जैकोबी बहुपद: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Polynomial sequence}} {{For|Jacobi polynomials of several variables|Heckman–Opdam polynomials}} फ़ाइल:जैकोबी बहुपद फल...")
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Polynomial sequence}}
{{Short description|Polynomial sequence}}
{{For|Jacobi polynomials of several variables|Heckman–Opdam polynomials}}
{{For|कई चरों के जैकोबी बहुपद|हेकमैन-ओपडम बहुपद}}
फ़ाइल:जैकोबी बहुपद फलन का प्लॉट P n^(a,b) with n=10 and a=2 and b=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D.svg|alt=Plot of the Jacobi polynomial function P n^(a,b) with n=10 and a=2 and b=2 जटिल विमान में -2-2i से 2+2i तक मैथेमेटिका 13.1 फ़ंक्शन ComplexPlot3D|thumb|जैकोबी बहुपद समारोह का प्लॉट <math>P_n^{(\alpha,\beta)}</math> साथ <math>n=10</math> और <math>\alpha=2</math> और <math>\beta=2</math> से जटिल विमान में <math>-2-2i</math> को <math>2+2i</math> मैथमैटिका 13.1 फ़ंक्शन कॉम्प्लेक्सप्लॉट 3 डी के साथ बनाए गए रंगों के साथ
 
{{Use American English|date = March 2019}}
गणित में, जैकोबी बहुपद(कभी-कभी अतिज्यामितीय बहुपद कहा जाता है) <math>P_n^{(\alpha,\beta)}(x)</math> शास्त्रीय [[ऑर्थोगोनल बहुपद|लंबकोणीय बहुपदों]] का एक वर्ग हैं। वे अंतराल <math>[-1,1]</math> पर प्रभाव <math>(1-x)^\alpha(1+x)^\beta</math> के संबंध में लंबकोणीय हैं। गेंगेंबोइर बहुपद, और इस प्रकार लेजेंड्रे बहुपद, ज़र्निके बहुपद और [[चेबिशेव बहुपद]], जैकोबी बहुपद के विशेष स्थितियां हैं।<ref name=sz>{{cite book | last1=Szegő | first1=Gábor | title=ऑर्थोगोनल बहुपद| url=https://books.google.com/books?id=3hcW8HBh7gsC | publisher= American Mathematical Society | series=Colloquium Publications | isbn=978-0-8218-1023-1 | mr=0372517 | year=1939 | volume=XXIII|chapter=IV. Jacobi polynomials.}} The definition is in IV.1; the differential equation &ndash; in IV.2; Rodrigues' formula is in IV.3; the generating function is in IV.4; the recurrent relation is in IV.5.</ref>
गणित में, जैकोबी बहुपद (कभी-कभी अतिज्यामितीय बहुपद कहा जाता है) <math>P_n^{(\alpha,\beta)}(x)</math>
 
[[शास्त्रीय [[ऑर्थोगोनल बहुपद]]]]ों का एक वर्ग ऑर्थोगोनल बहुपद हैं। वे वजन के संबंध में ओर्थोगोनल हैं
जैकोबी बहुपद [[कार्ल गुस्ताव जैकब जैकोबी]] द्वारा प्रस्तुत किए गए थे।
<math>(1-x)^\alpha(1+x)^\beta</math> अंतराल पर <math>[-1,1]</math>. Gegenbauer बहुपद, और इस प्रकार लेजेंड्रे बहुपद, ज़र्निके बहुपद और [[चेबिशेव बहुपद]], जैकोबी बहुपद के विशेष मामले हैं।<ref name=sz>{{cite book | last1=Szegő | first1=Gábor | title=ऑर्थोगोनल बहुपद| url=https://books.google.com/books?id=3hcW8HBh7gsC | publisher= American Mathematical Society | series=Colloquium Publications | isbn=978-0-8218-1023-1 | mr=0372517 | year=1939 | volume=XXIII|chapter=IV. Jacobi polynomials.}} The definition is in IV.1; the differential equation &ndash; in IV.2; Rodrigues' formula is in IV.3; the generating function is in IV.4; the recurrent relation is in IV.5.</ref>
जैकोबी बहुपद [[कार्ल गुस्ताव जैकब जैकोबी]] द्वारा पेश किए गए थे।


