क्लोजर ऑपरेटर: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, एक [[सेट (गणित)]] ' | गणित में, एक [[सेट (गणित)|सेट]] (समुच्चय) S पर एक '''क्लोजर ऑपरेटर''' फ़ंक्शन (फलन) <math>\operatorname{cl}: \mathcal{P}(S)\rightarrow \mathcal{P}(S)</math> के पावर सेट से स्वयं के लिए जो सभी सेट <math>X,Y\subseteq S</math> के लिए निम्नलिखित शर्तों को पूरा करता है। | ||
:{| border="0" | :{| border="0" | ||
|- | |- | ||
Line 11: | Line 11: | ||
| {{nb5}}(cl वर्गसम है). | | {{nb5}}(cl वर्गसम है). | ||
|} | |} | ||
क्लोजर ऑपरेटर्स को उनके बंद सेटों द्वारा निर्धारित किया जाता है, अर्थात, फॉर्म cl(''X'') के सेट के बाद से सेट | क्लोजर ऑपरेटर्स को उनके बंद सेटों द्वारा निर्धारित किया जाता है, अर्थात, फॉर्म cl(''X'') के सेट के बाद से सेट X का क्लोजर cl(''X'') ''X'' युक्त सबसे छोटा बंद सेट है। "बंद सेट" के ऐसे परिवारों को कभी-कभी क्लोजर कहा जाता है। सिस्टम या "मूर परिवार" <ref>{{Cite journal |last=Diatta |first=Jean |date=2009-11-14 |title=On critical sets of a finite Moore family |url=https://doi.org/10.1007/s11634-009-0053-8 |journal=Advances in Data Analysis and Classification |language=en |volume=3 |issue=3 |pages=291 |doi=10.1007/s11634-009-0053-8 |issn=1862-5355}}</ref> उस पर एक क्लोजर ऑपरेटर के साथ एक सेट को कभी-कभी क्लोजर स्पेस कहा जाता है। क्लोजर ऑपरेटरों को "हल ऑपरेटर्स" भी कहा जाता है, जो टोपोलॉजी में अध्ययन किए गए "क्लोजर ऑपरेटरों" के साथ मिथक को रोकता है। | ||
== इतिहास == | == इतिहास == | ||
Line 21: | Line 21: | ||
सापेक्ष आंतरिक <math>\operatorname{ri}</math> क्लोजर ऑपरेटर नहीं है: यद्यपि यह वर्गसम है, यह नहीं बढ़ रहा है और यदि <math>C_1</math>, <math>\mathbb{R}^3</math> में एक घन है और <math>C_2</math> इसका एक फलक है, तो <math>C_2 \subset C_1</math>लेकिन <math>\operatorname{ri}(C_1) \ne \emptyset \ne \operatorname{ri}(C_2)</math> और <math>\operatorname{ri}(C_1) \cap \operatorname{ri}(C_2) = \emptyset</math> इसलिए यह नहीं बढ़ रहा है।<ref>{{cite book |last1=Rockafellar |first1=Ralph Tyrell |title=Convex Analysis |date=1970 |publisher=Princeton University Press |isbn=9781400873173 |page=44 |url=https://doi.org/10.1515/9781400873173}}</ref> | सापेक्ष आंतरिक <math>\operatorname{ri}</math> क्लोजर ऑपरेटर नहीं है: यद्यपि यह वर्गसम है, यह नहीं बढ़ रहा है और यदि <math>C_1</math>, <math>\mathbb{R}^3</math> में एक घन है और <math>C_2</math> इसका एक फलक है, तो <math>C_2 \subset C_1</math>लेकिन <math>\operatorname{ri}(C_1) \ne \emptyset \ne \operatorname{ri}(C_2)</math> और <math>\operatorname{ri}(C_1) \cap \operatorname{ri}(C_2) = \emptyset</math> इसलिए यह नहीं बढ़ रहा है।<ref>{{cite book |last1=Rockafellar |first1=Ralph Tyrell |title=Convex Analysis |date=1970 |publisher=Princeton University Press |isbn=9781400873173 |page=44 |url=https://doi.org/10.1515/9781400873173}}</ref> | ||
टोपोलॉजी में, क्लोजर ऑपरेटर टोपोलॉजिकल क्लोजर ऑपरेटर होते हैं, जिन्हें संतुष्ट करना | टोपोलॉजी में, क्लोजर ऑपरेटर टोपोलॉजिकल क्लोजर ऑपरेटर होते हैं, जिन्हें संतुष्ट करना चाहिए। | ||
: <math>\operatorname{cl}(X_1 \cup\dots\cup X_n) = \operatorname{cl}(X_1)\cup\dots\cup \operatorname{cl}(X_n)</math> | : <math>\operatorname{cl}(X_1 \cup\dots\cup X_n) = \operatorname{cl}(X_1)\cup\dots\cup \operatorname{cl}(X_n)</math> | ||
सभी के लिए <math>n\in\N</math> (ध्यान दें कि <math>n=0</math> के लिए इससे <math>\operatorname{cl}(\varnothing)=\varnothing</math> प्राप्त होता है) | सभी के लिए <math>n\in\N</math> (ध्यान दें कि <math>n=0</math> के लिए इससे <math>\operatorname{cl}(\varnothing)=\varnothing</math> प्राप्त होता है)। | ||
[[बीजगणित]] और [[तर्क]]शास्त्र में, कई क्लोजर ऑपरेटर अंतिम क्लोजर ऑपरेटर हैं, | [[बीजगणित]] और [[तर्क]]शास्त्र में, कई क्लोजर ऑपरेटर अंतिम क्लोजर ऑपरेटर हैं, अर्थात वे संतुष्ट हैं। | ||
: <math>\operatorname{cl}(X) = \bigcup\left\{\operatorname{cl}(Y) : Y\subseteq X \text{ and } Y \text{ finite} \right\}.</math> | : <math>\operatorname{cl}(X) = \bigcup\left\{\operatorname{cl}(Y) : Y\subseteq X \text{ and } Y \text{ finite} \right\}.</math> | ||
