कैस्केड एल्गोरिदम: Difference between revisions
(Created page with "छोटा लहर सिद्धांत के गणित विषय में, कैस्केड एल्गोरिथम मूल वेवले...") |
No edit summary |
||
(9 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
[[ छोटा लहर ]] सिद्धांत के | [[ छोटा लहर |तरंगिका]] सिद्धांत के गणितीय विषय में, कैस्केड एल्गोरिथ्म एक पुनरावृत्त एल्गोरिथ्म का उपयोग करके असतत तरंगिका परिवर्तन के मूलभूत स्केलिंग और तरंगिका कार्यों के फलन मानों की गणना के लिए एक [[संख्यात्मक विधि]] है। यह मानक बिंदु के अपरिष्कृत अनुक्रम पर मानों से प्रारंभ होता है और मानक बिंदु के क्रमिक रूप से अधिक सघन रूप से फैले हुए अनुक्रमों के लिए मान उत्पन्न करता है। क्योंकि यह पिछले एप्लिकेशन के आउटपुट पर ही ऑपरेशन को बार-बार प्रायुक्त करता है, इसे 'कैस्केड एल्गोरिथम' के रूप में जाना जाता है। | ||
== लगातार सन्निकटन == | == लगातार सन्निकटन == | ||
पुनरावृत्त एल्गोरिथम {h} और {g} फ़िल्टर गुणांकों से ψ(t) या φ(t) के क्रमिक सन्निकटन उत्पन्न करता है। यदि एल्गोरिथ्म | पुनरावृत्त एल्गोरिथम {h} और {g} फ़िल्टर गुणांकों से ψ(t) या φ(t) के क्रमिक सन्निकटन उत्पन्न करता है। यदि एल्गोरिथ्म निश्चित बिंदु पर अभिसरण करता है, तो वह निश्चित बिंदु मूल स्केलिंग फलन या तरंगिका है। | ||
पुनरावृत्तियों द्वारा परिभाषित किया गया है | पुनरावृत्तियों द्वारा परिभाषित किया गया है | ||
: <math>\varphi^{(k+1)}(t)=\sum_{n=0}^{N-1} h[n] \sqrt 2 \varphi^{(k)} (2t-n)</math> | : <math>\varphi^{(k+1)}(t)=\sum_{n=0}^{N-1} h[n] \sqrt 2 \varphi^{(k)} (2t-n)</math> | ||
k वें पुनरावृत्ति के लिए, जहाँ | k वें पुनरावृत्ति के लिए, जहाँ प्रारंभिक φ<sup>(0)</sup>(t) दिया जाना चाहिए। | ||
मूलभूत स्केलिंग फलन का आवृत्ति प्रक्षेत्र अनुमान इसके द्वारा दिया जाता है | |||
: <math>\Phi^{(k+1)}(\omega)= \frac {1} {\sqrt 2} H\left( \frac {\omega} {2}\right) \Phi^{(k)}\left(\frac {\omega} {2}\right)</math> | : <math>\Phi^{(k+1)}(\omega)= \frac {1} {\sqrt 2} H\left( \frac {\omega} {2}\right) \Phi^{(k)}\left(\frac {\omega} {2}\right)</math> | ||
Line 16: | Line 16: | ||
: <math>\Phi^{(\infty)}(\omega)= \prod_{k=1}^{\infty} \frac {1} {\sqrt 2} H\left( \frac {\omega} {2^k}\right) \Phi^{(\infty)}(0).</math> | : <math>\Phi^{(\infty)}(\omega)= \prod_{k=1}^{\infty} \frac {1} {\sqrt 2} H\left( \frac {\omega} {2^k}\right) \Phi^{(\infty)}(0).</math> | ||
यदि ऐसी सीमा | यदि ऐसी सीमा उपस्थित है, स्केलिंग फलन का विस्तृत श्रेणी है | ||
: <math>\Phi(\omega)= \prod_{k=1}^\infty \frac {1} {\sqrt 2} H\left( \frac {\omega} {2^k}\right) \Phi^{(\infty)}(0)</math> | : <math>\Phi(\omega)= \prod_{k=1}^\infty \frac {1} {\sqrt 2} H\left( \frac {\omega} {2^k}\right) \Phi^{(\infty)}(0)</math> | ||
सीमा φ | सीमा φ<sup>(0)</sup>(''t'') के प्रारंभिक आकार पर निर्भर नहीं करती है। यह एल्गोरिद्म विश्वसनीय रूप से φ(t) में परिवर्तित होता है, चाहे यह असंतत हो। | ||