== परिभाषाएँ ==
== परिभाषाएँ ==


=== [[हाइपरज्यामितीय समारोह]] === के माध्यम से
=== [[हाइपरज्यामितीय समारोह|हाइपरज्यामितीय फलन]] के माध्यम से ===
जैकोबी बहुपदों को हाइपरजियोमेट्रिक फ़ंक्शन के माध्यम से निम्नानुसार परिभाषित किया गया है:<ref>{{Abramowitz_Stegun_ref|22|561}}</ref>
जैकोबी बहुपदों को हाइपरज्यामितीय फलन के माध्यम से निम्नानुसार परिभाषित किया गया है:<ref>{{Abramowitz_Stegun_ref|22|561}}</ref>
:<math>P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!}\,{}_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac{1}{2}(1-z)\right),</math>
:<math>P_n^{(\alpha,\beta)}(z)=\frac{(\alpha+1)_n}{n!}\,{}_2F_1\left(-n,1+\alpha+\beta+n;\alpha+1;\tfrac{1}{2}(1-z)\right),</math>
कहाँ <math>(\alpha+1)_n</math> Pochhammer का प्रतीक है | Pochhammer का प्रतीक (बढ़ते तथ्यात्मक के लिए)। इस मामले में, हाइपरज्यामितीय फ़ंक्शन के लिए श्रृंखला परिमित है, इसलिए निम्नलिखित समकक्ष अभिव्यक्ति प्राप्त होती है:
जहाँ <math>(\alpha+1)_n</math> पोछाम्मेर का प्रतीक है(बढ़ते तथ्यात्मक के लिए)। इस स्थिति में, हाइपरज्यामितीय फलन के लिए श्रृंखला परिमित है, इसलिए निम्नलिखित अनुरूप अभिव्यक्ति प्राप्त होती है:


:<math>P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+n+1)}{n!\,\Gamma (\alpha+\beta+n+1)} \sum_{m=0}^n {n\choose m} \frac{\Gamma (\alpha + \beta + n + m + 1)}{\Gamma (\alpha + m + 1)} \left(\frac{z-1}{2}\right)^m.</math>
:<math>P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+n+1)}{n!\,\Gamma (\alpha+\beta+n+1)} \sum_{m=0}^n {n\choose m} \frac{\Gamma (\alpha + \beta + n + m + 1)}{\Gamma (\alpha + m + 1)} \left(\frac{z-1}{2}\right)^m</math>




=== रोड्रिग्स का सूत्र ===
=== रोड्रिग्स का सूत्र ===
रोड्रिग्स के सूत्र द्वारा एक समतुल्य परिभाषा दी गई है:<ref name=sz/><ref>{{SpringerEOM|title=Jacobi polynomials|author=P.K. Suetin}}</ref>
रोड्रिग्स के सूत्र द्वारा एक समतुल्य परिभाषा दी गई है:<ref name=sz/><ref>{{SpringerEOM|title=Jacobi polynomials|author=P.K. Suetin}}</ref>
:<math>P_n^{(\alpha,\beta)}(z) = \frac{(-1)^n}{2^n n!} (1-z)^{-\alpha} (1+z)^{-\beta} \frac{d^n}{dz^n} \left\{ (1-z)^\alpha (1+z)^\beta \left (1 - z^2 \right )^n \right\}.</math>
:<math>P_n^{(\alpha,\beta)}(z) = \frac{(-1)^n}{2^n n!} (1-z)^{-\alpha} (1+z)^{-\beta} \frac{d^n}{dz^n} \left\{ (1-z)^\alpha (1+z)^\beta \left (1 - z^2 \right )^n \right\}</math>
अगर <math> \alpha = \beta = 0 </math>, तो यह लीजेंड्रे बहुपदों को कम कर देता है:
अगर <math> \alpha = \beta = 0 </math>, तो यह लीजेंड्रे बहुपदों को कम कर देता है:
:<math> P_{n}(z) = \frac{1 }{2^n  n! } \frac{d^n }{ d z^n }  ( z^2 - 1 )^n  \; .  </math>
:<math> P_{n}(z) = \frac{1 }{2^n  n! } \frac{d^n }{ d z^n }  ( z^2 - 1 )^n  \; .  </math>
Line 26: Line 24:


