बिजली की गुणवत्ता: Difference between revisions
(Created page with "बिजली की गुणवत्ता वह डिग्री है जिस पर बिजली आपूर्ति प्रणाली के वोल...") |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
'''विद्युत की गुणवत्ता''' वह डिग्री है जिस पर विद्युत आपूर्ति प्रणाली के वोल्टेज, आवृत्ति और तरंग स्थापित विनिर्देशों के अनुरूप होते हैं। जो अच्छी विद्युत की गुणवत्ता को स्थिर आपूर्ति वोल्टेज के रूप में परिभाषित किया जा सकता है जो निर्धारित सीमा के भीतर रहता है, रेटेड मूल्य के समीप स्थिर एसी आवृत्ति, और स्मूथ वोल्टेज वक्र तरंग जो [[साइन लहर|साइन तरंग]] जैसा दिखता है)। सामान्यतः विद्युत की गुणवत्ता को ''विद्युत आउटलेट से निकलने वाली चीजों और उसमें प्लग किए गए लोड के बीच अनुकूलता'' के रूप में विचार करना उपयोगी होता है।<ref>{{cite book |last=Von Meier |first=Alexandra |url=https://archive.org/details/electricpowersys00meie |title=Electric power systems: a conceptual introduction |date=2006 |publisher=[[John Wiley & Sons]] |isbn=9780470036402 |page=[https://archive.org/details/electricpowersys00meie/page/n18 1] |url-access=limited}}</ref> इन शब्दों का उपयोग विद्युत शक्ति का वर्णन करने के लिए किया जाता है जो [[विद्युत भार]] को चलाता है और लोड की ठीक से कार्य करने की क्षमता पर निर्भर करता हैं। इस प्रकार उचित शक्ति के बिना, विद्युत उपकरण (या लोड) विफल हो सकता है, समय से पहले विफल हो सकता है या बिल्कुल भी कार्य नहीं कर सकता है। ऐसे कई तरीके हैं जिनमें विद्युत शक्ति विफल होने की गुणवत्ता पर निर्भर हो सकती है, और ऐसी विफल गुणवत्ता वाली शक्ति के और भी कई कारण हैं। | |||
विद्युत शक्ति उद्योग में [[बिजली|विद्युत]] उत्पादन ([[एसी पावर|एसी शक्ति]]), [[ विद्युत शक्ति संचरण |विद्युत शक्ति संचरण]] और अंततः विद्युत शक्ति के अंतिम उपयोगकर्ता के परिसर में स्थित विद्युत मीटर के लिए विद्युत शक्ति वितरण सम्मिलित है। विद्युत तब अंतिम उपयोगकर्ता के वायरिंग प्रणाली के माध्यम से तब तक चलती है जब तक कि वह लोड तक नहीं पहुंच जाती हैं। इस प्रकार के मौसम, उत्पादन, मांग और अन्य कारकों में परिवर्तन के साथ संयुक्त रूप से उत्पादन के बिंदु से खपत के बिंदु तक [[विद्युत ऊर्जा वितरण]] स्थानांतरित करने के लिए प्रणाली की जटिलता आपूर्ति की गुणवत्ता से समझौता करने के कई अवसर प्रदान करती है। | |||
जबकि | जबकि विद्युत की गुणवत्ता कई लोगों के लिए सुविधाजनक शब्द है, यह [[वोल्टेज]] की गुणवत्ता है - न कि [[बिजली उद्योग|विद्युत उद्योग]] [[विद्युत प्रवाह]] - जो वास्तव में शब्द द्वारा वर्णित है। शक्ति केवल ऊर्जा का प्रवाह है, और भार द्वारा मांग की जाने वाली धारा अधिक सीमा तक नियंत्रित नहीं होती हैं। | ||
[[File:Variation of utility frequency.svg|thumb|कुछ बड़े विद्युत ग्रिडों की आवृत्ति स्थिरता]] | [[File:Variation of utility frequency.svg|thumb|कुछ बड़े विद्युत ग्रिडों की आवृत्ति स्थिरता]] | ||
== परिचय == | == परिचय == | ||
[[विद्युत शक्ति]] की गुणवत्ता को मापदंडों के मूल्यों के | [[विद्युत शक्ति]] की गुणवत्ता को मापदंडों के मूल्यों के सेट के रूप में वर्णित किया जा सकता है, जैसे: | ||
* [[सेवा की निरंतरता]] (चाहे विद्युत शक्ति वोल्टेज में | * [[सेवा की निरंतरता]] (चाहे विद्युत शक्ति वोल्टेज में कमी के अधीन हो या थ्रेसहोल्ड स्तर से नीचे या ऊपर ओवरएज हो, जिससे ब्लैकआउट या [[ब्राउनआउट (बिजली)|ब्राउनआउट (विद्युत)]] होते हैं<ref>Energy Storage Association</ref>) | ||
* वोल्टेज परिमाण में भिन्नता (नीचे देखें) | * वोल्टेज परिमाण में भिन्नता (नीचे देखें) | ||
* [[क्षणिक (दोलन)]] वोल्टेज और धाराएं | * [[क्षणिक (दोलन)]] वोल्टेज और धाराएं | ||
* एसी | * एसी शक्ति के लिए तरंगों में [[हार्मोनिक्स (विद्युत शक्ति)]] सामग्री | ||