इस स्केलिंग | इस स्केलिंग फलन से तरंगिका उत्पन्न की जा सकती है | ||
: <math>\psi(t)= \sum_{n=- \infty}^{\infty} g[n]{\sqrt 2} \varphi^{(k)} (2t-n).</math> | : <math>\psi(t)= \sum_{n=- \infty}^{\infty} g[n]{\sqrt 2} \varphi^{(k)} (2t-n).</math> | ||
आवृत्ति प्रक्षेत्र में क्रमिक सन्निकटन भी प्राप्त किया जा सकता है। | |||
== संदर्भ == | == संदर्भ == | ||
* [[C. Sidney Burrus|C.S. Burrus]], R.A. Gopinath, H. Guo, ''Introduction to Wavelets and Wavelet Transforms: A Primer'', Prentice-Hall, 1988, | * [[C. Sidney Burrus|C.S. Burrus]], R.A. Gopinath, H. Guo, ''Introduction to Wavelets and Wavelet Transforms: A Primer'', Prentice-Hall, 1988, {{ISBN|0-13-489600-9}}. | ||
* http://cnx.org/content/m10486/latest/ | * http://cnx.org/content/m10486/latest/ | ||
* https://web.archive.org/web/20070615055323/http://cm.bell-labs.com/cm/ms/who/wim/cascade/index.html | * https://web.archive.org/web/20070615055323/http://cm.bell-labs.com/cm/ms/who/wim/cascade/index.html | ||
[[Category:Created On 03/03/2023]] | [[Category:Created On 03/03/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:तरंगिकाएँ]] |
Latest revision as of 10:03, 20 March 2023
तरंगिका सिद्धांत के गणितीय विषय में, कैस्केड एल्गोरिथ्म एक पुनरावृत्त एल्गोरिथ्म का उपयोग करके असतत तरंगिका परिवर्तन के मूलभूत स्केलिंग और तरंगिका कार्यों के फलन मानों की गणना के लिए एक संख्यात्मक विधि है। यह मानक बिंदु के अपरिष्कृत अनुक्रम पर मानों से प्रारंभ होता है और मानक बिंदु के क्रमिक रूप से अधिक सघन रूप से फैले हुए अनुक्रमों के लिए मान उत्पन्न करता है। क्योंकि यह पिछले एप्लिकेशन के आउटपुट पर ही ऑपरेशन को बार-बार प्रायुक्त करता है, इसे 'कैस्केड एल्गोरिथम' के रूप में जाना जाता है।
लगातार सन्निकटन
पुनरावृत्त एल्गोरिथम {h} और {g} फ़िल्टर गुणांकों से ψ(t) या φ(t) के क्रमिक सन्निकटन उत्पन्न करता है। यदि एल्गोरिथ्म निश्चित बिंदु पर अभिसरण करता है, तो वह निश्चित बिंदु मूल स्केलिंग फलन या तरंगिका है।
पुनरावृत्तियों द्वारा परिभाषित किया गया है
k वें पुनरावृत्ति के लिए, जहाँ प्रारंभिक φ(0)(t) दिया जाना चाहिए।
मूलभूत स्केलिंग फलन का आवृत्ति प्रक्षेत्र अनुमान इसके द्वारा दिया जाता है
और सीमा को अनंत उत्पाद के रूप में देखा जा सकता है
यदि ऐसी सीमा उपस्थित है, स्केलिंग फलन का विस्तृत श्रेणी है
सीमा φ(0)(t) के प्रारंभिक आकार पर निर्भर नहीं करती है। यह एल्गोरिद्म विश्वसनीय रूप से φ(t) में परिवर्तित होता है, चाहे यह असंतत हो।
इस स्केलिंग फलन से तरंगिका उत्पन्न की जा सकती है
आवृत्ति प्रक्षेत्र में क्रमिक सन्निकटन भी प्राप्त किया जा सकता है।
संदर्भ
- C.S. Burrus, R.A. Gopinath, H. Guo, Introduction to Wavelets and Wavelet Transforms: A Primer, Prentice-Hall, 1988, ISBN 0-13-489600-9.
- http://cnx.org/content/m10486/latest/
- https://web.archive.org/web/20070615055323/http://cm.bell-labs.com/cm/ms/who/wim/cascade/index.html