=== वास्तविक तर्क के लिए वैकल्पिक अभिव्यक्ति ===
=== वास्तविक तर्क के लिए वैकल्पिक अभिव्यक्ति ===
वास्तव में <math>x</math> जैकोबी बहुपद को वैकल्पिक रूप से लिखा जा सकता है
यथार्थ <math>x</math> जैकोबी बहुपद को वैकल्पिक रूप से लिखा जा सकता है


:<math>P_n^{(\alpha,\beta)}(x)= \sum_{s=0}^n {n+\alpha\choose n-s}{n+\beta \choose s} \left(\frac{x-1}{2}\right)^{s} \left(\frac{x+1}{2}\right)^{n-s}</math>
:<math>P_n^{(\alpha,\beta)}(x)= \sum_{s=0}^n {n+\alpha\choose n-s}{n+\beta \choose s} \left(\frac{x-1}{2}\right)^{s} \left(\frac{x+1}{2}\right)^{n-s}</math>
और पूर्णांक के लिए <math>n</math>
और पूर्णांक <math>n</math> के लिए
:<math>{z \choose n} = \begin{cases} \frac{\Gamma(z+1)}{\Gamma(n+1)\Gamma(z-n+1)} & n \geq 0 \\ 0 & n < 0 \end{cases}</math>
:<math>{z \choose n} = \begin{cases} \frac{\Gamma(z+1)}{\Gamma(n+1)\Gamma(z-n+1)} & n \geq 0 \\ 0 & n < 0 \end{cases}</math>
कहाँ <math>\Gamma(z)</math> [[गामा समारोह]] है।
जहाँ <math>\Gamma(z)</math> [[गामा समारोह|गामा फलन]] है।
 
विशेष स्थितियों में कि चार मात्राएँ <math>n</math>, <math>n+\alpha</math>, <math>n+\beta</math>, <math>n+\alpha+\beta</math> गैर-ऋणात्मक पूर्णांक हैं, जैकोबी बहुपद को इस रूप में लिखा जा सकता है


विशेष मामले में कि चार मात्राएँ <math>n</math>, <math>n+\alpha</math>, <math>n+\beta</math>, <math>n+\alpha+\beta</math>
{{NumBlk|:|<math>P_n^{(\alpha,\beta)}(x)=(n+\alpha)! (n+\beta)! \sum_{s=0}^n \frac{1}{s! (n+\alpha-s)!(\beta+s)!(n-s)!} \left(\frac{x-1}{2}\right)^{n-s} \left(\frac{x+1}{2}\right)^{s}</math>|{{EquationRef|1}}}}
गैर-नकारात्मक पूर्णांक हैं, जैकोबी बहुपद को इस रूप में लिखा जा सकता है


{{NumBlk|:|<math>P_n^{(\alpha,\beta)}(x)=(n+\alpha)! (n+\beta)! \sum_{s=0}^n \frac{1}{s! (n+\alpha-s)!(\beta+s)!(n-s)!} \left(\frac{x-1}{2}\right)^{n-s} \left(\frac{x+1}{2}\right)^{s}.</math>|{{EquationRef|1}}}}
इस रूप में लिखा जा सकता है।


के सभी पूर्णांक मानों पर योग का विस्तार होता है <math>s</math> जिसके लिए फैक्टोरियल्स के तर्क गैर-नकारात्मक हैं।
योग <math>s</math> के सभी पूर्णांक मानों पर विस्तृत होता है जिसके लिए भाज्य के तर्क गैर-ऋणात्मक होते हैं।


=== विशेष मामले ===
=== विशेष स्थितियां ===


:<math>P_0^{(\alpha,\beta)}(z)= 1,</math>
:<math>P_0^{(\alpha,\beta)}(z)= 1,</math>
Line 52: Line 51:
== मूल गुण ==
== मूल गुण ==