विद्युत की गुणवत्ता को अनुकूलता की समस्या के रूप में सोचना अधिकांशतः उपयोगी होता है: क्या ग्रिड से जुड़ा उपकरण ग्रिड पर घटनाओं के साथ संगत है, और यह ग्रिड द्वारा दी गई शक्ति है, जिसमें घटनाएँ सम्मिलित हैं, उपकरण के साथ संगत है जो इसमें संयोजित रहता हैं? संगतता समस्याओं के हमेशा कम से कम दो समाधान होते हैं: इस मामले में, या तो विद्युत को साफ करें, या उपकरण को अधिक तन्य बनाएं रखता हैं। | |||
वोल्टेज विविधताओं के लिए डेटा-प्रोसेसिंग उपकरण की सहनशीलता को | वोल्टेज विविधताओं के लिए डेटा-प्रोसेसिंग उपकरण की सहनशीलता को अधिकांशतः सूचना प्रौद्योगिकी मानकों के लिए अंतर्राष्ट्रीय समिति सीबीईएमए वक्र द्वारा चित्रित किया जाता है, जो वोल्टेज विविधताओं की अवधि और परिमाण देता है जिसे सहन किया जा सकता है।<ref name="pge_volts">{{cite web |url=http://www.pge.com/includes/docs/pdfs/mybusiness/customerservice/energystatus/powerquality/voltage_tolerance.pdf |website=pge.com |title=वोल्टेज सहिष्णुता सीमा|publisher=Pacific Gas and Electric Company |access-date=21 June 2022 }}</ref> | ||
[[File:CBEMA Curve.png|thumb|upright=2|none|सीबीईएमए वक्र]]आदर्श रूप से, एसी वोल्टेज की आपूर्ति साइन वेव के रूप में | [[File:CBEMA Curve.png|thumb|upright=2|none|सीबीईएमए वक्र]]आदर्श रूप से, एसी वोल्टेज की आपूर्ति साइन वेव के रूप में यूटिलिटी द्वारा की जाती है, जिसका आयाम और आवृत्ति राष्ट्रीय मानकों (मुख्य विद्युत के मामले में) या प्रणाली विनिर्देशों (विद्युत फ़ीड के मामले में सीधे विद्युत से जुड़ी नहीं है) द्वारा दी जाती है। यहाँ पर सभी [[आवृत्ति]] पर शून्य [[ओम]] प्रतिबाधा पर निर्भर रहता हैं। | ||
== विचलन == | == विचलन == | ||
कोई वास्तविक जीवन शक्ति स्रोत आदर्श नहीं है और | कोई वास्तविक जीवन शक्ति स्रोत आदर्श नहीं है और सामान्यतः कम से कम निम्न विधियों से विचलित हो सकता है: | ||
=== वोल्टेज === | === वोल्टेज === | ||
* [[आयाम]] या मूल माध्य वर्ग ( | * [[आयाम]] या मूल माध्य वर्ग (आरएमएस) वोल्टेज में भिन्नता दोनों ही विभिन्न प्रकार के उपकरणों के लिए महत्वपूर्ण हैं। | ||
* जब आरएमएस वोल्टेज 0.5 चक्र से 1 मिनट के लिए नाममात्र वोल्टेज 10 से 80% से अधिक हो जाता है, तो घटना को प्रफुल्लित कहा जाता है। | * जब आरएमएस वोल्टेज 0.5 चक्र से 1 मिनट के लिए नाममात्र वोल्टेज 10 से 80% से अधिक हो जाता है, तो घटना को प्रफुल्लित कहा जाता है। | ||
* एक डिप (ब्रिटिश अंग्रेजी में) या | * एक डिप (ब्रिटिश अंग्रेजी में) या सैग (अमेरिकी अंग्रेजी में दो शब्द समतुल्य हैं) विपरीत स्थिति है: आरएमएस वोल्टेज 0.5 चक्र से 1 मिनट के लिए नाममात्र वोल्टेज से 10 से 90% कम है। | ||
* नाममात्र के 90 और 110% के बीच | * नाममात्र के 90 और 110% के बीच आरएमएस वोल्टेज में यादृच्छिक या दोहराव भिन्नता प्रकाश उपकरणों में शक्ति लाइन झिलमिलाहट के रूप में जानी जाने वाली घटना उत्पन्न कर सकती है। झिलमिलाहट प्रकाश स्तर का तेजी से दिखाई देने वाला परिवर्तन है। आपत्तिजनक प्रकाश झिलमिलाहट उत्पन्न करने वाले वोल्टेज उतार-चढ़ाव की विशेषताओं की परिभाषा चल रहे शोध का विषय रही है। | ||
* अचानक, वोल्टेज में बहुत संक्षिप्त वृद्धि, जिसे [[वोल्टेज स्पाइक]], आवेग, या उछाल कहा जाता है, | * अचानक, वोल्टेज में बहुत संक्षिप्त वृद्धि करता हैं, जिसे [[वोल्टेज स्पाइक]], आवेग, या उछाल कहा जाता है, सामान्यतः बड़ी [[ विद्युत मोटर |विद्युत मोटर]] के चालू होने, या अधिक गंभीर रूप से विद्युत गिरने के कारण होता है। | ||