[[आंशिक रूप से आदेशित सेट]] के सिद्धांत में, जो [[सैद्धांतिक कंप्यूटर विज्ञान]] में महत्वपूर्ण हैं, बंद करने वाले ऑपरेटरों की एक अधिक सामान्य परिभाषा है जो प्रतिस्थापित करती है <math>\subseteq</math> साथ <math>\leq</math>. (देखें {{section link||आंशिक रूप से आदेशित सेटों पर क्लोजर ऑपरेटर}}.) | [[आंशिक रूप से आदेशित सेट]] के सिद्धांत में, जो [[सैद्धांतिक कंप्यूटर विज्ञान]] में महत्वपूर्ण हैं, बंद करने वाले ऑपरेटरों की एक अधिक सामान्य परिभाषा है जो प्रतिस्थापित करती है <math>\subseteq</math> साथ <math>\leq</math>. (देखें {{section link||आंशिक रूप से आदेशित सेटों पर क्लोजर ऑपरेटर}}.)। | ||
== टोपोलॉजी में क्लोजर ऑपरेटर == | == टोपोलॉजी में क्लोजर ऑपरेटर == | ||
Line 41: | Line 41: | ||
संभवतया इसका सबसे प्रसिद्ध उदाहरण वह कार्य है जो किसी दिए गए सदिश स्थान के प्रत्येक उपसमुच्चय को उसके रैखिक विस्तार से जोड़ता है। इसी प्रकार, वह फलन जो किसी दिए गए समूह के प्रत्येक उपसमुच्चय को उसके द्वारा उत्पन्न उपसमूह से जोड़ता है, और इसी प्रकार खेतों और अन्य सभी प्रकार की बीजगणितीय संरचनाओं के लिए है। | संभवतया इसका सबसे प्रसिद्ध उदाहरण वह कार्य है जो किसी दिए गए सदिश स्थान के प्रत्येक उपसमुच्चय को उसके रैखिक विस्तार से जोड़ता है। इसी प्रकार, वह फलन जो किसी दिए गए समूह के प्रत्येक उपसमुच्चय को उसके द्वारा उत्पन्न उपसमूह से जोड़ता है, और इसी प्रकार खेतों और अन्य सभी प्रकार की बीजगणितीय संरचनाओं के लिए है। | ||
एक सदिश स्थान में रैखिक अवधि और एक क्षेत्र में समान [[बीजगणितीय समापन]] दोनों विनिमय संपत्ति को संतुष्ट करते हैं: यदि x, A और {y} के मिलन के समापन में है, लेकिन A के संवरण में नहीं है, तो y संवरण में है A और {x} के मिलन का। इस संपत्ति के साथ एक फ़िनिटरी क्लोजर ऑपरेटर को मैट्रॉइड कहा जाता है। एक सदिश स्थान का [[आयाम (वेक्टर स्थान)|आयाम]], या एक क्षेत्र की उत्कृष्टता की डिग्री (इसके प्रमुख क्षेत्र पर) संबंधित मैट्रॉइड का | एक सदिश स्थान में रैखिक अवधि और एक क्षेत्र में समान [[बीजगणितीय समापन]] दोनों विनिमय संपत्ति को संतुष्ट करते हैं: यदि x, A और {y} के मिलन के समापन में है, लेकिन A के संवरण में नहीं है, तो y संवरण में है A और {x} के मिलन का। इस संपत्ति के साथ एक फ़िनिटरी क्लोजर ऑपरेटर को मैट्रॉइड कहा जाता है। एक सदिश स्थान का [[आयाम (वेक्टर स्थान)|आयाम]], या एक क्षेत्र की उत्कृष्टता की डिग्री (इसके प्रमुख क्षेत्र पर) संबंधित मैट्रॉइड का श्रेणी है। | ||
फ़ंक्शन जो किसी दिए गए [[क्षेत्र (गणित)]] के प्रत्येक उपसमुच्चय को उसके बीजगणितीय बंद करने के लिए मैप करता है, वह भी एक अंतिम समापन ऑपरेटर है, और सामान्य तौर पर यह पहले बताए गए ऑपरेटर से अलग है। फ़िनिटरी क्लोजर ऑपरेटर्स जो इन दोनों ऑपरेटरों को सामान्यीकृत करते हैं, उन्हें [[मॉडल सिद्धांत]] में dcl (निश्चित क्लोजर के लिए) और acl (बीजगणितीय क्लोजर के लिए) के रूप में अध्ययन किया जाता है। | फ़ंक्शन जो किसी दिए गए [[क्षेत्र (गणित)]] के प्रत्येक उपसमुच्चय को उसके बीजगणितीय बंद करने के लिए मैप करता है, वह भी एक अंतिम समापन ऑपरेटर है, और सामान्य तौर पर यह पहले बताए गए ऑपरेटर से अलग है। फ़िनिटरी क्लोजर ऑपरेटर्स जो इन दोनों ऑपरेटरों को सामान्यीकृत करते हैं, उन्हें [[मॉडल सिद्धांत]] में dcl (निश्चित क्लोजर के लिए) और acl (बीजगणितीय क्लोजर के लिए) के रूप में अध्ययन किया जाता है। | ||
Line 57: | Line 57: | ||
=== परिणाम संचालक === | === परिणाम संचालक === | ||
1930 के आसपास, [[अल्फ्रेड टार्स्की]] ने तार्किक | 1930 के आसपास, [[अल्फ्रेड टार्स्की]] ने तार्किक घटाव का एक सार सिद्धांत विकसित किया जो तार्किक संगणना के कुछ गुणों को प्रतिरूपित करता है। गणितीय रूप से, उन्होंने जो वर्णन किया वह एक सेट (वाक्यों का सेट) पर केवल एक परिमित क्लोजर ऑपरेटर है। भावात्मक बीजगणितीय तर्क में, फ़िनिटरी क्लोजर ऑपरेटरों का अभी भी नाम परिणाम ऑपरेटर के तहत अध्ययन किया जाता है, जिसे टार्स्की द्वारा गढ़ा गया था। समुच्चय S वाक्यों के समुच्चय का प्रतिनिधित्व करता है, S सिद्धांत का उपसमुच्चय T, और सिद्धांत से अनुसरण करने वाले सभी वाक्यों का समुच्चय cl(T) है। आजकल यह शब्द बंद करने वाले ऑपरेटरों को संदर्भित कर सकता है, जिनकी आवश्यकता एकरूप नहीं है; फ़िनिटरी क्लोजर ऑपरेटरों को तब कभी-कभी 'परिमित परिणाम ऑपरेटर' कहा जाता है। | ||
== बंद सेट == | == बंद सेट == | ||
Line 64: | Line 64: | ||
किसी दिए गए क्लोजर ऑपरेटर के सभी बंद सेटों को उत्पन्न करने के लिए एक सरल और स्थिर एल्गोरिथम (कलन विधि) है।<ref>Ganter, Algorithm 1</ref> | किसी दिए गए क्लोजर ऑपरेटर के सभी बंद सेटों को उत्पन्न करने के लिए एक सरल और स्थिर एल्गोरिथम (कलन विधि) है।<ref>Ganter, Algorithm 1</ref> | ||