===ऑर्थोगोनलिटी ===
===लंबकोणीयता ===
जैकोबी बहुपद ऑर्थोगोनलिटी की स्थिति को संतुष्ट करते हैं
जैकोबी बहुपद लंबकोणीयता की स्थिति


:<math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x)\,dx =\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}, \qquad \alpha,\ \beta > -1.</math>
:<math>\int_{-1}^1 (1-x)^{\alpha} (1+x)^{\beta} P_m^{(\alpha,\beta)} (x)P_n^{(\alpha,\beta)} (x)\,dx =\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+\alpha+\beta+1)n!} \delta_{nm}, \qquad \alpha,\ \beta > -1</math>  
जैसा कि परिभाषित किया गया है, वजन के संबंध में उनके पास इकाई मानदंड नहीं है। इसे उपरोक्त समीकरण के दाहिने हाथ की ओर के वर्गमूल से विभाजित करके ठीक किया जा सकता है, जब <math>n=m</math>.
:को संतुष्ट करते हैं।
जैसा कि परिभाषित किया गया है, प्रभाव के संबंध में उनके समीप इकाई मानदंड नहीं है। इसे उपरोक्त समीकरण के दाहिने हाथ की ओर के वर्गमूल से विभाजित करके ठीक किया जा सकता है, जब <math>n=m</math>


हालांकि यह एक अलौकिक आधार नहीं देता है, कभी-कभी इसकी सादगी के कारण एक वैकल्पिक सामान्यीकरण को प्राथमिकता दी जाती है:
यद्यपि यह एक प्रसामान्य लांबिक विश्लेषण आधार नहीं देता है, कभी-कभी इसकी सरलता के कारण एक वैकल्पिक सामान्यीकरण को प्राथमिकता दी जाती है:


:<math>P_n^{(\alpha, \beta)} (1) = {n+\alpha\choose n}.</math>
:<math>P_n^{(\alpha, \beta)} (1) = {n+\alpha\choose n}.</math>
Line 64: Line 64:


=== सममिति संबंध ===
=== सममिति संबंध ===
बहुपदों में सममिति संबंध होता है
बहुपदों में सममिति संबंध  


:<math>P_n^{(\alpha, \beta)} (-z) = (-1)^n P_n^{(\beta, \alpha)} (z);</math>
:<math>P_n^{(\alpha, \beta)} (-z) = (-1)^n P_n^{(\beta, \alpha)} (z);</math>
इस प्रकार अन्य टर्मिनल मान है
:है,इस प्रकार अन्य टर्मिनल मान
:<math>P_n^{(\alpha, \beta)} (-1) = (-1)^n { n+\beta\choose n}</math>
:है।


:<math>P_n^{(\alpha, \beta)} (-1) = (-1)^n { n+\beta\choose n}.</math>
=== व्युत्पन्न ===
स्पष्ट अभिव्यक्ति का <math>k</math>वां व्युत्पन्न


:<math>\frac{d^k}{dz^k} P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+\beta+n+1+k)}{2^k \Gamma (\alpha+\beta+n+1)} P_{n-k}^{(\alpha+k, \beta+k)} (z)</math>
:की ओर जाता है।


=== संजात === <math>k</math>वें> वें व्युत्पन्न स्पष्ट अभिव्यक्ति की ओर जाता है
=== विभेदक समीकरण ===
जैकोबी बहुपद <math>P_n^{(\alpha,\beta)}</math> दूसरे क्रम [[रैखिक सजातीय अंतर समीकरण]]<ref name="sz" />


:<math>\frac{d^k}{dz^k} P_n^{(\alpha,\beta)} (z) = \frac{\Gamma (\alpha+\beta+n+1+k)}{2^k \Gamma (\alpha+\beta+n+1)} P_{n-k}^{(\alpha+k, \beta+k)} (z).</math>
:<math> \left (1-x^2 \right )y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y' + n(n+\alpha+\beta+1) y = 0</math>


