रिक्त सत्य: Difference between revisions
No edit summary |
No edit summary |
||
(10 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Conditional statement which is true because the antecedent cannot be satisfied}} | {{Short description|Conditional statement which is true because the antecedent cannot be satisfied}} | ||
गणित और [[तर्क]] में, रिक्त सत्य भौतिक सशर्त या [[सार्वभौमिक परिमाणीकरण]] [[कथन (तर्क)]] है ( सार्वभौमिक कथन जिसे सशर्त कथन में परिवर्तित किया जा सकता है) जो सत्य है क्योंकि [[पूर्ववर्ती (तर्क)]] संतोषजनक नहीं हो सकता है।<ref name=":1">{{cite web|url=http://web.cse.ohio-state.edu/~patel.2004/Glossary/HTML_Files/vacuously_true.html|title=खाली सच|website=web.cse.ohio-state.edu|access-date=2019-12-15}}</ref> उदाहरण के लिए, यह कथन कि उसके पास सेल फोन नहीं है, का अर्थ यह होगा कि उसके सभी सेल फोन बंद कर दिए गए हैं, उसे सत्य सौंपा जाएगा। इसके अतिरिक्त, यह कथन कि उसके सभी सेल फोन चालू हैं, भी रिक्त रूप से सत्य होगा, जैसा कि दोनों का [[तार्किक संयोजन]] होगा: उसके सभी सेल फोन चालू और बंद हैं, जो अन्यथा असंगत और गलत होगा। इस कारण से, कभी-कभी यह कहा जाता है कि कथन रिक्त रूप से सत्य है क्योंकि यह अर्थहीन है।<ref name=":2">{{cite web|url=https://courses.cs.cornell.edu/cs2800/wiki/index.php/Vacuously_true|title=Vacuously true - CS2800 wiki|website=courses.cs.cornell.edu|access-date=2019-12-15}}</ref> | गणित और [[तर्क]] में, रिक्त सत्य भौतिक सशर्त या [[सार्वभौमिक परिमाणीकरण]] [[कथन (तर्क)]] है ( सार्वभौमिक कथन जिसे सशर्त कथन में परिवर्तित किया जा सकता है) जो सत्य है क्योंकि [[पूर्ववर्ती (तर्क)]] संतोषजनक नहीं हो सकता है।<ref name=":1">{{cite web|url=http://web.cse.ohio-state.edu/~patel.2004/Glossary/HTML_Files/vacuously_true.html|title=खाली सच|website=web.cse.ohio-state.edu|access-date=2019-12-15}}</ref> उदाहरण के लिए, यह कथन कि उसके पास सेल फोन नहीं है, का अर्थ यह होगा कि उसके सभी सेल फोन बंद कर दिए गए हैं, उसे सत्य सौंपा जाएगा। इसके अतिरिक्त, यह कथन कि उसके सभी सेल फोन चालू हैं, भी रिक्त रूप से सत्य होगा , जैसा कि दोनों का [[तार्किक संयोजन]] होगा: उसके सभी सेल फोन चालू और बंद हैं, जो अन्यथा असंगत और गलत होगा। इस कारण से, कभी-कभी यह कहा जाता है कि कथन रिक्त रूप से सत्य है क्योंकि यह अर्थहीन है।<ref name=":2">{{cite web|url=https://courses.cs.cornell.edu/cs2800/wiki/index.php/Vacuously_true|title=Vacuously true - CS2800 wiki|website=courses.cs.cornell.edu|access-date=2019-12-15}}</ref> | ||
