शून्य और स्तंभ: Difference between revisions

From Vigyanwiki
m (13 revisions imported from alpha:शून्य_और_स्तंभ)
No edit summary
 
Line 91: Line 91:
== बाहरी संबंध ==
== बाहरी संबंध ==
* {{MathWorld | urlname= Pole | title= Pole}}
* {{MathWorld | urlname= Pole | title= Pole}}
[[Category: जटिल विश्लेषण]]


[[Category: Machine Translated Page]]
[[Category:Created On 02/03/2023]]
[[Category:Created On 02/03/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:जटिल विश्लेषण]]

Latest revision as of 15:42, 16 March 2023

जटिल विश्लेषण (गणित की शाखा) में, एक जटिल संख्या चर के जटिल-मूल्यवान फलन का एक ध्रुव एक निश्चित प्रकार की विलक्षणता (गणित) है। संभवतः, यह विलक्षणता का सबसे सरल प्रकार है। तकनीकी रूप से, बिंदु z0 एक फलन f का ध्रुव है यदि यह फलन 1/f का शून्य है 1/f और z0 के कुछ निकटतम (गणित) में होलोमॉर्फिक फलन है (अर्थात, z0 के निकटतम में जटिल अवकलनीय है).

एक खुले समुच्चय में U फलन f मेरोमॉर्फिक फलन है यदि U प्रत्येक बिंदु z के लिए z का निकटतम है जिसमें या तो f या 1/f होलोमॉर्फिक है।

यदि f U में मेरोमॉर्फिक है , फिर f एक शून्य का 1/f ध्रुव है , और f का एक ध्रुव 1/f का शून्य है . यह शून्य और ध्रुवों के बीच द्वैत को प्रेरित करता है, जो मेरोमोर्फिक फलनों के अध्ययन के लिए मौलिक है। उदाहरण के लिए, यदि कोई फलन पूरे जटिल विमान और अनंत बिंदु पर मेरोमोर्फिक है, तो उसके ध्रुवों की बहुलता (गणित) का योग उसके शून्य की बहुलताओं के योग के बराबर होता है।

परिभाषाएँ

एक जटिल चर z का फलन z एक खुले समुच्चय U में होलोमोर्फिक फलन है यदि यह U के प्रत्येक बिंदु पर z के संबंध में अलग-अलग है। समतुल्य रूप से, यह होलोमोर्फिक है यदि यह विश्लेषणात्मक फलन है, अर्थात, यदि इसकी टेलर श्रृंखला U के प्रत्येक बिंदु पर उपस्थित है , और बिंदु के कुछ निकटतम में फलन में परिवर्तित हो जाता है। U में एक फलन मेरोमोर्फिक फलन है यदि U प्रत्येक बिंदु का निकटतम है जैसे कि f या 1/f इसमें होलोमोर्फिक है।

मेरोमॉर्फिक फलन f के फलन का शून्य सम्मिश्र संख्या z है है जैसे कि f(z) = 0. f का एक खंभा 1/f का शून्य है |

यदि f ऐसा फलन है जो जटिल विमान के बिंदु के निकटतम में मेरोमोर्फिक है , तो एक पूर्णांक उपस्थित n है , जैसे कि

के निकट में होलोमोर्फिक और नॉनशून्य है (यह विश्लेषणात्मक संपत्ति का परिणाम है)। यदि n > 0, तब f की कोटि (या बहुलता) n का एक ध्रुव है | यदि n < 0, तब क्रम का एक शून्य है f का सरल शून्य और सरल ध्रुव शून्य और आदेश के ध्रुवों के लिए उपयोग की जाने वाली शर्तें हैं डिग्री को कभी-कभी ऑर्डर करने के लिए समानार्थक रूप से प्रयोग किया जाता है।

शून्य और ध्रुवों के इस लक्षण वर्णन का अर्थ है कि शून्य और ध्रुव पृथक बिंदु हैं, अर्थात प्रत्येक शून्य या ध्रुव का निकटतम होता है जिसमें कोई अन्य शून्य और ध्रुव नहीं होता है।

शून्य और ध्रुवों के क्रम को एक गैर-ऋणात्मक संख्या n और उनके बीच समरूपता के रूप में परिभाषित किए जाने के कारण, यह अक्सर क्रम n के ध्रुव को आदेश के शून्य के रूप में -n और एक ध्रुव के रूप में आदेश n के शून्य पर विचार करने के लिए उपयोगी होता है। आदेश का n। इस मामले में एक बिंदु जो न तो ध्रुव है और न ही शून्य है, उसे क्रम 0 के ध्रुव (या शून्य) के रूप में देखा जाता है।

एक मेरोमॉर्फिक फलन में असीम रूप से कई शून्य और ध्रुव हो सकते हैं। यह गामा फलन (इन्फोबॉक्स में छवि देखें) का मामला है, जो पूरे जटिल विमान में मेरोमोर्फिक है, और प्रत्येक गैर-सकारात्मक पूर्णांक पर एक साधारण ध्रुव है। रीमैन जीटा फलन पूरे जटिल विमान में मेरोमोर्फिक भी है, ऑर्डर 1 के एकल ध्रुव के साथ z = 1. बाएँ आधे समतल में इसके शून्य सभी ऋणात्मक सम पूर्णांक हैं, और रीमैन परिकल्पना यह अनुमान है कि अन्य सभी शून्य अनुदिश हैं Re(z) = 1/2.

