घातीय बहुपद: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 32: | Line 32: | ||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
{{Reflist}} | {{Reflist}} | ||
[Category:Polynomia | |||
[[Category:Created On 03/03/2023]] | [[Category:Created On 03/03/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with maths render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:बहुपदों]] |
Latest revision as of 07:38, 19 March 2023
यह लेख चरों और चरघातांकी फलनों में बहुपदों के बारे में है। स्टर्लिंग संख्या वाले बहुपदों के लिए, टचार्ड बहुपद देखें।
गणित में, घातांकी बहुपद क्षेत्र (गणित), वलय (गणित) या एबेलियन समूह पर फलन (गणित) होते हैं जो चर और घातांकी फलन में बहुपद का रूप ले लेते हैं।
परिभाषा
क्षेत्रों में
घातीय बहुपद में सामान्य रूप से चर x और किसी प्रकार का घातीय फलन E(x) दोनों होते हैं। सम्मिश्र संख्याओं में पहले से ही प्रामाणिक चर घातांकी फलन सम्मिलित है, वह फलन जो x से ex को प्रतिचित्रित करता है। इस संस्थापन में घातीय बहुपद शब्द का प्रयोग प्रायः P(x, ex) के रूप मे बहुपदों के अर्थ के लिए किया जाता है, जहां P ∈ C[x, y] दो चरों में एक बहुपद है।[1][2] यहाँ C के बारे में विशेष रूप से कुछ उपयुक्त नहीं है घातांकी बहुपद किसी भी घातांकी क्षेत्र या चर घातांकी वलय पर इस तरह के बहुपद का उल्लेख कर सकते हैं, जिसके घातांकी फलन उपरोक्त ex का स्थान ले रहे हैं।[3][4] इसी प्रकार, एक चर होने का कोई कारण नहीं है, और n चरों में चरघातांकी बहुपद P(x1, ..., xn, ex1, ..., exn) के रूप का होगा, जहाँ P 2n चरों में एक बहुपद है।
क्षेत्र K पर औपचारिक चरघातांकी बहुपदों के लिए हम निम्नानुसार आगे बढ़ते हैं। W को K का अंतिम रूप से उत्पन्न Z उपप्रतिरूपक मान लीजिए और व्यंजक के परिमित योगों पर विचार करें
जहाँ fi K[X] में बहुपद exp(wi X) हैं और exp(u + v) = exp(u) exp(v) के अधीन W में wi द्वारा अनुक्रमित औपचारिक प्रतीक हैं।
एबेलियन समूहों में
अधिक सामान्य संरचना जहां 'घातीय बहुपद' शब्द पाया जा सकता है, वह एबेलियन समूहों पर घातीय फलनों का है। इसी प्रकार घातीय क्षेत्रों पर घातीय फलनों को कैसे परिभाषित किया जाता है, एक सांंस्थितिक एबेलियन समूह G दिया जाता है, G से सम्मिश्र संख्याओं के योजक समूह के लिए समरूपता को योजक फलन कहा जाता है, और गैर-शून्य सम्मिश्र संख्याओं के गुणात्मक समूह के लिए एक समरूपता को एक घातीय फलन या केवल एक घातांक कहा जाता है। योज्य फलनों और घातीयों के एक गुणनफल को घातीय एकपदी कहा जाता है, और इनका एक रैखिक संयोजन G पर एक घातीय बहुपद है।[5][6]
गुण
रिट के प्रमेय में कहा गया है कि अद्वितीय गुणनखंड और कारक प्रमेय के अनुरूप घातीय बहुपदों के वलय के लिए मान्य हैं।[4]
अनुप्रयोग
R और C पर घातीय बहुपद प्रायः पारलौकिक संख्या सिद्धांत में दिखाई देते हैं, जहां वे घातीय फलन से जुड़े प्रमाणों में सहायक फलनों के रूप में प्रकट होते हैं। वे मॉडल सिद्धांत और विश्लेषणात्मक ज्यामिति के बीच शृंखला के रूप में भी कार्य करते हैं। यदि कोई Rn में बिंदुओं के समुच्चय के रूप में एक घातीय विविधता को परिभाषित करता है जहां घातीय बहुपदों का कुछ परिमित संग्रह समाप्त हो जाता है, तो अंतर ज्यामिति में खोवांसकी प्रमेय और मॉडल सिद्धांत में विल्की प्रमेय जैसे परिणाम दिखाते हैं कि ये वर्ग इस अर्थ में अच्छी तरह से व्यवहार करते हैं कि ऐसे वर्गों का संग्रह विभिन्न समुच्चय-सैद्धांतिक संचालन के अंतर्गत स्थिर है। समुच्चय-सैद्धांतिक संचालन जब तक कोई उच्च-आयामी घातीय वर्गों के अनुमानों के अंतर्गत छवि को सम्मिलित करने की स्वीकृति देता है। वास्तव मे, उपरोक्त दो प्रमेयों का अर्थ है कि सभी घातीय वर्गों का समुच्चय 'R' पर o-न्यूनतम संरचना बनाता है।
घातीय बहुपद रैखिक विलंब अंतर समीकरणों से जुड़े विशेषता समीकरण में दिखाई देते हैं।
टिप्पणियाँ
- ↑ C. J. Moreno, The zeros of exponential polynomials, Compositio Mathematica 26 (1973), pp.69–78.
- ↑ M. Waldschmidt, Diophantine approximation on linear algebraic groups, Springer, 2000.
- ↑ Martin Bays, Jonathan Kirby, A.J. Wilkie, A Schanuel property for exponentially transcendental powers, (2008), arXiv:0810.4457v1
- ↑ 4.0 4.1 Everest, Graham; van der Poorten, Alf; Shparlinski, Igor; Ward, Thomas (2003). पुनरावृत्ति क्रम. Mathematical Surveys and Monographs. Vol. 104. Providence, RI: American Mathematical Society. p. 140. ISBN 0-8218-3387-1. Zbl 1033.11006.
- ↑ László Székelyhidi, On the extension of exponential polynomials, Mathematica Bohemica 125 (2000), pp.365–370.
- ↑ P. G. Laird, On characterizations of exponential polynomials, Pacific Journal of Mathematics 80 (1979), pp.503–507.
[Category:Polynomia