का एक हल है।
===पुनरावृत्ति संबंध===
निश्चित <math>\alpha</math>, <math>\beta</math> के जैकोबी बहुपदों के लिए पुनरावृत्ति संबंध है:<ref name=sz/>


=== विभेदक समीकरण ===
<math>n=2,3,\ldots</math>
जैकोबी बहुपद <math>P_n^{(\alpha,\beta)}</math> दूसरे क्रम के [[रैखिक सजातीय अंतर समीकरण]] का एक समाधान है<ref name=sz/>
 
:<math> \left (1-x^2 \right )y'' + ( \beta-\alpha - (\alpha + \beta + 2)x )y' + n(n+\alpha+\beta+1) y = 0.</math>
 


===पुनरावृत्ति संबंध===
के लिए
ऑर्थोगोनल बहुपद # स्थिर के जैकोबी बहुपदों के लिए पुनरावृत्ति संबंध <math>\alpha</math>, <math>\beta</math> है:<ref name=sz/>


:<math>
:<math>
\begin{align}
\begin{align}
&2n (n + \alpha + \beta) (2n + \alpha + \beta - 2) P_n^{(\alpha,\beta)}(z) \\
&2n (n + \alpha + \beta) (2n + \alpha + \beta - 2) P_n^{(\alpha,\beta)}(z) \\
&\qquad= (2n+\alpha + \beta-1) \Big\{ (2n+\alpha + \beta)(2n+\alpha+\beta-2) z +  \alpha^2 - \beta^2 \Big\} P_{n-1}^{(\alpha,\beta)}(z) - 2 (n+\alpha - 1) (n + \beta-1) (2n+\alpha + \beta) P_{n-2}^{(\alpha, \beta)}(z),
&\qquad= (2n+\alpha + \beta-1) \Big\{ (2n+\alpha + \beta)(2n+\alpha+\beta-2) z +  \alpha^2 - \beta^2 \Big\} P_{n-1}^{(\alpha,\beta)}(z) - 2 (n+\alpha - 1) (n + \beta-1) (2n+\alpha + \beta) P_{n-2}^{(\alpha, \beta)}(z)
\end{align}
\end{align}
</math>
</math>
के लिए <math>n=2,3,\ldots</math>.
संक्षिप्तता <math>a:=n + \alpha </math>, <math>b:=n + \beta</math> और <math>c:=a+b=2n + \alpha+ \beta</math> के लिए लेखन, यह <math>a,b,c </math>
संक्षिप्तता के लिए लिख रहा हूँ <math>a:=n + \alpha </math>, <math>b:=n + \beta</math> और <math>c:=a+b=2n + \alpha+ \beta</math>, यह के संदर्भ में हो जाता है <math>a,b,c </math>
:<math> 2n (c-n)(c-2) P_n^{(\alpha,\beta)}(z) =(c-1) \Big\{ c(c-2) z + (a-b)(c-2n) \Big\} P_{n-1}^{(\alpha,\beta)}(z)-2 (a-1)(b-1) c\; P_{n-2}^{(\alpha, \beta)}(z) </math> के संदर्भ में हो जाता है।
:<math> 2n (c-n)(c-2) P_n^{(\alpha,\beta)}(z) =(c-1) \Big\{ c(c-2) z + (a-b)(c-2n) \Big\} P_{n-1}^{(\alpha,\beta)}(z)-2 (a-1)(b-1) c\; P_{n-2}^{(\alpha, \beta)}(z). </math>
चूँकि जैकोबी बहुपदों को हाइपरज्यामितीय फलन के संदर्भ में वर्णित किया जा सकता है, हाइपरज्यामितीय फलन की पुनरावृत्ति जैकोबी बहुपदों के अनुरूप पुनरावृत्ति देती है। विशेष रूप से, गॉस के सन्निहित संबंध सर्वसमिकाओं  
चूँकि जैकोबी बहुपदों को हाइपरजियोमेट्रिक फ़ंक्शन के संदर्भ में वर्णित किया जा सकता है, हाइपरजियोमेट्रिक फ़ंक्शन की पुनरावृत्ति जैकोबी बहुपदों के समकक्ष पुनरावृत्ति देती है। विशेष रूप से, गॉस के सन्निहित संबंध सर्वसमिकाओं के अनुरूप हैं