एक सेट पर एक क्लोजर ऑपरेटर टोपोलॉजिकल है अगर और केवल अगर बंद सेट का सेट परिमित यूनियनों के तहत बंद हो जाता है, | एक सेट पर एक क्लोजर ऑपरेटर टोपोलॉजिकल है अगर और केवल अगर बंद सेट का सेट परिमित यूनियनों के तहत बंद हो जाता है, अर्थात, सी 'पी' (एस) का एक पूरा-पूरा सबलेटिस है। गैर-टोपोलॉजिकल क्लोजर ऑपरेटरों के लिए भी, सी को जाली की संरचना के रूप में देखा जा सकता है। (दो समुच्चयों X,Y ⊆ 'P'(S) का योग cl(X <math>\cup</math> Y).) लेकिन तब C जाली 'P'(S) का एक उपवर्ग नहीं है। | ||
एक सेट पर एक फ़िनिटरी क्लोजर ऑपरेटर को देखते हुए, परिमित सेट के क्लोजर बंद सेट के सेट सी के बिल्कुल [[कॉम्पैक्ट तत्व]] हैं। इससे पता चलता है कि C एक बीजगणितीय पॉसेट है। | एक सेट पर एक फ़िनिटरी क्लोजर ऑपरेटर को देखते हुए, परिमित सेट के क्लोजर बंद सेट के सेट सी के बिल्कुल [[कॉम्पैक्ट तत्व|कॉम्पैक्ट अवयव]] हैं। इससे पता चलता है कि C एक बीजगणितीय पॉसेट है। | ||
चूँकि C भी एक जाली है, इसे | चूँकि C भी एक जाली है, इसे प्रायः इस संदर्भ में बीजगणितीय जाली के रूप में जाना जाता है। इसके विपरीत, यदि C एक बीजगणितीय पॉसेट है, तो क्लोजर ऑपरेटर परिमित है। | ||
=== छद्म बंद सेट === | === छद्म बंद सेट === | ||
एक परिमित सेट S पर प्रत्येक क्लोजर ऑपरेटर अपने छद्म-बंद सेटों की छवियों द्वारा विशिष्ट रूप से निर्धारित किया जाता है।<ref>Ganter, Section 3.2</ref> | एक परिमित सेट S पर प्रत्येक क्लोजर ऑपरेटर अपने छद्म-बंद सेटों की छवियों द्वारा विशिष्ट रूप से निर्धारित किया जाता है।<ref>Ganter, Section 3.2</ref> | ||
इन्हें पुनरावर्ती रूप से परिभाषित किया गया है: एक सेट छद्म-बंद है यदि यह बंद नहीं है और इसके प्रत्येक छद्म-बंद उचित उपसमुच्चय को बंद करना | इन्हें पुनरावर्ती रूप से परिभाषित किया गया है: एक सेट छद्म-बंद है यदि यह बंद नहीं है और इसके प्रत्येक छद्म-बंद उचित उपसमुच्चय को बंद करना सम्मिलित है। औपचारिक रूप से: ''P'' ⊆ ''S'' स्यूडो-क्लोज्ड है अगर और केवल अगर | ||
* ''P'' ≠ cl(''P'') और | * ''P'' ≠ cl(''P'') और | ||
* अगर ''Q'' ⊂ ''P'' स्यूडो-क्लोज्ड है, तो cl(''Q'') ⊆ ''P''। | * अगर ''Q'' ⊂ ''P'' स्यूडो-क्लोज्ड है, तो cl(''Q'') ⊆ ''P''। | ||
=== आंशिक रूप से आदेशित सेटों पर क्लोजर ऑपरेटर === | === आंशिक रूप से आदेशित सेटों पर क्लोजर ऑपरेटर === | ||
एक आंशिक रूप से ऑर्डर किया गया सेट (पॉसेट) एक आंशिक ऑर्डर ≤ के साथ एक सेट है, | एक आंशिक रूप से ऑर्डर किया गया सेट (पॉसेट) एक आंशिक ऑर्डर ≤ के साथ एक सेट है, अर्थात एक [[द्विआधारी संबंध]] जो रिफ्लेक्सिव है ({{nowrap|''a'' ≤ ''a''}}सकर्मक ({{nowrap|''a'' ≤ ''b'' ≤ ''c''}} तात्पर्य {{nowrap|''a'' ≤ ''c''}}) और [[एंटीसिमेट्रिक संबंध]] ({{nowrap|''a'' ≤ ''b'' ≤ ''a''}} मतलब ए = बी)। प्रत्येक घात समुच्चय 'P'(S) समावेशन ⊆ के साथ आंशिक रूप से क्रमित समुच्चय है। | ||
एक फ़ंक्शन cl: ''P'' → ''P'' एक आंशिक क्रम ''P'' से खुद को क्लोजर ऑपरेटर कहा जाता है यदि यह ''P'' में सभी | एक फ़ंक्शन cl: ''P'' → ''P'' एक आंशिक क्रम ''P'' से खुद को क्लोजर ऑपरेटर कहा जाता है यदि यह ''P'' में सभी अवयवों ''x'', y के लिए निम्नलिखित स्वयंसिद्धों को संतुष्ट करता है। | ||
:{| border="0" | :{| border="0" | ||
|- | |- | ||
Line 98: | Line 98: | ||
P में सभी x, y के लिए। | P में सभी x, y के लिए। | ||
पॉसेट्स के बीच कार्यों पर बिंदुवार क्रम का उपयोग करते हुए, कोई वैकल्पिक रूप से व्यापकता गुण को | पॉसेट्स के बीच कार्यों पर बिंदुवार क्रम का उपयोग करते हुए, कोई वैकल्पिक रूप से व्यापकता गुण को id<sub>''P''</sub> ≤ cl के रूप में लिख सकता है, जहां id तत्समक फलन है। एक स्वयं मानचित्र k जो बढ़ रहा है और वर्गसम है, लेकिन व्यापकता गुण के दोहरे को संतुष्ट करता है, अर्थात k ≤ idP को कर्नेल ऑपरेटर कहा जाता है, <ref>Giertz, p. 26</ref> इंटीरियर ऑपरेटर,<ref>Erné, p. 2, uses closure (resp. interior) operation</ref> या दोहरी क्लोजर है।<ref>Blyth, p. 10</ref> उदाहरण के लिए, यदि A सेट B का उपसमुच्चय है, तो μA(X) = A ∪ X द्वारा दिए गए B के पावरसेट पर सेल्फ-मैप एक क्लोजर ऑपरेटर है, जबकि λA(X) = A ∩ X एक कर्नेल है ऑपरेटर। | ||
वास्तविक संख्याओं से वास्तविक संख्याओं तक सीलिंग फ़ंक्शन, जो प्रत्येक वास्तविक x को x से छोटा नहीं सबसे छोटा पूर्णांक प्रदान करता है, क्लोजर ऑपरेटर का एक और उदाहरण है। | वास्तविक संख्याओं से वास्तविक संख्याओं तक सीलिंग फ़ंक्शन, जो प्रत्येक वास्तविक x को x से छोटा नहीं सबसे छोटा पूर्णांक प्रदान करता है, क्लोजर ऑपरेटर का एक और उदाहरण है। | ||