अधिक औपचारिक रूप से, अपेक्षाकृत [[अच्छी परिभाषा]] | अच्छी तरह से परिभाषित उपयोग झूठी पूर्ववर्ती (तर्क) के साथ सशर्त कथन (या सार्वभौमिक सशर्त कथन) को संदर्भित करता है।<ref name=":1" /><ref name=":3">{{cite web|url=https://proofwiki.org/wiki/Definition:Vacuous_Truth|title=Definition:Vacuous Truth - ProofWiki|website=proofwiki.org|access-date=2019-12-15}}</ref><ref name=":2" /><ref name=":4">{{cite web|url=http://www.swarthmore.edu/NatSci/smaurer1/Math18H/vacuous.pdf|title=खाली सच|last=Edwards|first=C. H.|date=January 18, 1998|website=swarthmore.edu|access-date=2019-12-14}}</ref> इस तरह के कथन का उदाहरण यह है कि यदि टोक्यो फ्रांस में है, तो एफिल टॉवर बोलीविया में है। | अधिक औपचारिक रूप से, अपेक्षाकृत [[अच्छी परिभाषा]] | अच्छी तरह से परिभाषित उपयोग झूठी पूर्ववर्ती (तर्क) के साथ सशर्त कथन (या सार्वभौमिक सशर्त कथन) को संदर्भित करता है।<ref name=":1" /><ref name=":3">{{cite web|url=https://proofwiki.org/wiki/Definition:Vacuous_Truth|title=Definition:Vacuous Truth - ProofWiki|website=proofwiki.org|access-date=2019-12-15}}</ref><ref name=":2" /><ref name=":4">{{cite web|url=http://www.swarthmore.edu/NatSci/smaurer1/Math18H/vacuous.pdf|title=खाली सच|last=Edwards|first=C. H.|date=January 18, 1998|website=swarthmore.edu|access-date=2019-12-14}}</ref> इस तरह के कथन का उदाहरण यह है कि यदि टोक्यो फ्रांस में है, तो एफिल टॉवर बोलीविया में है। | ||
Line 10: | Line 10: | ||
[[शुद्ध गणित]] में, रिक्त रूप से सत्य कथन सामान्यतः अपने आप में रोचक नहीं होते हैं, किन्तु वे अधिकांशतः [[गणितीय प्रेरण]] द्वारा प्रमाण के आधार स्थितियों के रूप में उत्पन्न होते हैं।<ref>{{citation|title=Algorithms and Data Structures: The Science of Computing|first1=Douglas L.|last1=Baldwin|first2=Greg W.|last2=Scragg|publisher=Cengage Learning|year=2011|isbn= 978-1-285-22512-8|page=261|url=https://books.google.com/books?id=ETA9AAAAQBAJ&pg=PA261}}</ref> इस धारणा की शुद्ध गणित के साथ-साथ [[शास्त्रीय तर्क|मौलिक तर्क]] का उपयोग करने वाले किसी भी अन्य क्षेत्र में प्रासंगिकता है। | [[शुद्ध गणित]] में, रिक्त रूप से सत्य कथन सामान्यतः अपने आप में रोचक नहीं होते हैं, किन्तु वे अधिकांशतः [[गणितीय प्रेरण]] द्वारा प्रमाण के आधार स्थितियों के रूप में उत्पन्न होते हैं।<ref>{{citation|title=Algorithms and Data Structures: The Science of Computing|first1=Douglas L.|last1=Baldwin|first2=Greg W.|last2=Scragg|publisher=Cengage Learning|year=2011|isbn= 978-1-285-22512-8|page=261|url=https://books.google.com/books?id=ETA9AAAAQBAJ&pg=PA261}}</ref> इस धारणा की शुद्ध गणित के साथ-साथ [[शास्त्रीय तर्क|मौलिक तर्क]] का उपयोग करने वाले किसी भी अन्य क्षेत्र में प्रासंगिकता है। | ||
