पूर्णांक-मान बहुपद: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (Sugatha moved page पूर्णांक-मूल्यवान बहुपद to पूर्णांक-मान बहुपद) |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 104: | Line 104: | ||
* {{cite book | last=Narkiewicz | first=Władysław | title=Polynomial mappings | series=Lecture Notes in Mathematics | volume=1600 | location=Berlin | publisher=[[Springer-Verlag]] | year=1995 | isbn=3-540-59435-3 | issn=0075-8434 | zbl=0829.11002 }} | * {{cite book | last=Narkiewicz | first=Władysław | title=Polynomial mappings | series=Lecture Notes in Mathematics | volume=1600 | location=Berlin | publisher=[[Springer-Verlag]] | year=1995 | isbn=3-540-59435-3 | issn=0075-8434 | zbl=0829.11002 }} | ||
{{DEFAULTSORT:Integer-Valued Polynomial}} | {{DEFAULTSORT:Integer-Valued Polynomial}} | ||
[[Category:All articles with unsourced statements|Integer-Valued Polynomial]] | |||
[[Category:Articles with unsourced statements from April 2012|Integer-Valued Polynomial]] | |||
[[Category: | [[Category:Articles with unsourced statements from January 2013|Integer-Valued Polynomial]] | ||
[[Category:Created On 03/03/2023]] | [[Category:CS1 maint|Integer-Valued Polynomial]] | ||
[[Category:Vigyan Ready]] | [[Category:Created On 03/03/2023|Integer-Valued Polynomial]] | ||
[[Category:Machine Translated Page|Integer-Valued Polynomial]] | |||
[[Category:Pages with script errors|Integer-Valued Polynomial]] | |||
[[Category:Templates Vigyan Ready|Integer-Valued Polynomial]] | |||
[[Category:क्रमविनिमेय बीजगणित|Integer-Valued Polynomial]] | |||
[[Category:बहुपदों|Integer-Valued Polynomial]] | |||
[[Category:रिंग थ्योरी|Integer-Valued Polynomial]] | |||
[[Category:संख्या सिद्धांत|Integer-Valued Polynomial]] |
Latest revision as of 15:33, 13 September 2023
गणित में, पूर्णांक-मान बहुपद (संख्यात्मक बहुपद के रूप में भी जाना जाता है) एक बहुपद है जिसका मान प्रत्येक पूर्णांक n के लिए एक पूर्णांक है। पूर्णांक गुणांक वाले प्रत्येक बहुपद का पूर्णांक मान होता है, लेकिन इसका व्युत्क्रम संभव नहीं होता है। उदाहरण के लिए, बहुपद
जब भी t एक पूर्णांक होता है तो पूर्णांक मान लेता है। ऐसा इसलिए है क्योंकि t और में से एक एक सम संख्या होनी चाहिए। (इस बहुपद के मान त्रिकोणीय संख्या हैं।)
पूर्णांक-मान बहुपद बीजगणित में अपने आप में अध्ययन की वस्तुएं हैं, और प्रायः बीजगणितीय टोपोलॉजी में दिखाई देते हैं।[1]
वर्गीकरण
पूर्णांक-मान बहुपदों के वर्ग को पूरी तरह से वर्णित किया गया था, जॉर्ज पोल्या (1915) बहुपद रिंग के अंदर परिमेय संख्या गुणांक वाले बहुपदों की, पूर्णांक-मान बहुपदों का उपवलय एक मुक्त एबेलियन समूह है। इसका आधार (रैखिक बीजगणित) बहुपद है
के लिए , अर्थात द्विपद गुणांक दूसरे शब्दों में, प्रत्येक पूर्णांक-मान बहुपद को एक तरह से द्विपद गुणांकों के पूर्णांक रैखिक संयोजन के रूप में लिखा जा सकता है। अंतर ऑपरेटर की विधि द्वारा प्रमाण है, द्विपद गुणांक पूर्णांक-मान वाले बहुपद हैं, और इसके विपरीत, पूर्णांक श्रृंखला का असतत अंतर एक पूर्णांक श्रृंखला है, इसलिए बहुपद द्वारा उत्पन्न पूर्णांक श्रृंखला की असतत टेलर श्रृंखला में पूर्णांक गुणांक होते हैं (और एक परिमित श्रृंखला है)। अधिक विशेष रूप से, जब a अनिश्चित x है, तो इस फलन द्वारा x की छवि बहुपद P ही है (x के लिए x को प्रतिस्थापित करने से कुछ भी नहीं बदलता है)।