फलन cl का नियत बिन्दु, अर्थात P का एक | फलन cl का नियत बिन्दु, अर्थात P का एक अवयव c जो cl(c) = c को संतुष्ट करता है, एक बंद अवयव कहलाता है। आंशिक रूप से आदेशित सेट पर एक क्लोजर ऑपरेटर उसके बंद अवयवों द्वारा निर्धारित किया जाता है। यदि c एक बंद अवयव है, तो x ≤ c और cl(x) ≤ c समतुल्य स्थितियाँ हैं। | ||
प्रत्येक गैलोज़ कनेक्शन (या अवशिष्ट मानचित्रण) एक क्लोजर ऑपरेटर को जन्म देता है (जैसा कि उस लेख में बताया गया है)। वास्तव में, प्रत्येक क्लोजर ऑपरेटर एक उपयुक्त गैल्वा कनेक्शन से इस तरह उत्पन्न होता है।<ref>Blyth, p. 10</ref> क्लोजर ऑपरेटर द्वारा गैलोज़ कनेक्शन विशिष्ट रूप से निर्धारित नहीं किया जाता है। क्लोजर ऑपरेटर सीएल को जन्म देने वाला एक गैलोज कनेक्शन निम्नानुसार वर्णित किया जा सकता है: यदि | प्रत्येक गैलोज़ कनेक्शन (या अवशिष्ट मानचित्रण) एक क्लोजर ऑपरेटर को जन्म देता है (जैसा कि उस लेख में बताया गया है)। वास्तव में, प्रत्येक क्लोजर ऑपरेटर एक उपयुक्त गैल्वा कनेक्शन से इस तरह उत्पन्न होता है।<ref>Blyth, p. 10</ref> क्लोजर ऑपरेटर द्वारा गैलोज़ कनेक्शन विशिष्ट रूप से निर्धारित नहीं किया जाता है। क्लोजर ऑपरेटर सीएल को जन्म देने वाला एक गैलोज कनेक्शन निम्नानुसार वर्णित किया जा सकता है: यदि A सीएल के संबंध में बंद अवयवों का सेट है, तो cl: ''P'' → ''A'', ''P'' और ''A'' के बीच गैलोइस कनेक्शन का निचला आसन्न है, साथ में ऊपरी आसन्न ''P'' में ''A'' की एम्बेडिंग है। इसके अलावा, ''P'' में कुछ सबसेट के एम्बेडिंग के प्रत्येक निचले आसन्न एक क्लोजर ऑपरेटर है। "क्लोजर ऑपरेटर एम्बेडिंग के निचले हिस्से हैं।" हालांकि, ध्यान दें कि प्रत्येक एम्बेडिंग में निचला आसन्न नहीं होता है। | ||
किसी भी आंशिक रूप से ऑर्डर किए गए सेट P को एक श्रेणी के रूप में देखा जा सकता है, जिसमें x से y तक का एकल रूपवाद है और यदि केवल x ≤ y है। आंशिक रूप से ऑर्डर किए गए सेट P पर क्लोजर ऑपरेटर्स श्रेणी P पर मोनाड्स के अलावा और कुछ नहीं हैं। समान रूप से, एक क्लोजर ऑपरेटर को आंशिक रूप से ऑर्डर किए गए सेटों की श्रेणी पर एक एंडोफंक्टर के रूप में देखा जा सकता है जिसमें अतिरिक्त वर्गसम और व्यापक गुण हैं। | किसी भी आंशिक रूप से ऑर्डर किए गए सेट P को एक श्रेणी के रूप में देखा जा सकता है, जिसमें x से y तक का एकल रूपवाद है और यदि केवल x ≤ y है। आंशिक रूप से ऑर्डर किए गए सेट P पर क्लोजर ऑपरेटर्स श्रेणी P पर मोनाड्स के अलावा और कुछ नहीं हैं। समान रूप से, एक क्लोजर ऑपरेटर को आंशिक रूप से ऑर्डर किए गए सेटों की श्रेणी पर एक एंडोफंक्टर के रूप में देखा जा सकता है जिसमें अतिरिक्त वर्गसम और व्यापक गुण हैं। | ||
यदि P एक पूर्ण जाली है, तो P का एक सबसेट A, P पर कुछ क्लोजर ऑपरेटर के लिए बंद | यदि P एक पूर्ण जाली है, तो P का एक सबसेट A, P पर कुछ क्लोजर ऑपरेटर के लिए बंद अवयवों का सेट है यदि और केवल अगर A, P पर एक मूर परिवार है, अर्थात P का सबसे बड़ा अवयव A में है, और न्यूनतम ए के किसी भी गैर-रिक्त उपसमुच्चय का (मिलना) फिर से ए में है। ऐसा कोई भी सेट A अपने आप में P से मिले अनुक्रम के साथ एक पूर्ण जाली है (लेकिन सुप्रीम (जॉइन) ऑपरेशन P से भिन्न हो सकता है)। जब P एक सेट X का पॉवरसेट बूलियन बीजगणित होता है, तो P पर एक मूर परिवार को X पर क्लोजर सिस्टम कहा जाता है। | ||
यदि P एक पूर्ण जालक है, तो P का एक सबसेट A, P पर कुछ क्लोजर ऑपरेटर के लिए बंद | यदि P एक पूर्ण जालक है, तो P का एक सबसेट A, P पर कुछ क्लोजर ऑपरेटर के लिए बंद अवयवों का सेट है यदि और केवल अगर A, P पर एक मूर परिवार है, अर्थात P का सबसे बड़ा अवयव A में है, और न्यूनतम A के किसी भी गैर-रिक्त उपसमुच्चय का (मिलना) फिर से A में है। ऐसा कोई भी सेट A अपने आप में P से विरासत में मिले आदेश के साथ एक पूर्ण जालक है (लेकिन सुप्रीम (जॉइन) ऑपरेशन P से भिन्न हो सकता है)। जब P एक सेट X का पॉवरसेट बूलियन बीजगणित होता है, तो P पर एक मूर परिवार को X पर क्लोजर सिस्टम कहा जाता है। | ||
P पर बंद करने वाले संचालक स्वयं को एक पूर्ण जालक बनाते हैं; क्लोजर ऑपरेटरों पर | P पर बंद करने वाले संचालक स्वयं को एक पूर्ण जालक बनाते हैं; क्लोजर ऑपरेटरों पर अनुक्रम cl1 ≤ cl2 iff cl1(x) ≤ cl2(x) द्वारा परिभाषित किया गया है, जो P में सभी x के लिए है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 127: | Line 127: | ||
== संदर्भ == | == संदर्भ == | ||
* [[Garrett Birkhoff]]. 1967 (1940). ''Lattice Theory, 3rd ed''. American Mathematical Society. | * [[Garrett Birkhoff]]. 1967 (1940). ''Lattice Theory, 3rd ed''. American Mathematical Society. | ||