:<math>
:<math>
Line 106: Line 109:
& =\frac{2(n+1) P_{n+1}^{(\alpha,\beta-1)} - \left(z(1+\alpha+\beta+n)+\alpha+1+n-\beta \right) P_n^{(\alpha,\beta)}}{1+z} \\
& =\frac{2(n+1) P_{n+1}^{(\alpha,\beta-1)} - \left(z(1+\alpha+\beta+n)+\alpha+1+n-\beta \right) P_n^{(\alpha,\beta)}}{1+z} \\
& =\frac{(2\beta+n+nz) P_n^{(\alpha,\beta)} - 2(\beta+n) P_n^{(\alpha,\beta-1)}}{1+z} \\
& =\frac{(2\beta+n+nz) P_n^{(\alpha,\beta)} - 2(\beta+n) P_n^{(\alpha,\beta-1)}}{1+z} \\
& =\frac{1-z}{1+z} \left( \beta P_n^{(\alpha,\beta)} - (\beta+n) P_{n}^{(\alpha+1,\beta-1)} \right) \, .
& =\frac{1-z}{1+z} \left( \beta P_n^{(\alpha,\beta)} - (\beta+n) P_{n}^{(\alpha+1,\beta-1)} \right) \,  
\end{align}
\end{align}
</math>
</math>  
 
:के अनुरूप हैं।
 
=== [[ जनरेटिंग फ़ंक्शन | उत्पादक फलन]] ===
=== [[ जनरेटिंग फ़ंक्शन ]] ===
जैकोबी बहुपदों का जनक फलन
जैकोबी बहुपदों का जनक फलन किसके द्वारा दिया जाता है


:<math> \sum_{n=0}^\infty P_n^{(\alpha,\beta)}(z) t^n = 2^{\alpha + \beta} R^{-1} (1 - t + R)^{-\alpha} (1 + t + R)^{-\beta}, </math>
:<math> \sum_{n=0}^\infty P_n^{(\alpha,\beta)}(z) t^n = 2^{\alpha + \beta} R^{-1} (1 - t + R)^{-\alpha} (1 + t + R)^{-\beta}, </math>
कहाँ
द्वारा दिया जाता है, जहाँ


:<math> R = R(z, t) = \left(1 - 2zt + t^2\right)^{\frac{1}{2}}~,  </math>
:<math> R = R(z, t) = \left(1 - 2zt + t^2\right)^{\frac{1}{2}}~,  </math>
और वर्गमूल की मुख्य शाखा को चुना जाता है ताकि <math>R(z, 0) = 1</math>.<ref name=sz/>
और वर्गमूल की शाखा को चुना जाता है ताकि <math>R(z, 0) = 1</math><ref name="sz" />
 




== जैकोबी बहुपदों के स्पर्शोन्मुख ==
== जैकोबी बहुपदों के स्पर्शोन्मुख ==
के लिए <math>x</math> के भीतरी भाग में <math>[-1,1]</math>, के स्पर्शोन्मुख <math>P_n^{(\alpha,\beta)}</math> बड़े के लिए <math>n</math> डार्बौक्स सूत्र द्वारा दिया गया है<ref name=sz/>
<math>[-1,1]</math> के भीतरी भाग में <math>x</math> के लिए, बड़े <math>n</math> के लिए <math>P_n^{(\alpha,\beta)}</math> के स्पर्शोन्मुख डार्बौक्स सूत्र<ref name=sz/>


:<math>P_n^{(\alpha,\beta)}(\cos \theta) = n^{-\frac{1}{2}}k(\theta)\cos (N\theta + \gamma) + O \left (n^{-\frac{3}{2}} \right ),</math>
:<math>P_n^{(\alpha,\beta)}(\cos \theta) = n^{-\frac{1}{2}}k(\theta)\cos (N\theta + \gamma) + O \left (n^{-\frac{3}{2}} \right )</math>
कहाँ
द्वारा दिए गए हैं, जहां