गणित के बाहर, ऐसे कथन जिन्हें अनौपचारिक रूप से रिक्त रूप से सत्य के रूप में चित्रित किया जा सकता है, भ्रामक हो सकते हैं। इस तरह के कथन [[क्वालीफायर]] ऑब्जेक्ट्स के बारे में उचित प्रमाणित करते हैं जो कि कोई नहीं है। उदाहरण के लिए, बच्चा अपने माता-पिता से सच-सच कह सकता है कि मैंने अपनी थाली में सब्ज़ियाँ खाईं, जबकि बच्चे की थाली में | गणित के बाहर, ऐसे कथन जिन्हें अनौपचारिक रूप से रिक्त रूप से सत्य के रूप में चित्रित किया जा सकता है, भ्रामक हो सकते हैं। इस तरह के कथन [[क्वालीफायर]] ऑब्जेक्ट्स के बारे में उचित प्रमाणित करते हैं जो कि कोई नहीं है। उदाहरण के लिए, बच्चा अपने माता-पिता से सच-सच कह सकता है कि मैंने अपनी थाली में सब्ज़ियाँ खाईं, जबकि बच्चे की थाली में प्रारंभिक रूप में सब्ज़ियाँ नहीं थीं। इस स्थितियों में, माता-पिता यह मान सकते हैं कि बच्चे ने वास्तव में कुछ सब्जियां खाई हैं, चूंकि यह सच नहीं है। इसके अतिरिक्त, खाली सच अधिकांशतः बेतुके कथनों के साथ प्रयोग किया जाता है, या तो आत्मविश्वास से कुछ कहने के लिए (जैसे कुत्ता लाल था, या मैं बंदर का चाचा हूं, दृढ़ता से प्रमाणित करने के लिए कि कुत्ता लाल था), या संदेह व्यक्त करने के लिए, व्यंग्य, अविश्वास, अविश्वसनीयता या आक्रोश (जैसे हाँ, और मैं इंग्लैंड का राजा हूँ जो पहले किए गए कथन से असहमत हैं)। | ||
== अवधारणा का सीमा == | == अवधारणा का सीमा == | ||
Line 19: | Line 19: | ||
* <math>\forall x: P(x) \Rightarrow Q(x)</math>, जहां ऐसा है <math>\forall x: \neg P(x)</math>.<ref name=":4" /> | * <math>\forall x: P(x) \Rightarrow Q(x)</math>, जहां ऐसा है <math>\forall x: \neg P(x)</math>.<ref name=":4" /> | ||
*<math>\forall x \in A: Q(x)</math>, जहां समुच्चय (गणित) <math>A</math> [[खाली सेट|खाली समुच्चय]] है। | *<math>\forall x \in A: Q(x)</math>, जहां समुच्चय (गणित) <math>A</math> [[खाली सेट|खाली समुच्चय]] है। | ||
** यह तार्किक रूप <math>\forall x \in A: Q(x)</math> पूर्ववर्ती (तर्क) को आसानी से पहचानने के लिए भौतिक सशर्त रूप में परिवर्तित किया जा सकता है। उपरोक्त उदाहरण के लिए <math>S</math> कमरे के सभी सेल फोन बंद हैं, इसे औपचारिक रूप से लिखा जा सकता है <math>\forall x \in A: Q(x)</math> | ** यह तार्किक रूप <math>\forall x \in A: Q(x)</math> पूर्ववर्ती (तर्क) को आसानी से पहचानने के लिए भौतिक सशर्त रूप में परिवर्तित किया जा सकता है। उपरोक्त उदाहरण के लिए <math>S</math> कमरे के सभी सेल फोन बंद हैं, इसे औपचारिक रूप से लिखा जा सकता है <math>\forall x \in A: Q(x)</math> जहा <math>A</math> कमरे में सभी सेल फोन का समुच्चय है और <math>Q(x)</math> है <math>x</math> बंद कर दिया जाता है। यह सामग्री सशर्त कथन के लिए लिखा जा सकता है <math>\forall x \in B: P(x) \Rightarrow Q(x)</math> कहाँ <math>B</math> कमरे में सभी