* Burris, Stanley N., and H.P. Sankappanavar (1981) [http://www.thoralf.uwaterloo.ca/htdocs/ualg.html A Course in Universal Algebra] | * Burris, Stanley N., and H.P. Sankappanavar (1981) [http://www.thoralf.uwaterloo.ca/htdocs/ualg.html A Course in Universal Algebra] Springer-Verlag. {{ISBN|3-540-90578-2}} ''Free online edition''. | ||
* Brown, D.J. and Suszko, R. (1973) "Abstract Logics," [[Dissertationes Mathematicae]] 102- 9-42. | * Brown, D.J. and Suszko, R. (1973) "Abstract Logics," [[Dissertationes Mathematicae]] 102- 9-42. | ||
* Castellini, G. (2003) ''Categorical closure operators''. Boston MA: Birkhaeuser. | * Castellini, G. (2003) ''Categorical closure operators''. Boston MA: Birkhaeuser. | ||
Line 143: | Line 143: | ||
*[[Stanford Encyclopedia of Philosophy]]: "[https://plato.stanford.edu/entries/logic-algebraic-propositional/ Algebraic Propositional Logic]"—by Ramon Jansana. | *[[Stanford Encyclopedia of Philosophy]]: "[https://plato.stanford.edu/entries/logic-algebraic-propositional/ Algebraic Propositional Logic]"—by Ramon Jansana. | ||
{{DEFAULTSORT:Closure Operator}} | {{DEFAULTSORT:Closure Operator}} | ||
[[pl:Operator konsekwencji]] | [[pl:Operator konsekwencji]] | ||
[[Category:CS1 English-language sources (en)|Closure Operator]] | |||
[[Category:Created On 16/02/2023|Closure Operator]] | |||
[[Category: | [[Category:Machine Translated Page|Closure Operator]] | ||
[[Category:Created On 16/02/2023]] | [[Category:Pages with script errors|Closure Operator]] | ||
[[Category:Templates Vigyan Ready|Closure Operator]] | |||
[[Category:आदेश सिद्धांत|Closure Operator]] | |||
[[Category:क्लोजर ऑपरेटर|*]] | |||
[[Category:सार्वभौमिक बीजगणित|Closure Operator]] |
Latest revision as of 17:01, 4 September 2023
गणित में, एक सेट (समुच्चय) S पर एक क्लोजर ऑपरेटर फ़ंक्शन (फलन) के पावर सेट से स्वयं के लिए जो सभी सेट के लिए निम्नलिखित शर्तों को पूरा करता है।
(cl विस्तृत है), (cl में वृद्धि हो रही है), (cl वर्गसम है).
क्लोजर ऑपरेटर्स को उनके बंद सेटों द्वारा निर्धारित किया जाता है, अर्थात, फॉर्म cl(X) के सेट के बाद से सेट X का क्लोजर cl(X) X युक्त सबसे छोटा बंद सेट है। "बंद सेट" के ऐसे परिवारों को कभी-कभी क्लोजर कहा जाता है। सिस्टम या "मूर परिवार" [1] उस पर एक क्लोजर ऑपरेटर के साथ एक सेट को कभी-कभी क्लोजर स्पेस कहा जाता है। क्लोजर ऑपरेटरों को "हल ऑपरेटर्स" भी कहा जाता है, जो टोपोलॉजी में अध्ययन किए गए "क्लोजर ऑपरेटरों" के साथ मिथक को रोकता है।
इतिहास
ई.एच. मूर ने अपने 1910 के सामान्य विश्लेषण के एक रूप के परिचय में क्लोजर ऑपरेटरों का अध्ययन किया, जबकि एक उपसमुच्चय को बंद करने की अवधारणा टोपोलॉजिकल स्पेस के संबंध में फ्रिग्स रिज के काम में उत्पन्न हुई थी।[2] हालांकि उस समय इसे औपचारिक रूप नहीं दिया गया था, लेकिन बंद करने का विचार 19वीं सदी के अंत में अर्न्स्ट श्रोडर, रिचर्ड डेडेकिंड और जॉर्ज कैंटर के उल्लेखनीय योगदान के साथ उत्पन्न हुआ था।[3]
उदाहरण
टोपोलॉजी से सामान्य सेट क्लोजर एक क्लोजर ऑपरेटर है। अन्य उदाहरणों में एक सदिश स्थान के एक उपसमुच्चय का रेखीय फैलाव, एक सदिश स्थान के एक उपसमुच्चय का उत्तल हल या एफ़ाइन हल या एक फलन का निम्न अर्द्धसतत हल , जहां उदा. एक आदर्श स्थान, परिभाषित रूप से जहां फ़ंक्शन का एपिग्राफ है।
सापेक्ष आंतरिक क्लोजर ऑपरेटर नहीं है: यद्यपि यह वर्गसम है, यह नहीं बढ़ रहा है और यदि , में एक घन है और इसका एक फलक है, तो लेकिन और इसलिए यह नहीं बढ़ रहा है।[4]
टोपोलॉजी में, क्लोजर ऑपरेटर टोपोलॉजिकल क्लोजर ऑपरेटर होते हैं, जिन्हें संतुष्ट करना चाहिए।
सभी के लिए (ध्यान दें कि के लिए इससे प्राप्त होता है)।
बीजगणित और तर्कशास्त्र में, कई क्लोजर ऑपरेटर अंतिम क्लोजर ऑपरेटर हैं, अर्थात वे संतुष्ट हैं।
आंशिक रूप से आदेशित सेट के सिद्धांत में, जो सैद्धांतिक कंप्यूटर विज्ञान में महत्वपूर्ण हैं, बंद करने वाले ऑपरेटरों की एक अधिक सामान्य परिभाषा है जो प्रतिस्थापित करती है साथ . (देखें § आंशिक रूप से आदेशित सेटों पर क्लोजर ऑपरेटर.)।
टोपोलॉजी में क्लोजर ऑपरेटर
टोपोलॉजिकल स्पेस के एक सबसेट X के टोपोलॉजिकल क्लोजर में स्पेस के सभी बिंदु y होते हैं, जैसे कि y के हर पड़ोस (गणित) में X का एक बिंदु होता है। फंक्शन जो हर सबसेट X को बंद करता है, वह एक टोपोलॉजिकल क्लोजर ऑपरेटर है। इसके विपरीत, एक सेट पर प्रत्येक टोपोलॉजिकल क्लोजर ऑपरेटर एक टोपोलॉजिकल स्पेस की वृद्धि करता है, जिसके बंद सेट क्लोजर ऑपरेटर के संबंध में बिल्कुल बंद सेट होते हैं।
बीजगणित में क्लोजर ऑपरेटर