* अंडरवॉल्टेज तब होता है जब नाममात्र वोल्टेज 1 मिनट से अधिक समय तक 90% से नीचे चला जाता है।<ref name=Shertukde>{{Cite book|title=वितरित फोटोवोल्टिक ग्रिड ट्रांसफार्मर|last=Shertukde|first=Hemchandra Madhusudan|year=2014|isbn=978-1482247190|pages=91|oclc=897338163}}</ref> ब्राउनआउट शब्द पूर्ण शक्ति (चमकदार रोशनी) और | * अंडरवॉल्टेज तब होता है जब नाममात्र वोल्टेज 1 मिनट से अधिक समय तक 90% से नीचे चला जाता है।<ref name=Shertukde>{{Cite book|title=वितरित फोटोवोल्टिक ग्रिड ट्रांसफार्मर|last=Shertukde|first=Hemchandra Madhusudan|year=2014|isbn=978-1482247190|pages=91|oclc=897338163}}</ref> ब्राउनआउट शब्द पूर्ण शक्ति (चमकदार रोशनी) और ब्लैकआउट (कोई शक्ति नहीं - कोई प्रकाश नहीं) के बीच कहीं वोल्टेज ड्रॉप के लिए उपयुक्त विवरण है। यह प्रणाली की विफली या ओवरलोडिंग आदि के समय, नियमित रोशनी के ध्यान देने योग्य से लेकर महत्वपूर्ण मंदता तक आता है, जब घरेलू प्रकाश व्यवस्था (सामान्यतः) में पूर्ण चमक प्राप्त करने के लिए अपर्याप्त शक्ति उपलब्ध होती है। यह शब्द सामान्य उपयोग में है, इसकी कोई औपचारिक परिभाषा नहीं है, किन्तु सामान्यतः उपयोगिता या प्रणाली ऑपरेटर द्वारा मांग को कम करने या प्रणाली ऑपरेटिंग मार्जिन को बढ़ाने के लिए प्रणाली वोल्टेज में कमी का वर्णन करने के लिए उपयोग किया जाता है। | ||
* [[वोल्टेज से अधिक]] तब होता है जब नाममात्र वोल्टेज 1 मिनट से अधिक के लिए 110% से अधिक हो जाता है।<ref name=Shertukde/> | * [[वोल्टेज से अधिक]] तब होता है जब नाममात्र वोल्टेज 1 मिनट से अधिक के लिए 110% से अधिक हो जाता है।<ref name=Shertukde/> | ||
=== आवृत्ति === | |||
* [[उपयोगिता आवृत्ति]] में परिवर्तन करती हैं। | |||
=== | * अशून्य निम्न-आवृत्ति विद्युत प्रतिबाधा उत्पन्न करती हैं (जब लोड अधिक शक्ति खींचता है, तो वोल्टेज गिर जाता है)। | ||
* [[उपयोगिता आवृत्ति]] में | * गैर-शून्य उच्च-आवृत्ति प्रतिबाधा (जब भार बड़ी मात्रा में धारा की मांग करता है, तो अचानक इसकी मांग करना बंद कर देता है, विद्युत आपूर्ति लाइन में अधिष्ठापन के कारण वोल्टेज में कमी या वोल्टेज स्पाइक होगा)। | ||
* अशून्य निम्न-आवृत्ति विद्युत प्रतिबाधा (जब लोड अधिक शक्ति खींचता है, तो वोल्टेज गिर जाता है)। | * तरंग आकार में परिवर्तन - सामान्यतः कम आवृत्तियों (सामान्यतः 3 किलोहर्ट्ज़ से कम) पर हार्मोनिक्स (विद्युत शक्ति) के रूप में वर्णित किया जाता है और उच्च आवृत्तियों पर सामान्य मोड विरूपण या इंटरहार्मोनिक्स के रूप में वर्णित किया जाता है। | ||
* गैर-शून्य उच्च-आवृत्ति प्रतिबाधा (जब | |||
* तरंग आकार में | |||
=== तरंग === | === तरंग === | ||
* वोल्टेज और | * वोल्टेज और धारा का दोलन आदर्श रूप से साइन या कोसाइन फ़ंक्शन के रूप में होता है, चूंकि जनरेटर या भार में कमियों के कारण यह परिवर्तित कर सकता हैं। | ||
* | * सामान्यतः जनरेटर वोल्टेज विकृतियों का कारण बनते हैं और भार धारा विकृतियों का कारण बनते हैं। ये विकृतियां नाममात्र आवृत्ति की तुलना में अधिक तेजी से दोलनों के रूप में होती हैं, और इन्हें हार्मोनिक्स कहा जाता है। | ||
* आदर्श तरंग के विरूपण के लिए हार्मोनिक्स के सापेक्ष योगदान को कुल हार्मोनिक विरूपण (THD) कहा जाता है। | * आदर्श तरंग के विरूपण के लिए हार्मोनिक्स के सापेक्ष योगदान को कुल हार्मोनिक विरूपण (THD) कहा जाता है। | ||
* एक तरंग में कम हार्मोनिक सामग्री आदर्श है क्योंकि हार्मोनिक्स कंपन, भिनभिनाहट, उपकरण विकृतियों, और | * एक तरंग में कम हार्मोनिक सामग्री आदर्श है क्योंकि हार्मोनिक्स कंपन, भिनभिनाहट, उपकरण विकृतियों, और हानि और ट्रांसफॉर्मर में अति ताप का कारण बन सकता है। | ||
इनमें से प्रत्येक | इनमें से प्रत्येक विद्युत की गुणवत्ता की समस्या का अलग कारण है। कुछ समस्याएं साझा मौलिक ढांचे का परिणाम हैं। उदाहरण के लिए, नेटवर्क में विफलता के कारण कमी आ सकती है जो कुछ ग्राहकों को प्रभावित करेगी इस प्रकार गलती का स्तर जितना अधिक होगा, प्रभावित होने वालों की संख्या उतनी ही अधिक होती हैं। ग्राहक की साइट पर समस्या क्षणिक कारण हो सकती है जो ही सबप्रणाली पर अन्य सभी ग्राहकों को प्रभावित करती है। समस्याएँ, जैसे हार्मोनिक्स, ग्राहक की स्वयं की स्थापना के भीतर उत्पन्न होती हैं और नेटवर्क पर प्रसारित हो सकती हैं और अन्य ग्राहकों को प्रभावित कर सकती हैं। हार्मोनिक समस्याओं को अच्छे डिजाइन अभ्यास और अच्छी तरह सिद्ध कमी उपकरण के संयोजन से निपटाया जा सकता है। | ||