चीजों का समुच्चय है (सेल फोन सहित यदि वे कमरे में उपस्थित हैं), पूर्ववर्ती <math>P(x)</math> है<math>x</math> सेल फोन है, और परिणामी <math>Q(x)</math> है<math>x</math> बंद कर दिया गया है। | ||
* <math>\forall \xi: Q(\xi)</math>, जहां प्रतीक <math>\xi</math> [[प्रकार (प्रकार सिद्धांत)]] तक सीमित है जिसका कोई प्रतिनिधि नहीं है। | * <math>\forall \xi: Q(\xi)</math>, जहां प्रतीक <math>\xi</math> [[प्रकार (प्रकार सिद्धांत)]] तक सीमित है जिसका कोई प्रतिनिधि नहीं है। | ||
द्विसंयोजक तर्क के साथ मौलिक तर्क में सामान्यतः रिक्त सत्य दिखाई देते हैं। चूँकि, रिक्त सत्य भी प्रकट हो सकते हैं, उदाहरण के लिए, [[अंतर्ज्ञानवादी तर्क]], ऊपर दी गई स्थितियों में। दरअसल, यदि <math>P</math> असत्य है तो <math>P \Rightarrow Q</math> भौतिक सशर्त का उपयोग करने वाले किसी भी तर्क में खाली सत्य उत्पन्न करेगा; यदि <math>P</math> [[विरोधाभास]] है, तो यह [[सख्त सशर्त]] के अनुसार खाली सच्चाई भी उत्पन्न करेगा। | द्विसंयोजक तर्क के साथ मौलिक तर्क में सामान्यतः रिक्त सत्य दिखाई देते हैं। चूँकि, रिक्त सत्य भी प्रकट हो सकते हैं, उदाहरण के लिए, [[अंतर्ज्ञानवादी तर्क]], ऊपर दी गई स्थितियों में। दरअसल, यदि <math>P</math> असत्य है तो <math>P \Rightarrow Q</math> भौतिक सशर्त का उपयोग करने वाले किसी भी तर्क में खाली सत्य उत्पन्न करेगा; यदि <math>P</math> [[विरोधाभास]] है, तो यह [[सख्त सशर्त]] के अनुसार खाली सच्चाई भी उत्पन्न करेगा। | ||
अन्य गैर-मौलिक तर्क, जैसे कि [[प्रासंगिकता तर्क]], वैकल्पिक शर्तों (जैसे [[प्रतितथ्यात्मक सशर्त]] के | अन्य गैर-मौलिक तर्क, जैसे कि [[प्रासंगिकता तर्क]], वैकल्पिक शर्तों (जैसे [[प्रतितथ्यात्मक सशर्त]] के स्थितियों) का उपयोग करके खाली सच्चाई से बचने का प्रयास कर सकते हैं। | ||
== कंप्यूटर प्रोग्रामिंग में == | == कंप्यूटर प्रोग्रामिंग में == | ||
Line 31: | Line 31: | ||
* [[जावास्क्रिप्ट]] में, [[सरणी]] विधि<code>प्रत्येक</code>सरणी में उपस्थित प्रत्येक तत्व के लिए बार प्रदान किए गए कॉलबैक फ़ंक्शन को निष्पादित करता है, केवल रोकता है (यदि और जब) यह तत्व पाता है जहां कॉलबैक फ़ंक्शन गलत होता है। विशेष रूप से, कॉल करना <code>प्रत्येक</code>खाली सरणी पर विधि किसी भी स्थिति के लिए सही होगी।<ref>{{Cite web|url=https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/every|title=Array.prototype.every() - JavaScript | MDN|website=developer.mozilla.org}}</ref> | * [[जावास्क्रिप्ट]] में, [[सरणी]] विधि<code>प्रत्येक</code>सरणी में उपस्थित प्रत्येक तत्व के लिए बार प्रदान किए गए कॉलबैक फ़ंक्शन को निष्पादित करता है, केवल रोकता है (यदि और जब) यह तत्व पाता है जहां कॉलबैक फ़ंक्शन गलत होता है। विशेष रूप से, कॉल करना <code>प्रत्येक</code>खाली सरणी पर विधि किसी भी स्थिति के लिए सही होगी।<ref>{{Cite web|url=https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/every|title=Array.prototype.every() - JavaScript | MDN|website=developer.mozilla.org}}</ref> | ||