फ़िनिटरी क्लोजर ऑपरेटर सार्वभौमिक बीजगणित में अपेक्षाकृत प्रमुख भूमिका निभाते हैं, और इस संदर्भ में, उन्हें पारंपरिक रूप से बीजगणितीय क्लोजर ऑपरेटर कहा जाता है। एक बीजगणित का प्रत्येक उपसमुच्चय एक सबलजेब्रा उत्पन्न करता है: सबसे छोटा सबलजेब्रा जिसमें सेट होता है। यह एक अंतिम क्लोजर ऑपरेटर की वृद्धि करता है।
संभवतया इसका सबसे प्रसिद्ध उदाहरण वह कार्य है जो किसी दिए गए सदिश स्थान के प्रत्येक उपसमुच्चय को उसके रैखिक विस्तार से जोड़ता है। इसी प्रकार, वह फलन जो किसी दिए गए समूह के प्रत्येक उपसमुच्चय को उसके द्वारा उत्पन्न उपसमूह से जोड़ता है, और इसी प्रकार खेतों और अन्य सभी प्रकार की बीजगणितीय संरचनाओं के लिए है।
एक सदिश स्थान में रैखिक अवधि और एक क्षेत्र में समान बीजगणितीय समापन दोनों विनिमय संपत्ति को संतुष्ट करते हैं: यदि x, A और {y} के मिलन के समापन में है, लेकिन A के संवरण में नहीं है, तो y संवरण में है A और {x} के मिलन का। इस संपत्ति के साथ एक फ़िनिटरी क्लोजर ऑपरेटर को मैट्रॉइड कहा जाता है। एक सदिश स्थान का आयाम, या एक क्षेत्र की उत्कृष्टता की डिग्री (इसके प्रमुख क्षेत्र पर) संबंधित मैट्रॉइड का श्रेणी है।
फ़ंक्शन जो किसी दिए गए क्षेत्र (गणित) के प्रत्येक उपसमुच्चय को उसके बीजगणितीय बंद करने के लिए मैप करता है, वह भी एक अंतिम समापन ऑपरेटर है, और सामान्य तौर पर यह पहले बताए गए ऑपरेटर से अलग है। फ़िनिटरी क्लोजर ऑपरेटर्स जो इन दोनों ऑपरेटरों को सामान्यीकृत करते हैं, उन्हें मॉडल सिद्धांत में dcl (निश्चित क्लोजर के लिए) और acl (बीजगणितीय क्लोजर के लिए) के रूप में अध्ययन किया जाता है।
एन-डायमेंशनल यूक्लिडियन अंतरिक्ष में उत्तल हल एक अंतिम क्लोजर ऑपरेटर का एक और उदाहरण है। यह एक्सचेंज विरोधी संपत्ति को संतुष्ट करता है: यदि x {y} और A के संघ के समापन में है, लेकिन {y} के संघ में नहीं है और A के समापन में है, तो y {के संघ के समापन में नहीं है। x} और A इस गुण के साथ फ़िनिटरी क्लोजर ऑपरेटर एंटीमैट्रोइड्स के वृद्धि करते हैं।
बीजगणित में उपयोग किए जाने वाले क्लोजर ऑपरेटर के एक अन्य उदाहरण के रूप में, यदि कुछ बीजगणित में A है और X A के जोड़े का एक सेट है, तो X को X से युक्त सबसे छोटा सर्वांगसम संबंध देने वाला ऑपरेटर A x A पर एक परिमित क्लोजर ऑपरेटर है।[5]
लॉजिक में क्लोजर ऑपरेटर्स
मान लीजिए कि आपके पास कुछ गणितीय तर्क हैं जिनमें कुछ नियम हैं जो आपको दिए गए सूत्रों से नए सूत्र प्राप्त करने की अनुमति देते हैं। सभी संभावित सूत्रों के सेट F पर विचार करें, और P को F का पावर सेट होने दें, जिसे ⊆ द्वारा आदेशित किया गया है। सूत्रों के एक सेट X के लिए, cl(X) को X से प्राप्त किए जा सकने वाले सभी सूत्रों का सेट होने दें। फिर cl P पर एक क्लोजर ऑपरेटर है। अधिक सटीक रूप से, हम निम्नानुसार सीएल प्राप्त कर सकते हैं। एक ऑपरेटर J को निरंतर कॉल करें, जैसे कि प्रत्येक निर्देशित सेट वर्ग T के लिए,
- J(lim T)= lim J(T)
यह निरंतरता की स्थिति जे के लिए एक निश्चित बिंदु प्रमेय के आधार पर है। मोनोटोन तर्क के एक-चरण ऑपरेटर जे पर विचार करें। यह सूत्र के सेट J(X) के सूत्रों के किसी भी सेट X को जोड़ने वाला संकारक है जो या तो तार्किक स्वयंसिद्ध हैं या X में सूत्रों से एक अनुमान नियम द्वारा प्राप्त किए गए हैं या X में हैं। तब ऐसा संकारक निरंतर होता है और हम परिभाषित कर सकते हैं cl(X), X के बराबर या अधिक जे के लिए कम से कम निश्चित बिंदु के रूप में। इस तरह के दृष्टिकोण के अनुसार, टार्स्की, ब्राउन, सुस्ज़को और अन्य लेखकों ने क्लोजर ऑपरेटर सिद्धांत के आधार पर तर्क के लिए एक सामान्य दृष्टिकोण प्रस्तावित किया। इसके अलावा, प्रोग्रामिंग लॉजिक (लॉयड 1987 देखें) और फजी लॉजिक (गेरला 2000 देखें) में ऐसा विचार प्रस्तावित है।
परिणाम संचालक
1930 के आसपास, अल्फ्रेड टार्स्की ने तार्किक घटाव का एक सार सिद्धांत विकसित किया जो तार्किक संगणना के कुछ गुणों को प्रतिरूपित करता है। गणितीय रूप से, उन्होंने जो वर्णन किया वह एक सेट (वाक्यों का सेट) पर केवल एक परिमित क्लोजर ऑपरेटर है। भावात्मक बीजगणितीय तर्क में, फ़िनिटरी क्लोजर ऑपरेटरों का अभी भी नाम परिणाम ऑपरेटर के तहत अध्ययन किया जाता है, जिसे टार्स्की द्वारा गढ़ा गया था। समुच्चय S वाक्यों के समुच्चय का प्रतिनिधित्व करता है, S सिद्धांत का उपसमुच्चय T, और सिद्धांत से अनुसरण करने वाले सभी वाक्यों का समुच्चय cl(T) है। आजकल यह शब्द बंद करने वाले ऑपरेटरों को संदर्भित कर सकता है, जिनकी आवश्यकता एकरूप नहीं है; फ़िनिटरी क्लोजर ऑपरेटरों को तब कभी-कभी 'परिमित परिणाम ऑपरेटर' कहा जाता है।
बंद सेट