अचल अभाज्य भाजक
बहुपदों के निश्चित विभाजकों के बारे में प्रश्नों को हल करने के लिए पूर्णांक-मान वाले बहुपदों का प्रभावी ढंग से उपयोग किया जा सकता है। उदाहरण के लिए, पूर्णांक गुणांक वाले बहुपद P, जो सदैव सम संख्या वाले मान लेते हैं, केवल ऐसे हैं पूर्णांक मान है। बदले में वे बहुपद हैं जिन्हें द्विपद गुणांक के पूर्णांक गुणांक वाले रैखिक संयोजन के रूप में व्यक्त किया जा सकता है।
अभाज्य संख्या सिद्धांत के प्रश्नों में, जैसे कि शिंजेल की परिकल्पना एच और बेटमैन-हॉर्न अनुमान, प्रकरण को समझना बुनियादी महत्व का विषय है, जब P के पास कोई निश्चित अभाज्य भाजक नहीं है (इसे बनीकोवस्की की विशेषताएं कहा गया है)[citation needed], विक्टर बनीकोवस्की के बाद)। द्विपद गुणांकों के संदर्भ में P लिखने से, हम देखते हैं कि इस तरह के प्रतिनिधित्व में गुणांकों का उच्चतम निश्चित प्रधान भाजक भी उच्चतम प्रमुख सामान्य कारक है। अतः बनीकोवस्की की विशेषताएं कोप्राइम गुणांक के बराबर है।
उदाहरण के तौर पर, बहुपदों की जोड़ी और पर इस शर्त का उल्लंघन करता है : हर एक के लिए उत्पाद
3 से विभाज्य है, जो प्रतिनिधित्व से अनुसरण करता है
द्विपद आधार के संबंध में, जहां गुणांकों का उच्चतम सामान्य विभाजक - इसलिए उच्चतम निश्चित विभाजक —3 है।
अन्य रिंग्स
संख्यात्मक बहुपदों को अन्य रिंग्स और क्षेत्रों पर परिभाषित किया जा सकता है, इस प्रकरण में उपरोक्त पूर्णांक-मान वाले बहुपदों को चिरसम्मत संख्यात्मक बहुपद कहा जाता है।[citation needed]
अनुप्रयोग
यू(एन), बीयू(एन) के लिए टोपोलॉजिकल के-थ्योरी ऑफ क्लासिफाइंग स्पेस संख्यात्मक (सममित) बहुपद है।
k+1 चरों में बहुपद वलय का हिल्बर्ट बहुपद संख्यात्मक बहुपद है .
संदर्भ
- ↑ Johnson, Keith (2014), "Stable homotopy theory, formal group laws, and integer-valued polynomials", in Fontana, Marco; Frisch, Sophie; Glaz, Sarah (eds.), Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer, pp. 213–224, ISBN 9781493909254. See in particular pp. 213–214.
बीजगणित
- Cahen, Paul-Jean; Chabert, Jean-Luc (1997), Integer-valued polynomials, Mathematical Surveys and Monographs, vol. 48, Providence, RI: American Mathematical Society, MR 1421321
- Pólya, George (1915), "Über ganzwertige ganze Funktionen", Palermo Rend. (in German), 40: 1–16, ISSN 0009-725X, JFM 45.0655.02
{{citation}}
: CS1 maint: unrecognized language (link)
बीजगणितीय टोपोलॉजी
- Baker, Andrew; Clarke, Francis; Ray, Nigel; Schwartz, Lionel (1989), "On the Kummer congruences and the stable homotopy of BU", Transactions of the American Mathematical Society, 316 (2): 385–432, doi:10.2307/2001355, JSTOR 2001355, MR 0942424
- Ekedahl, Torsten (2002), "On minimal models in integral homotopy theory", Homology, Homotopy and Applications, 4 (2): 191–218, doi:10.4310/hha.2002.v4.n2.a9, MR 1918189, Zbl 1065.55003
- Elliott, Jesse (2006). "द्विपदीय छल्ले, पूर्णांक-मूल्यवान बहुपद, और λ-छल्ले". Journal of Pure and Applied Algebra. 207 (1): 165–185. doi:10.1016/j.jpaa.2005.09.003. MR 2244389.
- Hubbuck, John R. (1997), "Numerical forms", Journal of the London Mathematical Society, Series 2, 55 (1): 65–75, doi:10.1112/S0024610796004395, MR 1423286
अग्रिम पठन
- Narkiewicz, Władysław (1995). Polynomial mappings. Lecture Notes in Mathematics. Vol. 1600. Berlin: Springer-Verlag. ISBN 3-540-59435-3. ISSN 0075-8434. Zbl 0829.11002.