एक बिंदु के निकट में एक गैर-शून्य मेरोमॉर्फिक फलन f लॉरेंट श्रृंखला का योग है जिसमें अधिकांश परिमित मुख्य भाग (नकारात्मक सूचकांक मान वाले पद) हैं:

जहाँ n एक पूर्णांक है, और दोबारा, यदि n > 0 (योग से शुरू होता है , मुख्य भाग है n शर्तें), किसी के पास आदेश का ध्रुव है n, और यदि n ≤ 0 (योग से शुरू होता है , कोई मुख्य भाग नहीं है), एक का क्रम शून्य है .

अनंत पर

एक फलन अनंत पर मेरोमोर्फिक है यदि यह अनंत के कुछ निकटतम में मेरोमोर्फिक है (जो कि कुछ डिस्क (गणित) के बाहर है), और n एक पूर्णांक है जैसे कि

उपस्थित है और एक गैर-शून्य जटिल संख्या है।

इस स्थिति में, अनंत पर स्थित बिंदु क्रम का ध्रुव n है यदि n > 0, और ऑर्डर का शून्य यदि n < 0.

उदाहरण के लिए, डिग्री का एक बहुपद n डिग्री का ध्रुव है n अनंत पर।

अनंत पर एक बिंदु द्वारा विस्तारित जटिल तल को रीमैन क्षेत्र कहा जाता है।

यदि f ऐसा फलन है जो पूरे रीमैन क्षेत्र पर मेरोमोर्फिक है, फिर इसमें शून्य और ध्रुवों की एक परिमित संख्या होती है, और इसके ध्रुवों के आदेशों का योग इसके शून्यों के आदेशों के योग के बराबर होता है।

प्रत्येक परिमेय फलन पूरे रिमेंन क्षेत्र पर मेरोमोर्फिक होता है, और इस मामले में, शून्य या ध्रुवों के आदेशों का योग अंश और भाजक की डिग्री का अधिकतम होता है।

उदाहरण

9 डिग्री के बहुपद में ∞ पर ऑर्डर 9 का एक ध्रुव है, यहां रीमैन स्फीयर के डोमेन रंग द्वारा प्लॉट किया गया है।

* कार्यक्रम

पूरे रीमैन क्षेत्र पर मेरोमोर्फिक है। इसमें ऑर्डर 1 का ध्रुव या साधारण ध्रुव होता है और अनंत पर साधारण शून्य।
  • कार्यक्रम
पूरे रीमैन क्षेत्र पर मेरोमोर्फिक है। इसमें ऑर्डर 2 का ध्रुव है और ऑर्डर 3 का एक ध्रुव पर . इसमें एक साधारण शून्य है और अनंत पर चौगुना शून्य।
  • कार्यक्रम
पूरे जटिल तल में मेरोमोर्फिक है, लेकिन अनंत पर नहीं। इसमें ऑर्डर 1 के ध्रुव हैं . की टेलर श्रंखला लिखकर इसे उत्पत्ति के आसपास देखा जा सकता है ।
  • कार्यक्रम
क्रम 1 के अनंत पर एक ध्रुव है, और मूल बिंदु पर एक शून्य है।

तीसरे को छोड़कर उपरोक्त सभी उदाहरण परिमेय फलन हैं। ऐसे फलनों के शून्यों और ध्रुवों की सामान्य चर्चा के लिए, देखें ध्रुव-शुन्य प्लॉट § निरंतर-समय प्रणाली.

वक्र फलन

शून्य और ध्रुवों की अवधारणा जटिल वक्र पर फलनोंके लिए स्वाभाविक रूप से फैली हुई है, जो कि आयाम (जटिल संख्याओं पर) का जटिल विश्लेषणात्मक कई गुना है। ऐसे वक्रों का सबसे सरल उदाहरण जटिल तल और रीमैन सतह हैं। यह विस्तार एटलस (टोपोलॉजी) के माध्यम से संरचनाओं और गुणों को स्थानांतरित करके किया जाता है, जो विश्लेषणात्मक समरूपताएं हैं।

यदि मान लें कि f जटिल वक्र M से जटिल संख्याओं का एक फलन है। यह फलन एक बिंदु के निकट में होलोमोर्फिक (प्रतिक्रिया मेरोमोर्फिक) है z का M यदि कोई चार्ट है ऐसा है कि के निकट में होलोमोर्फिक (प्रतिक्रिया मेरोमोर्फिक) है तब, z एक ध्रुव या क्रम का शून्य है n यदि के लिए भी यही सत्य है

यदि वक्र कॉम्पैक्ट जगह है, और फलन f पूरे वक्र पर मेरोमोर्फिक है, तो शून्य और ध्रुवों की संख्या परिमित है, और ध्रुवों के क्रम का योग शून्य के क्रम के योग के बराबर है। यह रीमैन-रोच प्रमेय में शामिल मूलभूत तथ्यों में से एक है।

यह भी देखें

संदर्भ

  • Conway, John B. (1986). Functions of One Complex Variable I. Springer. ISBN 0-387-90328-3.
  • Conway, John B. (1995). Functions of One Complex Variable II. Springer. ISBN 0-387-94460-5.
  • Henrici, Peter (1974). Applied and Computational Complex Analysis 1. John Wiley & Sons.


बाहरी संबंध