* पायथन (प्रोग्रामिंग लैंग्वेज) में, <code>सभी</code> फ़ंक्शन रिटर्न <code>सत्य</code> यदि दिए गए पुनरावर्तनीय के सभी तत्व हैं <code>सत्य</code>. फलन भी लौटता है <code>सत्य</code> जब शून्य लंबाई का चलने योग्य दिया जाता है।<ref>{{cite web |title=Built-in Functions — Python 3.10.2 documentation |url=https://docs.python.org/3/library/functions.html#all |website=docs.python.org}}</ref> | * पायथन (प्रोग्रामिंग लैंग्वेज) में, <code>सभी</code> फ़ंक्शन रिटर्न <code>सत्य</code> यदि दिए गए पुनरावर्तनीय के सभी तत्व हैं <code>सत्य</code>. फलन भी लौटता है <code>सत्य</code> जब शून्य लंबाई का चलने योग्य दिया जाता है।<ref>{{cite web |title=Built-in Functions — Python 3.10.2 documentation |url=https://docs.python.org/3/library/functions.html#all |website=docs.python.org}}</ref> | ||
* [[जंग (प्रोग्रामिंग भाषा)]] में, <code>इटरेटर :: सभी</code> | * [[जंग (प्रोग्रामिंग भाषा)]] में, <code>इटरेटर:: सभी</code> कार्य पुनरावर्तक और विधेय को स्वीकार करता है और वापस लौटता है <code>सत्य</code> केवल जब विधेय वापस आता है <code>सत्य</code> इटरेटर द्वारा उत्पादित सभी वस्तुओं के लिए, या यदि इटरेटर कोई आइटम नहीं बनाता है।<ref>{{Cite web|url=https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.all|title=Iterator in std::iter - Rust|website=doc.rust-lang.org}}</ref> | ||
Line 42: | Line 42: | ||
== यह भी देखें == | == यह भी देखें == | ||
* डी मॉर्गन के नियम | * डी मॉर्गन के नियम '''तनाव''' | डी मॉर्गन के नियम - विशेष रूप से नियम कि सार्वभौमिक कथन सत्य है, यदि कोई प्रति उदाहरण उपस्थित नहीं है: <math>\forall x \, P(x) \equiv \neg \exists x \, \neg P(x)</math> | ||
* [[खाली राशि]] और [[खाली उत्पाद]] | * [[खाली राशि]] और [[खाली उत्पाद]] | ||
* [[खाली समारोह|खाली फलन]] | * [[खाली समारोह|खाली फलन]] | ||
Line 63: | Line 63: | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
* [https://abstractmath.org/MM/MMConditional.htm Conditional Assertions: Vacuous truth] | * [https://abstractmath.org/MM/MMConditional.htm Conditional Assertions: Vacuous truth] | ||
[[Category:Created On 01/03/2023]] | [[Category:Created On 01/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:अनौपचारिक भ्रम]] | |||
[[Category:गणितीय तर्क]] | |||
[[Category:तर्क]] | |||
[[Category:सच]] |
Latest revision as of 15:40, 16 March 2023