== | == शक्ति कंडीशनिंग == | ||
[[पावर कंडीशनर]] इसकी गुणवत्ता में सुधार करने के लिए शक्ति को संशोधित कर रहा है। | [[पावर कंडीशनर|शक्ति कंडीशनर]] इसकी गुणवत्ता में सुधार करने के लिए शक्ति को संशोधित कर रहा है। | ||
यदि लाइन पर क्षणिक (दोलन) (अस्थायी) स्थिति है, तो मुख्य | यदि लाइन पर क्षणिक (दोलन) (अस्थायी) स्थिति है, तो मुख्य विद्युत को बंद करने के लिए [[ अबाधित विद्युत आपूर्ति |अबाधित विद्युत आपूर्ति]] (यूपीएस) का उपयोग किया जा सकता है। चूंकि सस्ती यूपीएस इकाइयां साइन तरंग के ऊपर उच्च-आवृत्ति और कम-आयाम वर्ग तरंग लगाने के समान ही विफल-गुणवत्ता वाली विद्युत उत्पन्न करती हैं। उच्च-गुणवत्ता वाली यूपीएस इकाइयाँ दोहरे रूपांतरण टोपोलॉजी का उपयोग करती हैं जो डीसी में आने वाली एसी शक्ति को तोड़ती है, बैटरी को आवेशित करती है, फिर एसी साइन तरंग को फिर से बनाती है। यह पुन: निर्मित साइन वेव मूल एसी शक्ति फीड की तुलना में उच्च गुणवत्ता वाला है।<ref name="dcf_power_quality">{{Cite web |url=http://www.datacenterfix.com/forum/viewtopic.php?f=4&t=68 |title=डेटा सेंटर में हार्मोनिक फ़िल्टरिंग? [यूपीएस डिजाइन पर बिजली की गुणवत्ता पर चर्चा]|website=DataCenterFix.com|access-date=2010-12-14 |archive-url=https://web.archive.org/web/20110708233420/http://www.datacenterfix.com/forum/viewtopic.php?f=4&t=68 |archive-date=2011-07-08|url-status=dead}}</ref> | ||
एक डायनेमिक वोल्टेज रेगुलेटर (DVR) और [[स्थिर तुल्यकालिक श्रृंखला कम्पेसाटर]] (SSSC) का उपयोग | एक डायनेमिक वोल्टेज रेगुलेटर (DVR) और [[स्थिर तुल्यकालिक श्रृंखला कम्पेसाटर]] (SSSC) का उपयोग श्रेणी़ वोल्टेज-सैग क्षतिपूर्ति के लिए किया जाता है। | ||
एक [[ वृद्धि रक्षक ]] या साधारण [[ संधारित्र ]] या [[ varistor ]] अधिकांश ओवरवॉल्टेज स्थितियों से रक्षा कर सकता है, जबकि | एक [[ वृद्धि रक्षक |वृद्धि रक्षक]] या साधारण [[ संधारित्र |संधारित्र]] या [[ varistor |वैरिस्टर]] अधिकांश ओवरवॉल्टेज स्थितियों से रक्षा कर सकता है, जबकि [[ तड़ित पकड़क |तड़ित पकड़क]] गंभीर स्पाइक्स से बचाता है। | ||
[[इलेक्ट्रॉनिक फिल्टर]] हार्मोनिक्स को हटा सकते हैं। | [[इलेक्ट्रॉनिक फिल्टर]] हार्मोनिक्स को हटा सकते हैं। | ||
== [[ समार्ट ग्रिड ]] और | == [[ समार्ट ग्रिड | समार्ट ग्रिड]] और विद्युत की गुणवत्ता == | ||
आधुनिक प्रणालियाँ | आधुनिक प्रणालियाँ विद्युत की गुणवत्ता की जाँच के लिए अपने पूरे नेटवर्क में वितरित फेजर मापन इकाइयों (पीएमयू) नामक सेंसर का उपयोग करती हैं और कुछ स्थितियों में स्वचालित रूप से उनका उत्तर देती हैं। नेटवर्क में विसंगतियों के तेजी से संवेदन और स्वचालित स्व-उपचार की ऐसी स्मार्ट ग्रिड सुविधाओं का उपयोग उच्च गुणवत्ता वाली विद्युत और कम डाउनटाइम लाने का प्रमाण उत्पन्न करती हैं, साथ ही साथ आंतरायिक विद्युत स्रोतों और वितरित उत्पादन से विद्युत का समर्थन करता है, जो कि अनियंत्रित विद्युत की गुणवत्ता को कम कर देता हैं। | ||
== संपीड़न एल्गोरिथ्म == | == संपीड़न एल्गोरिथ्म == | ||
एक | एक शक्ति क्वालिटी कम्प्रेशन [[ कलन विधि |कलन विधि]] एल्गोरिथम है जिसका उपयोग शक्ति क्वालिटी के विश्लेषण में किया जाता है। उच्च गुणवत्ता वाली विद्युत शक्ति सेवा प्रदान करने के लिए, विद्युत [[विद्युत नेटवर्क]] के साथ विभिन्न स्थानों पर विद्युत संकेतों की गुणवत्ता की जाँच करना आवश्यक है, जिसे विद्युत की गुणवत्ता (PQ) भी कहा जाता है। इस प्रकार से विद्युत उपयोगिताओं विभिन्न नेटवर्क स्थानों पर तरंगों और धाराओं की लगातार जाँच करती हैं, यह समझने के लिए कि विद्युत आउटेज और ब्लैकआउट जैसी किसी भी अप्रत्याशित घटना का क्या कारण है। यह उन जगहों पर विशेष रूप से महत्वपूर्ण है जहां पर्यावरण और सार्वजनिक सुरक्षा खतरे में है (अस्पतालों, सीवेज उपचार संयंत्रों, खानों आदि जैसे संस्थान इसका उदाहरण हैं)। | ||
