीनविजीट्रिलीयंथ | −78 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
सेक्सक्वीजिलियंथ | −81 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
सेप्टेनविजिलियंथ | −84 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
ऑक्टोविजीट्रीलियंथ | −87 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
नोवेमविजीलियंथ | −90 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
ट्रिजीनट्रिलियंथ | −93 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
गूगोल्थ | −100 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 1 | ||
सेन्ट्रिलियंथ | −303 | 0.000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001 | ||
गूगोलप्लेक्सक्थ | −गूगल | दस से ऋणात्मक10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 घात |
गूगल
गूगोल की संख्या 10100 है। यह शब्द अमेरिकी गणितज्ञ एडवर्ड कास्नर के भतीजे 9 वर्षीय मिल्टन सिरोटा द्वारा दिया गया था। इसे कास्नर की 1940 की पुस्तक गणित और कल्पना में लोकप्रिय किया गया था। जहाँ इसका उपयोग बहुत बड़ी संख्याओं की तुलना और वर्णन करने के लिए प्रयोग किया गया था। गूगलपलेक्स दस की बहुत बड़ी घात (1010100) का परिचय भी उस पुस्तक में दिया गया था। (नीचे पढ़ें)
गोगोलप्लेक्स
संख्या गूगलप्लेक्स 10googol है या 1010,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 कछाप,000,000,000,000,000,000,000,000,000,000,000,000,000,000 कछाप,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 कछाप,000,000,000,000,000,000,000,000,000,000,000,000 (ऊपरोक्त पढ़ें)
वैज्ञानिक संकेतन
वैज्ञानिक संकेतन बहुत बड़े और बहुत छोटे आकार की संख्याओं को सघन रूप से लिखने का प्रकार है जब सटीकता कम महत्वपूर्ण होती है।
वैज्ञानिक संकेतन में लिखी गई संख्या का महत्व (जिसे कभी-कभी मंटिसा कहा जाता है) को दस की घात से गुणा किया जाता है।
कभी-कभी रूप में लिखा जाता है:
- m × 10n
या अधिक कॉम्पैक्टली के रूप में:
- 10n
यह सामान्यतः 10 की घातयों को दर्शाने के लिए प्रयोग किया जाता है। जहां n सकारात्मक है, यह संख्या के बाद शून्य की संख्या को इंगित करता है, और जहां n ऋणात्मक है, यह संख्या से पहले दशमलव स्थानों की संख्या को इंगित करता है।
उदहारण के लिए:
mEn का अंकन, जिसे E संकेतन के रूप में जाना जाता है, का उपयोग कंप्यूटर प्रोग्रामिंग, स्प्रेडशीट और डेटाबेस में किया जाता है। किन्तु वैज्ञानिक पत्रों में इसका उपयोग नहीं किया जाता है।
यह भी देखें
- दो की घात
- तीन की घात
- एसआई उपसर्ग
- लौकिक दृश्य, फ़िल्म पॉवर्स ऑफ़ टेन के लिए प्रेरणा
- घातांक
- फिलिप और फिलिस मॉरिसन ने एम्स के वीडियो के साथ पॉवर्स ऑफ टेन: ए बुक अबाउट द रिलेटिव साइज ऑफ थिंग्स इन द यूनिवर्स एंड द इफेक्ट ऑफ ऐडिंग अदर जीरो नामक किताब लिखी। [1]
अग्रिम पठन
- Video
- पॉवर्स ऑफ़ टेन (1977) नौ मिनट की फिल्म यूएस पब्लिक ब्रॉडकास्टिंग सर्विस (पीबीएस), चार्ल्स और रे एम्स द्वारा बनाई गई। "परिमाण में एक साहसिक शिकागो में झील के किनारे एक पिकनिक से प्रारम्भ होकर यह फिल्म दर्शकों को ब्रह्मांड के बाहरी किनारों तक पहुँचाती है। हर दस सेकंड में हम प्रारम्भिक बिंदु को दस गुना दूर से देखते हैं। जब तक कि हमारी अपनी आकाशगंगा केवल दिखाई नहीं देती। कई अन्य के बीच प्रकाश का एक कण लुभावनी गति के साथ पृथ्वी पर लौटते हुए हम अंदर की ओर बढ़ते हैं। सोते हुए पिकनिक करने वाले के हाथ में हर दो सेकंड में दस गुना अधिक आवर्धन के साथ हमारी यात्रा डीएनए अणु के भीतर एक सफेद रक्त कोशिका में एक कार्बन परमाणु के एक प्रोटॉन के अंदर समाप्त होती है।"
संदर्भ
- ↑ "Powers of 10". www.mathsteacher.com.au. Retrieved 2020-03-17.
- ↑ "Powers of Ten". hesperia.gsfc.nasa.gov. Retrieved 2020-03-17.