:<math>
:<math>
Line 134: Line 137:
\end{align}
\end{align}
</math>
</math>
और यह<math>O</math>अवधि अंतराल पर एक समान है <math>[\varepsilon,\pi-\varepsilon]</math> हरएक के लिए <math>\varepsilon>0</math>.
और <math>O</math> शब्द प्रत्येक <math>\varepsilon>0</math> के लिए अंतराल <math>[\varepsilon,\pi-\varepsilon]</math> पर समान है।


बिंदुओं के निकट जैकोबी बहुपदों की स्पर्शोन्मुखता <math>\pm 1</math> मेहलर-हेन सूत्र द्वारा दिया गया है
बिंदु <math>\pm 1</math> के निकट जैकोबी बहुपदों की स्पर्शोन्मुखता मेहलर-हेन सूत्र


:<math>
:<math>
Line 144: Line 147:
\end{align}
\end{align}
</math>
</math>
जहां सीमाएं एक समान हैं <math>z</math> एक बंधे हुए [[डोमेन (गणितीय विश्लेषण)]] में।
द्वारा दिया गया है द्वारा दी गई है, जहां एक बंधे हुए [[डोमेन (गणितीय विश्लेषण)|डोमेन(गणितीय विश्लेषण)]] में <math>z</math> के लिए सीमाएं समान हैं।


बाहर स्पर्शोन्मुख <math>[-1,1]</math> कम स्पष्ट है।
बाहर स्पर्शोन्मुख <math>[-1,1]</math> कम स्पष्ट है।
Line 150: Line 153:
== अनुप्रयोग ==
== अनुप्रयोग ==


=== विग्नर डी-मैट्रिक्स ===
=== विग्नर डी-आव्यूह ===
इजहार ({{EquationNote|1}}) Wigner D-मैट्रिक्स#Wigner (छोटा) d-मैट्रिक्स|Wigner d-मैट्रिक्स की अभिव्यक्ति की अनुमति देता है
अभिव्यक्ति(1) जैकोबी बहुपदों के संदर्भ में विग्नेर डी-आव्यूह
  <math>d^j_{m',m}(\phi)</math> (के लिए <math>0\leq \phi\leq 4\pi</math>)
  <math>d^j_{m',m}(\phi)</math>( <math>0\leq \phi\leq 4\pi</math> के लिए)
जैकोबी बहुपदों के संदर्भ में:<ref>{{cite book| last=Biedenharn| first=L.C.| last2=Louck| first2=J.D.|title=क्वांटम भौतिकी में कोणीय गति|publisher=Addison-Wesley |location=Reading |year=1981}}</ref>
की अभिव्यक्ति की अनुमति देता है:<ref>{{cite book| last=Biedenharn| first=L.C.| last2=Louck| first2=J.D.|title=क्वांटम भौतिकी में कोणीय गति|publisher=Addison-Wesley |location=Reading |year=1981}}</ref>
:<math>d^j_{m'm}(\phi) =\left[ \frac{(j+m)!(j-m)!}{(j+m')!(j-m')!}\right]^{\frac{1}{2}} \left(\sin\tfrac{\phi}{2}\right)^{m-m'} \left(\cos\tfrac{\phi}{2}\right)^{m+m'} P_{j-m}^{(m-m',m+m')}(\cos \phi).</math>
:<math>d^j_{m'm}(\phi) =\left[ \frac{(j+m)!(j-m)!}{(j+m')!(j-m')!}\right]^{\frac{1}{2}} \left(\sin\tfrac{\phi}{2}\right)^{m-m'} \left(\cos\tfrac{\phi}{2}\right)^{m+m'} P_{j-m}^{(m-m',m+m')}(\cos \phi)</math>




Line 183: Line 186:
</div>
</div>
{{Authority control}}
{{Authority control}}
[[Category: विशेष हाइपरज्यामितीय कार्य]] [[Category: ऑर्थोगोनल बहुपद]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 03/03/2023]]
[[Category:Created On 03/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:ऑर्थोगोनल बहुपद]]
[[Category:विशेष हाइपरज्यामितीय कार्य]]