=== चुनौतियां === | === चुनौतियां === | ||
Line 81: | Line 79: | ||
* और भी कई | * और भी कई | ||
अप्रत्याशित घटनाओं की पर्याप्त | अप्रत्याशित घटनाओं की पर्याप्त जाँच करने के लिए रिबेरो एट अल <ref>{{cite conference |author=Ribeiro |display-authors=etal |title=बिजली गुणवत्ता विश्लेषण में अनुप्रयोगों के लिए एक उन्नत डेटा संपीड़न विधि|conference=Nov. 29-Dec. 2, 2001, IEEE, The 27th Annual Conference of the IEEE Industrial Electronics Society |date=2001 |book-title=IECON '01 |volume=1 |pages=676–681 |doi=10.1109/IECON.2001.976594 }}</ref> बताते हैं कि इन मापदंडों को प्रदर्शित करना ही पर्याप्त नहीं है, बल्कि हर समय वोल्टेज तरंग डेटा को भी कैप्चर करना है। बड़ी मात्रा में डेटा सम्मिलित होने के कारण यह अव्यावहारिक है, जिसे "बोतल प्रभाव" के रूप में जाना जाता है। उदाहरण के लिए, प्रति चक्र 32 नमूनों की नमूना दर पर, प्रति सेकंड 1,920 नमूने एकत्र किए जाते हैं। तीन-चरण मीटर के लिए जो वोल्टेज और धारा तरंग दोनों को मापते हैं, डेटा 6-8 गुना ज्यादा है। हाल के वर्षों में विकसित अधिक व्यावहारिक समाधान डेटा को केवल तभी संग्रहीत करते हैं जब कोई घटना होती है (उदाहरण के लिए, जब उच्च स्तर के शक्ति प्रणाली [[हार्मोनिक्स]] का पता लगाया जाता है) या वैकल्पिक रूप से विद्युत संकेतों के आरएमएस मूल्य को संग्रहीत करने के लिए किए जाते हैं।<ref>{{cite journal |author=Ribeiro |display-authors=etal |title=बिजली गुणवत्ता मूल्यांकन में सिग्नल प्रोसेसिंग और संपीड़न के लिए एक बेहतर तरीका|date=Apr 2004 |publisher=IEEE |journal=IEEE Transactions on Power Delivery |volume=19 |issue=2 |pages=464–471 |doi=10.1109/PES.2003.1270480 |isbn=0-7803-7989-6 |s2cid=62578540 }}</ref> चूंकि, यह डेटा हमेशा समस्याओं की सटीक प्रकृति को निर्धारित करने के लिए पर्याप्त नहीं होता है। | ||
=== कच्चा डेटा संपीड़न === | === कच्चा डेटा संपीड़न === | ||
निसेनब्लैट एट अल।<ref>{{cite patent |inventor1-last=Nisenblat |inventor1-first=Pol |inventor2-last=Broshi |inventor2-first=Amir M. |inventor3-last=Efrati |inventor3-first=Ofir |title=बिजली गुणवत्ता निगरानी|issue-date=September 21, 2006 |publication-date=April 18, 2004 |country-code=US |patent-number=7415370}}</ref> | निसेनब्लैट एट अल।<ref>{{cite patent |inventor1-last=Nisenblat |inventor1-first=Pol |inventor2-last=Broshi |inventor2-first=Amir M. |inventor3-last=Efrati |inventor3-first=Ofir |title=बिजली गुणवत्ता निगरानी|issue-date=September 21, 2006 |publication-date=April 18, 2004 |country-code=US |patent-number=7415370}}</ref> विद्युत गुणवत्ता संपीड़न एल्गोरिदम ([[हानिपूर्ण संपीड़न]] विधियों के समान) के विचार का प्रस्ताव करता है जो मीटर को या अधिक विद्युत संकेतों के तरंग को क्रमशः स्टोर करने में सक्षम बनाता है, भले ही ब्याज की घटना की पहचान की गई हो या नहीं की गई हों। PQZip के रूप में संदर्भित यह एल्गोरिथ्म प्रोसेसर को मेमोरी के साथ सशक्त बनाता है जो तरंग को स्टोर करने के लिए पर्याप्त है, सामान्य विद्युत की स्थिति में, कम से कम महीने, दो महीने या वर्ष की लंबी अवधि में प्राप्त होते हैं। इस प्रकार संपीड़न वास्तविक समय में किया जाता है, क्योंकि सिग्नल प्राप्त होते हैं; सभी संपीड़ित डेटा प्राप्त होने से पहले यह संपीड़न निर्णय की गणना करता है। उदाहरण के लिए, पैरामीटर स्थिर रहना चाहिए, और अन्य में उतार-चढ़ाव होता है, संपीड़न निर्णय केवल निरंतर डेटा से प्रासंगिक होता है, और सभी उतार-चढ़ाव डेटा को निरंतर रखता है। यह तब तरंग के विभिन्न अवधियों में, कई घटकों के शक्ति सिग्नल के तरंग को विघटित करता है। यह अलग-अलग अवधियों में इनमें से कम से कम कुछ घटकों के मूल्यों को अलग-अलग संकुचित करके प्रक्रिया को समाप्त करता है। यह वास्तविक समय संपीड़न एल्गोरिदम इसकी पहचान करने से स्वतंत्र प्रदर्शन करती है, इस प्रकार डेटा अंतराल को रोकता है और इसमें 1000: 1 संपीड़न अनुपात होता है। | ||