गणित और तर्क में, रिक्त सत्य भौतिक सशर्त या सार्वभौमिक परिमाणीकरण कथन (तर्क) है ( सार्वभौमिक कथन जिसे सशर्त कथन में परिवर्तित किया जा सकता है) जो सत्य है क्योंकि पूर्ववर्ती (तर्क) संतोषजनक नहीं हो सकता है।[1] उदाहरण के लिए, यह कथन कि उसके पास सेल फोन नहीं है, का अर्थ यह होगा कि उसके सभी सेल फोन बंद कर दिए गए हैं, उसे सत्य सौंपा जाएगा। इसके अतिरिक्त, यह कथन कि उसके सभी सेल फोन चालू हैं, भी रिक्त रूप से सत्य होगा , जैसा कि दोनों का तार्किक संयोजन होगा: उसके सभी सेल फोन चालू और बंद हैं, जो अन्यथा असंगत और गलत होगा। इस कारण से, कभी-कभी यह कहा जाता है कि कथन रिक्त रूप से सत्य है क्योंकि यह अर्थहीन है।[2]
अधिक औपचारिक रूप से, अपेक्षाकृत अच्छी परिभाषा | अच्छी तरह से परिभाषित उपयोग झूठी पूर्ववर्ती (तर्क) के साथ सशर्त कथन (या सार्वभौमिक सशर्त कथन) को संदर्भित करता है।[1][3][2][4] इस तरह के कथन का उदाहरण यह है कि यदि टोक्यो फ्रांस में है, तो एफिल टॉवर बोलीविया में है।
इस तरह के कथनों को व्यर्थ सत्य माना जाता है, क्योंकि तथ्य यह है कि पूर्ववर्ती झूठा है, परिणाम के सत्य मूल्य के बारे में कुछ भी अनुमान लगाने के लिए कथन का उपयोग करने से रोकता है। संक्षेप में, सशर्त कथन, जो भौतिक सशर्त पर आधारित है, सत्य है जब पूर्ववर्ती (टोक्यो उदाहरण में फ्रांस में है) गलत है चाहे निष्कर्ष या परिणाम (उदाहरण में एफिल टॉवर बोलिविया में है) है सत्य या असत्य क्योंकि भौतिक सशर्त को उस तरह से परिभाषित किया गया है।
रोज़मर्रा के भाषण के सामान्य उदाहरणों में सशर्त वाक्यांशों का उपयोग असंभवता के मुहावरों की सूची के रूप में किया जाता है जैसे कि जब नर्क जम जाता है ... और जब सूअर उड़ सकते हैं ..., यह दर्शाता है कि दी गई (असंभव) शर्त पूरी होने से पहले समया कुछ संबंधित को स्वीकार नहीं करेगा (सामान्यतः झूठा या बेतुका) प्रस्ताव।
शुद्ध गणित में, रिक्त रूप से सत्य कथन सामान्यतः अपने आप में रोचक नहीं होते हैं, किन्तु वे अधिकांशतः गणितीय प्रेरण द्वारा प्रमाण के आधार स्थितियों के रूप में उत्पन्न होते हैं।[5] इस धारणा की शुद्ध गणित के साथ-साथ मौलिक तर्क का उपयोग करने वाले किसी भी अन्य क्षेत्र में प्रासंगिकता है।
गणित के बाहर, ऐसे कथन जिन्हें अनौपचारिक रूप से रिक्त रूप से सत्य के रूप में चित्रित किया जा सकता है, भ्रामक हो सकते हैं। इस तरह के कथन क्वालीफायर ऑब्जेक्ट्स के बारे में उचित प्रमाणित करते हैं जो कि कोई नहीं है। उदाहरण के लिए, बच्चा अपने माता-पिता से सच-सच कह सकता है कि मैंने अपनी थाली में सब्ज़ियाँ खाईं, जबकि बच्चे की थाली में प्रारंभिक रूप में सब्ज़ियाँ नहीं थीं। इस स्थितियों में, माता-पिता यह मान सकते हैं कि बच्चे ने वास्तव में कुछ सब्जियां खाई हैं, चूंकि यह सच नहीं है। इसके अतिरिक्त, खाली सच अधिकांशतः बेतुके कथनों के साथ प्रयोग किया जाता है, या तो आत्मविश्वास से कुछ कहने के लिए (जैसे कुत्ता लाल था, या मैं बंदर का चाचा हूं, दृढ़ता से प्रमाणित करने के लिए कि कुत्ता लाल था), या संदेह व्यक्त करने के लिए, व्यंग्य, अविश्वास, अविश्वसनीयता या आक्रोश (जैसे हाँ, और मैं इंग्लैंड का राजा हूँ जो पहले किए गए कथन से असहमत हैं)।