Latest revision as of 10:52, 17 March 2023

गणित में, जैकोबी बहुपद(कभी-कभी अतिज्यामितीय बहुपद कहा जाता है) शास्त्रीय लंबकोणीय बहुपदों का एक वर्ग हैं। वे अंतराल पर प्रभाव के संबंध में लंबकोणीय हैं। गेंगेंबोइर बहुपद, और इस प्रकार लेजेंड्रे बहुपद, ज़र्निके बहुपद और चेबिशेव बहुपद, जैकोबी बहुपद के विशेष स्थितियां हैं।[1]

जैकोबी बहुपद कार्ल गुस्ताव जैकब जैकोबी द्वारा प्रस्तुत किए गए थे।

परिभाषाएँ

हाइपरज्यामितीय फलन के माध्यम से

जैकोबी बहुपदों को हाइपरज्यामितीय फलन के माध्यम से निम्नानुसार परिभाषित किया गया है:[2]

जहाँ पोछाम्मेर का प्रतीक है(बढ़ते तथ्यात्मक के लिए)। इस स्थिति में, हाइपरज्यामितीय फलन के लिए श्रृंखला परिमित है, इसलिए निम्नलिखित अनुरूप अभिव्यक्ति प्राप्त होती है:


रोड्रिग्स का सूत्र

रोड्रिग्स के सूत्र द्वारा एक समतुल्य परिभाषा दी गई है:[1][3]

अगर , तो यह लीजेंड्रे बहुपदों को कम कर देता है:


वास्तविक तर्क के लिए वैकल्पिक अभिव्यक्ति

यथार्थ जैकोबी बहुपद को वैकल्पिक रूप से लिखा जा सकता है

और पूर्णांक के लिए

जहाँ गामा फलन है।

विशेष स्थितियों में कि चार मात्राएँ , , , गैर-ऋणात्मक पूर्णांक हैं, जैकोबी बहुपद को इस रूप में लिखा जा सकता है

 

 

 

 

(1)

इस रूप में लिखा जा सकता है।

योग के सभी पूर्णांक मानों पर विस्तृत होता है जिसके लिए भाज्य के तर्क गैर-ऋणात्मक होते हैं।

विशेष स्थितियां


मूल गुण

लंबकोणीयता

जैकोबी बहुपद लंबकोणीयता की स्थिति

को संतुष्ट करते हैं।

जैसा कि परिभाषित किया गया है, प्रभाव के संबंध में उनके समीप इकाई मानदंड नहीं है। इसे उपरोक्त समीकरण के दाहिने हाथ की ओर के वर्गमूल से विभाजित करके ठीक किया जा सकता है, जब

यद्यपि यह एक प्रसामान्य लांबिक विश्लेषण आधार नहीं देता है, कभी-कभी इसकी सरलता के कारण एक वैकल्पिक सामान्यीकरण को प्राथमिकता दी जाती है:


सममिति संबंध

बहुपदों में सममिति संबंध

है,इस प्रकार अन्य टर्मिनल मान
है।

व्युत्पन्न

स्पष्ट अभिव्यक्ति का वां व्युत्पन्न

की ओर जाता है।

विभेदक समीकरण

जैकोबी बहुपद दूसरे क्रम रैखिक सजातीय अंतर समीकरण[1]

का एक हल है।

पुनरावृत्ति संबंध

निश्चित , के जैकोबी बहुपदों के लिए पुनरावृत्ति संबंध है:[1]

के लिए

संक्षिप्तता , और के लिए लेखन, यह

के संदर्भ में हो जाता है।

चूँकि जैकोबी बहुपदों को हाइपरज्यामितीय फलन के संदर्भ में वर्णित किया जा सकता है, हाइपरज्यामितीय फलन की पुनरावृत्ति जैकोबी बहुपदों के अनुरूप पुनरावृत्ति देती है। विशेष रूप से, गॉस के सन्निहित संबंध सर्वसमिकाओं