=== कुल डेटा संपीड़न === | === कुल डेटा संपीड़न === | ||
[[शक्ति विश्लेषक]] का विशिष्ट कार्य दिए गए अंतराल पर एकत्रित किए गए डेटा संग्रह का निर्माण होता है। इस प्रकार सामान्यतः 10 मिनट या 1 मिनट के अंतराल का उपयोग IEC/IEEE PQ मानकों द्वारा निर्दिष्ट के रूप में किया जाता है। इस प्रकार के उपकरण के संचालन के समय महत्वपूर्ण संग्रह क्रॉस एट अल के रूप में आकार बनाया जाता है।।<ref>{{cite conference|last1=Kraus|first1=Jan|last2=Tobiska|first2=Tomas|last3=Bubla|first3=Viktor|title=बिजली की गुणवत्ता वाले डेटासेट पर दोषरहित एनकोडिंग और कम्प्रेशन एल्गोरिदम लागू होते हैं|book-title=CIRED 2009 - 20th International Conference and Exhibition on Electricity Distribution - Part 1|date=2009|conference=20th International Conference and Exhibition on Electricity Distribution, 8–11 June 2009|pages=1–4|isbn=978-1-84919126-5|url=https://ieeexplore.ieee.org/document/5255775}}</ref> इस प्रकार लैम्पेल-जिव-मार्कोव चेन एल्गोरिथम, [[bzip]] या अन्य समान [[दोषरहित संपीड़न]] एल्गोरिदम का उपयोग करके ऐसे अभिलेखागार पर संपीड़न अनुपात का प्रदर्शन किया जा सकता है। वास्तविक रूप से विद्युत गुणवत्ता संग्रह में संग्रहीत समय श्रृंखला पर भविष्यवाणी और मॉडलिंग का उपयोग करके पोस्ट प्रोसेसिंग संपीड़न की दक्षता में सामान्यतः और सुधार होता है। इस प्रकार की सरलीकृत तकनीकों के इस संयोजन से डेटा संग्रहण और डेटा अधिग्रहण प्रक्रियाओं दोनों में बचत होती है। | |||
== मानक == | == मानक == | ||
आपूर्ति की गई | आपूर्ति की गई विद्युत की गुणवत्ता अंतरराष्ट्रीय मानकों और विभिन्न देशों द्वारा अपनाए गए उनके स्थानीय डेरिवेटिव में निर्धारित करते है: | ||
EN50160 | इस प्रकार EN50160 विद्युत की गुणवत्ता के लिए यूरोपीय मानक है, जो एसी शक्ति में वोल्टेज को परिभाषित करने वाले विभिन्न मापदंडों के लिए विरूपण की स्वीकार्य सीमा निर्धारित करता है। | ||
IEEE-519 | IEEE-519 विद्युत प्रणालियों के लिए उत्तर अमेरिकी दिशानिर्देशन करता हैं। इसे अनुशंसित अभ्यास के रूप में परिभाषित किया गया है<ref>{{Cite web|title=IEEE 519-2014 - IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems|url=https://standards.ieee.org/standard/519-2014.html|access-date=2020-11-16|website=standards.ieee.org}}</ref> और, EN50160 के विपरीत, यह दिशानिर्देश धारा विरूपण के साथ-साथ वोल्टेज को संदर्भित करता है। | ||
IEC 61000-4-30 | IEC 61000-4-30 विद्युत की गुणवत्ता की जाँच के लिए मानक परिभाषित करने की विधि हैं। संस्करण 3 (2015) में धारा माप सम्मिलित हैं, पिछले संस्करणों के विपरीत जो अकेले वोल्टेज की माप करने से संबंधित रहता हैं। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 103: | Line 101: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist|30em}} | {{reflist|30em}} | ||
=== साहित्य === | === साहित्य === | ||
{{refbegin}} | {{refbegin}} | ||
Line 121: | Line 115: | ||
{{Electricity generation}} | {{Electricity generation}} | ||
[[Category:Collapse templates]] | |||
[[Category: | |||
[[Category:Created On 06/03/2023]] | [[Category:Created On 06/03/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Navigational boxes| ]] | |||
[[Category:Navigational boxes without horizontal lists]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Sidebars with styles needing conversion]] | |||
[[Category:Template documentation pages|Documentation/doc]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates generating microformats]] | |||
[[Category:Templates that are not mobile friendly]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:Wikipedia metatemplates]] |