S पर क्लोजर ऑपरेटर के संबंध में बंद सेट पावर सेट 'P'(S) का एक सबसेट C बनाते हैं। C में सेट का कोई भी चौराहा फिर से C में है। दूसरे शब्दों में, C 'P' (S) का पूर्ण मिलन-उपसमूह है। इसके विपरीत, यदि C ⊆ 'P'(S) मनमाना प्रतिच्छेदन के तहत बंद है, तो फ़ंक्शन जो S के प्रत्येक सबसेट X को सबसे छोटे सेट Y ∈ C से जोड़ता है, जैसे कि X ⊆ Y एक क्लोजर ऑपरेटर है।
किसी दिए गए क्लोजर ऑपरेटर के सभी बंद सेटों को उत्पन्न करने के लिए एक सरल और स्थिर एल्गोरिथम (कलन विधि) है।[6]
एक सेट पर एक क्लोजर ऑपरेटर टोपोलॉजिकल है अगर और केवल अगर बंद सेट का सेट परिमित यूनियनों के तहत बंद हो जाता है, अर्थात, सी 'पी' (एस) का एक पूरा-पूरा सबलेटिस है। गैर-टोपोलॉजिकल क्लोजर ऑपरेटरों के लिए भी, सी को जाली की संरचना के रूप में देखा जा सकता है। (दो समुच्चयों X,Y ⊆ 'P'(S) का योग cl(X Y).) लेकिन तब C जाली 'P'(S) का एक उपवर्ग नहीं है।
एक सेट पर एक फ़िनिटरी क्लोजर ऑपरेटर को देखते हुए, परिमित सेट के क्लोजर बंद सेट के सेट सी के बिल्कुल कॉम्पैक्ट अवयव हैं। इससे पता चलता है कि C एक बीजगणितीय पॉसेट है।
चूँकि C भी एक जाली है, इसे प्रायः इस संदर्भ में बीजगणितीय जाली के रूप में जाना जाता है। इसके विपरीत, यदि C एक बीजगणितीय पॉसेट है, तो क्लोजर ऑपरेटर परिमित है।
छद्म बंद सेट
एक परिमित सेट S पर प्रत्येक क्लोजर ऑपरेटर अपने छद्म-बंद सेटों की छवियों द्वारा विशिष्ट रूप से निर्धारित किया जाता है।[7]
इन्हें पुनरावर्ती रूप से परिभाषित किया गया है: एक सेट छद्म-बंद है यदि यह बंद नहीं है और इसके प्रत्येक छद्म-बंद उचित उपसमुच्चय को बंद करना सम्मिलित है। औपचारिक रूप से: P ⊆ S स्यूडो-क्लोज्ड है अगर और केवल अगर
- P ≠ cl(P) और
- अगर Q ⊂ P स्यूडो-क्लोज्ड है, तो cl(Q) ⊆ P।
आंशिक रूप से आदेशित सेटों पर क्लोजर ऑपरेटर
एक आंशिक रूप से ऑर्डर किया गया सेट (पॉसेट) एक आंशिक ऑर्डर ≤ के साथ एक सेट है, अर्थात एक द्विआधारी संबंध जो रिफ्लेक्सिव है (a ≤ aसकर्मक (a ≤ b ≤ c तात्पर्य a ≤ c) और एंटीसिमेट्रिक संबंध (a ≤ b ≤ a मतलब ए = बी)। प्रत्येक घात समुच्चय 'P'(S) समावेशन ⊆ के साथ आंशिक रूप से क्रमित समुच्चय है।
एक फ़ंक्शन cl: P → P एक आंशिक क्रम P से खुद को क्लोजर ऑपरेटर कहा जाता है यदि यह P में सभी अवयवों x, y के लिए निम्नलिखित स्वयंसिद्धों को संतुष्ट करता है।
x ≤ cl(x) cl विस्तृत है x ≤ y implies cl(x) ≤ cl(y) (cl में वृद्धि हो रही है) cl(cl(x)) = cl(x) (cl वर्गसम है)
अधिक संक्षिप्त विकल्प उपलब्ध हैं: उपरोक्त परिभाषा एकल स्वयंसिद्ध के समतुल्य है
- x ≤ cl(y) अगर और केवल अगर cl(x) ≤ cl(y)
P में सभी x, y के लिए।
पॉसेट्स के बीच कार्यों पर बिंदुवार क्रम का उपयोग करते हुए, कोई वैकल्पिक रूप से व्यापकता गुण को idP ≤ cl के रूप में लिख सकता है, जहां id तत्समक फलन है। एक स्वयं मानचित्र k जो बढ़ रहा है और वर्गसम है, लेकिन व्यापकता गुण के दोहरे को संतुष्ट करता है, अर्थात k ≤ idP को कर्नेल ऑपरेटर कहा जाता है, [8] इंटीरियर ऑपरेटर,[9] या दोहरी क्लोजर है।[10] उदाहरण के लिए, यदि A सेट B का उपसमुच्चय है, तो μA(X) = A ∪ X द्वारा दिए गए B के पावरसेट पर सेल्फ-मैप एक क्लोजर ऑपरेटर है, जबकि λA(X) = A ∩ X एक कर्नेल है ऑपरेटर।
वास्तविक संख्याओं से वास्तविक संख्याओं तक सीलिंग फ़ंक्शन, जो प्रत्येक वास्तविक x को x से छोटा नहीं सबसे छोटा पूर्णांक प्रदान करता है, क्लोजर ऑपरेटर का एक और उदाहरण है।
फलन cl का नियत बिन्दु, अर्थात P का एक अवयव c जो cl(c) = c को संतुष्ट करता है, एक बंद अवयव कहलाता है। आंशिक रूप से आदेशित सेट पर एक क्लोजर ऑपरेटर उसके बंद अवयवों द्वारा निर्धारित किया जाता है। यदि c एक बंद अवयव है, तो x ≤ c और cl(x) ≤ c समतुल्य स्थितियाँ हैं।
प्रत्येक गैलोज़ कनेक्शन (या अवशिष्ट मानचित्रण) एक क्लोजर ऑपरेटर को जन्म देता है (जैसा कि उस लेख में बताया गया है)। वास्तव में, प्रत्येक क्लोजर ऑपरेटर एक उपयुक्त गैल्वा कनेक्शन से इस तरह उत्पन्न होता है।[11] क्लोजर ऑपरेटर द्वारा गैलोज़ कनेक्शन विशिष्ट रूप से निर्धारित नहीं किया जाता है। क्लोजर ऑपरेटर सीएल को जन्म देने वाला एक गैलोज कनेक्शन निम्नानुसार वर्णित किया जा सकता है: यदि A सीएल के संबंध में बंद अवयवों का सेट है, तो cl: P → A, P और A के बीच गैलोइस कनेक्शन का निचला आसन्न है, साथ में ऊपरी आसन्न P में A की एम्बेडिंग है। इसके अलावा, P में कुछ सबसेट के एम्बेडिंग के प्रत्येक निचले आसन्न एक क्लोजर ऑपरेटर है। "क्लोजर ऑपरेटर एम्बेडिंग के निचले हिस्से हैं।" हालांकि, ध्यान दें कि प्रत्येक एम्बेडिंग में निचला आसन्न नहीं होता है।
किसी भी आंशिक रूप से ऑर्डर किए गए सेट P को एक श्रेणी के रूप में देखा जा सकता है, जिसमें x से y तक का एकल रूपवाद है और यदि केवल x ≤ y है। आंशिक रूप से ऑर्डर किए गए सेट P पर क्लोजर ऑपरेटर्स श्रेणी P पर मोनाड्स के अलावा और कुछ नहीं हैं। समान रूप से, एक क्लोजर ऑपरेटर को आंशिक रूप से ऑर्डर किए गए सेटों की श्रेणी पर एक एंडोफंक्टर के रूप में देखा जा सकता है जिसमें अतिरिक्त वर्गसम और व्यापक गुण हैं।