अवधारणा का सीमा
कथन रिक्त रूप से सत्य है यदि यह तार्किक रूप से भौतिक सशर्त कथन है , जहां पूर्ववर्ती (तर्क) झूठा जाना जाता है।[1][3][2]
इस मूल रूप (सामग्री सशर्त) में कम किए जा सकने वाले रिक्त सत्य कथनों में निम्नलिखित सार्वभौमिक परिमाणक कथन सम्मिलित हैं:
- , जहां ऐसा है .[4]
- , जहां समुच्चय (गणित) खाली समुच्चय है।
- यह तार्किक रूप पूर्ववर्ती (तर्क) को आसानी से पहचानने के लिए भौतिक सशर्त रूप में परिवर्तित किया जा सकता है। उपरोक्त उदाहरण के लिए कमरे के सभी सेल फोन बंद हैं, इसे औपचारिक रूप से लिखा जा सकता है जहा कमरे में सभी सेल फोन का समुच्चय है और है बंद कर दिया जाता है। यह सामग्री सशर्त कथन के लिए लिखा जा सकता है कहाँ कमरे में सभी चीजों का समुच्चय है (सेल फोन सहित यदि वे कमरे में उपस्थित हैं), पूर्ववर्ती है सेल फोन है, और परिणामी है बंद कर दिया गया है।
- , जहां प्रतीक प्रकार (प्रकार सिद्धांत) तक सीमित है जिसका कोई प्रतिनिधि नहीं है।
द्विसंयोजक तर्क के साथ मौलिक तर्क में सामान्यतः रिक्त सत्य दिखाई देते हैं। चूँकि, रिक्त सत्य भी प्रकट हो सकते हैं, उदाहरण के लिए, अंतर्ज्ञानवादी तर्क, ऊपर दी गई स्थितियों में। दरअसल, यदि असत्य है तो भौतिक सशर्त का उपयोग करने वाले किसी भी तर्क में खाली सत्य उत्पन्न करेगा; यदि विरोधाभास है, तो यह सख्त सशर्त के अनुसार खाली सच्चाई भी उत्पन्न करेगा।
अन्य गैर-मौलिक तर्क, जैसे कि प्रासंगिकता तर्क, वैकल्पिक शर्तों (जैसे प्रतितथ्यात्मक सशर्त के स्थितियों) का उपयोग करके खाली सच्चाई से बचने का प्रयास कर सकते हैं।
कंप्यूटर प्रोग्रामिंग में
कई प्रोग्रामिंग परिवेशों में पूछताछ के लिए तंत्र होता है यदि वस्तुओं के संग्रह में प्रत्येक वस्तु कुछ भविष्यवाणी को संतुष्ट करती है। खाली संग्रह के लिए ऐसी क्वेरी का सदैव सत्य के रूप में मूल्यांकन करना आम बात है। उदाहरण के लिए:
- जावास्क्रिप्ट में, सरणी विधि
प्रत्येक
सरणी में उपस्थित प्रत्येक तत्व के लिए बार प्रदान किए गए कॉलबैक फ़ंक्शन को निष्पादित करता है, केवल रोकता है (यदि और जब) यह तत्व पाता है जहां कॉलबैक फ़ंक्शन गलत होता है। विशेष रूप से, कॉल करनाप्रत्येक
खाली सरणी पर विधि किसी भी स्थिति के लिए सही होगी।[6] - पायथन (प्रोग्रामिंग लैंग्वेज) में,
सभी
फ़ंक्शन रिटर्नसत्य
यदि दिए गए पुनरावर्तनीय के सभी तत्व हैंसत्य
. फलन भी लौटता हैसत्य
जब शून्य लंबाई का चलने योग्य दिया जाता है।[7] - जंग (प्रोग्रामिंग भाषा) में,
इटरेटर:: सभी
कार्य पुनरावर्तक और विधेय को स्वीकार करता है और वापस लौटता हैसत्य
केवल जब विधेय वापस आता हैसत्य