Latest revision as of 07:11, 19 March 2023
विद्युत की गुणवत्ता वह डिग्री है जिस पर विद्युत आपूर्ति प्रणाली के वोल्टेज, आवृत्ति और तरंग स्थापित विनिर्देशों के अनुरूप होते हैं। जो अच्छी विद्युत की गुणवत्ता को स्थिर आपूर्ति वोल्टेज के रूप में परिभाषित किया जा सकता है जो निर्धारित सीमा के भीतर रहता है, रेटेड मूल्य के समीप स्थिर एसी आवृत्ति, और स्मूथ वोल्टेज वक्र तरंग जो साइन तरंग जैसा दिखता है)। सामान्यतः विद्युत की गुणवत्ता को विद्युत आउटलेट से निकलने वाली चीजों और उसमें प्लग किए गए लोड के बीच अनुकूलता के रूप में विचार करना उपयोगी होता है।[1] इन शब्दों का उपयोग विद्युत शक्ति का वर्णन करने के लिए किया जाता है जो विद्युत भार को चलाता है और लोड की ठीक से कार्य करने की क्षमता पर निर्भर करता हैं। इस प्रकार उचित शक्ति के बिना, विद्युत उपकरण (या लोड) विफल हो सकता है, समय से पहले विफल हो सकता है या बिल्कुल भी कार्य नहीं कर सकता है। ऐसे कई तरीके हैं जिनमें विद्युत शक्ति विफल होने की गुणवत्ता पर निर्भर हो सकती है, और ऐसी विफल गुणवत्ता वाली शक्ति के और भी कई कारण हैं।
विद्युत शक्ति उद्योग में विद्युत उत्पादन (एसी शक्ति), विद्युत शक्ति संचरण और अंततः विद्युत शक्ति के अंतिम उपयोगकर्ता के परिसर में स्थित विद्युत मीटर के लिए विद्युत शक्ति वितरण सम्मिलित है। विद्युत तब अंतिम उपयोगकर्ता के वायरिंग प्रणाली के माध्यम से तब तक चलती है जब तक कि वह लोड तक नहीं पहुंच जाती हैं। इस प्रकार के मौसम, उत्पादन, मांग और अन्य कारकों में परिवर्तन के साथ संयुक्त रूप से उत्पादन के बिंदु से खपत के बिंदु तक विद्युत ऊर्जा वितरण स्थानांतरित करने के लिए प्रणाली की जटिलता आपूर्ति की गुणवत्ता से समझौता करने के कई अवसर प्रदान करती है।
जबकि विद्युत की गुणवत्ता कई लोगों के लिए सुविधाजनक शब्द है, यह वोल्टेज की गुणवत्ता है - न कि विद्युत उद्योग विद्युत प्रवाह - जो वास्तव में शब्द द्वारा वर्णित है। शक्ति केवल ऊर्जा का प्रवाह है, और भार द्वारा मांग की जाने वाली धारा अधिक सीमा तक नियंत्रित नहीं होती हैं।
परिचय
विद्युत शक्ति की गुणवत्ता को मापदंडों के मूल्यों के सेट के रूप में वर्णित किया जा सकता है, जैसे:
- सेवा की निरंतरता (चाहे विद्युत शक्ति वोल्टेज में कमी के अधीन हो या थ्रेसहोल्ड स्तर से नीचे या ऊपर ओवरएज हो, जिससे ब्लैकआउट या ब्राउनआउट (विद्युत) होते हैं[2])
- वोल्टेज परिमाण में भिन्नता (नीचे देखें)
- क्षणिक (दोलन) वोल्टेज और धाराएं
- एसी शक्ति के लिए तरंगों में हार्मोनिक्स (विद्युत शक्ति) सामग्री
विद्युत की गुणवत्ता को अनुकूलता की समस्या के रूप में सोचना अधिकांशतः उपयोगी होता है: क्या ग्रिड से जुड़ा उपकरण ग्रिड पर घटनाओं के साथ संगत है, और यह ग्रिड द्वारा दी गई शक्ति है, जिसमें घटनाएँ सम्मिलित हैं, उपकरण के साथ संगत है जो इसमें संयोजित रहता हैं? संगतता समस्याओं के हमेशा कम से कम दो समाधान होते हैं: इस मामले में, या तो विद्युत को साफ करें, या उपकरण को अधिक तन्य बनाएं रखता हैं।
वोल्टेज विविधताओं के लिए डेटा-प्रोसेसिंग उपकरण की सहनशीलता को अधिकांशतः सूचना प्रौद्योगिकी मानकों के लिए अंतर्राष्ट्रीय समिति सीबीईएमए वक्र द्वारा चित्रित किया जाता है, जो वोल्टेज विविधताओं की अवधि और परिमाण देता है जिसे सहन किया जा सकता है।[3]
आदर्श रूप से, एसी वोल्टेज की आपूर्ति साइन वेव के रूप में यूटिलिटी द्वारा की जाती है, जिसका आयाम और आवृत्ति राष्ट्रीय मानकों (मुख्य विद्युत के मामले में) या प्रणाली विनिर्देशों (विद्युत फ़ीड के मामले में सीधे विद्युत से जुड़ी नहीं है) द्वारा दी जाती है। यहाँ पर सभी आवृत्ति पर शून्य ओम प्रतिबाधा पर निर्भर रहता हैं।
विचलन
कोई वास्तविक जीवन शक्ति स्रोत आदर्श नहीं है और सामान्यतः कम से कम निम्न विधियों से विचलित हो सकता है:
वोल्टेज
- आयाम या मूल माध्य वर्ग (आरएमएस) वोल्टेज में भिन्नता दोनों ही विभिन्न प्रकार के उपकरणों के लिए महत्वपूर्ण हैं।