यदि P एक पूर्ण जाली है, तो P का एक सबसेट A, P पर कुछ क्लोजर ऑपरेटर के लिए बंद अवयवों का सेट है यदि और केवल अगर A, P पर एक मूर परिवार है, अर्थात P का सबसे बड़ा अवयव A में है, और न्यूनतम ए के किसी भी गैर-रिक्त उपसमुच्चय का (मिलना) फिर से ए में है। ऐसा कोई भी सेट A अपने आप में P से मिले अनुक्रम के साथ एक पूर्ण जाली है (लेकिन सुप्रीम (जॉइन) ऑपरेशन P से भिन्न हो सकता है)। जब P एक सेट X का पॉवरसेट बूलियन बीजगणित होता है, तो P पर एक मूर परिवार को X पर क्लोजर सिस्टम कहा जाता है।
यदि P एक पूर्ण जालक है, तो P का एक सबसेट A, P पर कुछ क्लोजर ऑपरेटर के लिए बंद अवयवों का सेट है यदि और केवल अगर A, P पर एक मूर परिवार है, अर्थात P का सबसे बड़ा अवयव A में है, और न्यूनतम A के किसी भी गैर-रिक्त उपसमुच्चय का (मिलना) फिर से A में है। ऐसा कोई भी सेट A अपने आप में P से विरासत में मिले आदेश के साथ एक पूर्ण जालक है (लेकिन सुप्रीम (जॉइन) ऑपरेशन P से भिन्न हो सकता है)। जब P एक सेट X का पॉवरसेट बूलियन बीजगणित होता है, तो P पर एक मूर परिवार को X पर क्लोजर सिस्टम कहा जाता है।
P पर बंद करने वाले संचालक स्वयं को एक पूर्ण जालक बनाते हैं; क्लोजर ऑपरेटरों पर अनुक्रम cl1 ≤ cl2 iff cl1(x) ≤ cl2(x) द्वारा परिभाषित किया गया है, जो P में सभी x के लिए है।
यह भी देखें
- चेक क्लोजर ऑपरेटर
- क्लोजर (टोपोलॉजी)
- गैलोइस कनेक्शन
- आंतरिक बीजगणित
- इंटीरियर (टोपोलॉजी) – Largest open subset of some given set
- कुराटोव्स्की क्लोजर एक्सिओम्स
- प्रीक्लोजर ऑपरेटर
टिप्पणियाँ
- ↑ Diatta, Jean (2009-11-14). "On critical sets of a finite Moore family". Advances in Data Analysis and Classification (in English). 3 (3): 291. doi:10.1007/s11634-009-0053-8. ISSN 1862-5355.
- ↑ Blyth, p. 11.
- ↑ Marcel Erné, Closure, in Frédéric Mynard, Elliott Pearl (Editors), Beyond Topology, Contemporary mathematics vol. 486, American Mathematical Society, 2009.
- ↑ Rockafellar, Ralph Tyrell (1970). Convex Analysis. Princeton University Press. p. 44. ISBN 9781400873173.
- ↑ Clifford Bergman, Universal Algebra, 2012, Section 2.4.
- ↑ Ganter, Algorithm 1
- ↑ Ganter, Section 3.2
- ↑ Giertz, p. 26
- ↑ Erné, p. 2, uses closure (resp. interior) operation
- ↑ Blyth, p. 10
- ↑ Blyth, p. 10
संदर्भ
- Garrett Birkhoff. 1967 (1940). Lattice Theory, 3rd ed. American Mathematical Society.
- Burris, Stanley N., and H.P. Sankappanavar (1981) A Course in Universal Algebra Springer-Verlag. ISBN 3-540-90578-2 Free online edition.
- Brown, D.J. and Suszko, R. (1973) "Abstract Logics," Dissertationes Mathematicae 102- 9-42.
- Castellini, G. (2003) Categorical closure operators. Boston MA: Birkhaeuser.
- Edelman, Paul H. (1980) Meet-distributive lattices and the anti-exchange closure, Algebra Universalis 10: 290-299.
- Ganter, Bernhard and Obiedkov, Sergei (2016) Conceptual Exploration. Springer, ISBN 978-3-662-49290-1.
- Gerla, G. (2000) Fuzzy Logic: Mathematical Tools for Approximate Reasoning. Kluwer Academic Publishers.
- Lloyd, J.W. (1987) Foundations of Logic Programming. Springer-Verlag.
- Tarski, Alfred (1983) "Fundamental concepts of the methodology of deductive sciences" in Logic, Semantics, Metamathematics. Hackett (1956 ed., Oxford University Press).
- Alfred Tarski (1956) Logic, semantics and metamathematics. Oxford University Press.
- Ward, Morgan (1942) "The closure operators of a lattice," Annals of Mathematics 43: 191-96.
- G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott: Continuous Lattices and Domains, Cambridge University Press, 2003
- T.S. Blyth, Lattices and Ordered Algebraic Structures, Springer, 2005, ISBN 1-85233-905-5.
- M. Erné, J. Koslowski, A. Melton, G. E. Strecker, A primer on Galois connections, in: Proceedings of the 1991 Summer Conference on General Topology and Applications in Honor of Mary Ellen Rudin and Her Work, Annals of the New York Academy of Sciences, Vol. 704, 1993, pp. 103–125. Available online in various file formats: PS.GZ PS
बाहरी संबंध
- Stanford Encyclopedia of Philosophy: "Algebraic Propositional Logic"—by Ramon Jansana.