इटरेटर द्वारा उत्पादित सभी वस्तुओं के लिए, या यदि इटरेटर कोई आइटम नहीं बनाता है।[8]
उदाहरण
ये उदाहरण, गणित से और प्राकृतिक भाषा से, रिक्त सत्य की अवधारणा को स्पष्ट करते हैं:
- किसी पूर्णांक x के लिए, यदि x > 5 तो x > 3।[9] - यह कथन गैर-शून्य सत्य है (चूंकि कुछ पूर्णांक वास्तव में 5 से अधिक हैं), किन्तु इसके कुछ निहितार्थ केवल रिक्त रूप से सत्य हैं: उदाहरण के लिए, जब x पूर्णांक 2 है, तो कथन का तात्पर्य रिक्त सत्य से है कि यदि 2 > 5 फिर 2> 3।
- मेरे सभी बच्चे बकरियां हैं यह कोरी सच्चाई है, जब बिना बच्चों के किसी के द्वारा बोली जाती है। इसी तरह, मेरे बच्चों में से कोई भी बकरियां नहीं है, यह भी खाली सच्चाई होगी, जब किसी के द्वारा बच्चों के बिना (संभवतः ही व्यक्ति) बोला जाएगा।
यह भी देखें
- डी मॉर्गन के नियम तनाव | डी मॉर्गन के नियम - विशेष रूप से नियम कि सार्वभौमिक कथन सत्य है, यदि कोई प्रति उदाहरण उपस्थित नहीं है:
- खाली राशि और खाली उत्पाद
- खाली फलन
- भौतिक निहितार्थ के विरोधाभास, विशेष रूप से विस्फोट के सिद्धांत
- पूर्वधारणा, दोहरा प्रश्न
- स्थितियों की स्थिति (दर्शन)
- टॉटोलॉजी (तर्क) - अन्य प्रकार का सच्चा कथन जो किसी भी ठोस जानकारी को संप्रेषित करने में विफल रहता है
- तुच्छता (गणित) और अध: पतन (गणित)
संदर्भ
- ↑ 1.0 1.1 1.2 "खाली सच". web.cse.ohio-state.edu. Retrieved 2019-12-15.
- ↑ 2.0 2.1 2.2 "Vacuously true - CS2800 wiki". courses.cs.cornell.edu. Retrieved 2019-12-15.
- ↑ 3.0 3.1 "Definition:Vacuous Truth - ProofWiki". proofwiki.org. Retrieved 2019-12-15.
- ↑ 4.0 4.1 Edwards, C. H. (January 18, 1998). "खाली सच" (PDF). swarthmore.edu. Retrieved 2019-12-14.
- ↑ Baldwin, Douglas L.; Scragg, Greg W. (2011), Algorithms and Data Structures: The Science of Computing, Cengage Learning, p. 261, ISBN 978-1-285-22512-8
- ↑ "Array.prototype.every() - JavaScript | MDN". developer.mozilla.org.
- ↑ "Built-in Functions — Python 3.10.2 documentation". docs.python.org.
- ↑ "Iterator in std::iter - Rust". doc.rust-lang.org.
- ↑ "logic - What precisely is a vacuous truth?". Mathematics Stack Exchange.
ग्रन्थसूची
- Blackburn, Simon (1994). "vacuous," The Oxford Dictionary of Philosophy. Oxford: Oxford University Press, p. 388.
- David H. Sanford (1999). "implication." The Cambridge Dictionary of Philosophy, 2nd. ed., p. 420.
- Beer, Ilan; Ben-David, Shoham; Eisner, Cindy; Rodeh, Yoav (1997). "Efficient Detection of Vacuity in ACTL Formulas". Computer Aided Verification: 9th International Conference, CAV'97 Haifa, Israel, June 22–25, 1997, Proceedings. Lecture Notes in Computer Science. Vol. 1254. pp. 279–290. doi:10.1007/3-540-63166-6_28. ISBN 978-3-540-63166-8.