- जब आरएमएस वोल्टेज 0.5 चक्र से 1 मिनट के लिए नाममात्र वोल्टेज 10 से 80% से अधिक हो जाता है, तो घटना को प्रफुल्लित कहा जाता है।
- एक डिप (ब्रिटिश अंग्रेजी में) या सैग (अमेरिकी अंग्रेजी में दो शब्द समतुल्य हैं) विपरीत स्थिति है: आरएमएस वोल्टेज 0.5 चक्र से 1 मिनट के लिए नाममात्र वोल्टेज से 10 से 90% कम है।
- नाममात्र के 90 और 110% के बीच आरएमएस वोल्टेज में यादृच्छिक या दोहराव भिन्नता प्रकाश उपकरणों में शक्ति लाइन झिलमिलाहट के रूप में जानी जाने वाली घटना उत्पन्न कर सकती है। झिलमिलाहट प्रकाश स्तर का तेजी से दिखाई देने वाला परिवर्तन है। आपत्तिजनक प्रकाश झिलमिलाहट उत्पन्न करने वाले वोल्टेज उतार-चढ़ाव की विशेषताओं की परिभाषा चल रहे शोध का विषय रही है।
- अचानक, वोल्टेज में बहुत संक्षिप्त वृद्धि करता हैं, जिसे वोल्टेज स्पाइक, आवेग, या उछाल कहा जाता है, सामान्यतः बड़ी विद्युत मोटर के चालू होने, या अधिक गंभीर रूप से विद्युत गिरने के कारण होता है।
- अंडरवॉल्टेज तब होता है जब नाममात्र वोल्टेज 1 मिनट से अधिक समय तक 90% से नीचे चला जाता है।[4] ब्राउनआउट शब्द पूर्ण शक्ति (चमकदार रोशनी) और ब्लैकआउट (कोई शक्ति नहीं - कोई प्रकाश नहीं) के बीच कहीं वोल्टेज ड्रॉप के लिए उपयुक्त विवरण है। यह प्रणाली की विफली या ओवरलोडिंग आदि के समय, नियमित रोशनी के ध्यान देने योग्य से लेकर महत्वपूर्ण मंदता तक आता है, जब घरेलू प्रकाश व्यवस्था (सामान्यतः) में पूर्ण चमक प्राप्त करने के लिए अपर्याप्त शक्ति उपलब्ध होती है। यह शब्द सामान्य उपयोग में है, इसकी कोई औपचारिक परिभाषा नहीं है, किन्तु सामान्यतः उपयोगिता या प्रणाली ऑपरेटर द्वारा मांग को कम करने या प्रणाली ऑपरेटिंग मार्जिन को बढ़ाने के लिए प्रणाली वोल्टेज में कमी का वर्णन करने के लिए उपयोग किया जाता है।
- वोल्टेज से अधिक तब होता है जब नाममात्र वोल्टेज 1 मिनट से अधिक के लिए 110% से अधिक हो जाता है।[4]
आवृत्ति
- उपयोगिता आवृत्ति में परिवर्तन करती हैं।
- अशून्य निम्न-आवृत्ति विद्युत प्रतिबाधा उत्पन्न करती हैं (जब लोड अधिक शक्ति खींचता है, तो वोल्टेज गिर जाता है)।
- गैर-शून्य उच्च-आवृत्ति प्रतिबाधा (जब भार बड़ी मात्रा में धारा की मांग करता है, तो अचानक इसकी मांग करना बंद कर देता है, विद्युत आपूर्ति लाइन में अधिष्ठापन के कारण वोल्टेज में कमी या वोल्टेज स्पाइक होगा)।
- तरंग आकार में परिवर्तन - सामान्यतः कम आवृत्तियों (सामान्यतः 3 किलोहर्ट्ज़ से कम) पर हार्मोनिक्स (विद्युत शक्ति) के रूप में वर्णित किया जाता है और उच्च आवृत्तियों पर सामान्य मोड विरूपण या इंटरहार्मोनिक्स के रूप में वर्णित किया जाता है।
तरंग
- वोल्टेज और धारा का दोलन आदर्श रूप से साइन या कोसाइन फ़ंक्शन के रूप में होता है, चूंकि जनरेटर या भार में कमियों के कारण यह परिवर्तित कर सकता हैं।
- सामान्यतः जनरेटर वोल्टेज विकृतियों का कारण बनते हैं और भार धारा विकृतियों का कारण बनते हैं। ये विकृतियां नाममात्र आवृत्ति की तुलना में अधिक तेजी से दोलनों के रूप में होती हैं, और इन्हें हार्मोनिक्स कहा जाता है।
- आदर्श तरंग के विरूपण के लिए हार्मोनिक्स के सापेक्ष योगदान को कुल हार्मोनिक विरूपण (THD) कहा जाता है।
- एक तरंग में कम हार्मोनिक सामग्री आदर्श है क्योंकि हार्मोनिक्स कंपन, भिनभिनाहट, उपकरण विकृतियों, और हानि और ट्रांसफॉर्मर में अति ताप का कारण बन सकता है।
इनमें से प्रत्येक विद्युत की गुणवत्ता की समस्या का अलग कारण है। कुछ समस्याएं साझा मौलिक ढांचे का परिणाम हैं। उदाहरण के लिए, नेटवर्क में विफलता के कारण कमी आ सकती है जो कुछ ग्राहकों को प्रभावित करेगी इस प्रकार गलती का स्तर जितना अधिक होगा, प्रभावित होने वालों की संख्या उतनी ही अधिक होती हैं। ग्राहक की साइट पर समस्या क्षणिक कारण हो सकती है जो ही सबप्रणाली पर अन्य सभी ग्राहकों को प्रभावित करती है। समस्याएँ, जैसे हार्मोनिक्स, ग्राहक की स्वयं की स्थापना के भीतर उत्पन्न होती हैं और नेटवर्क पर प्रसारित हो सकती हैं और अन्य ग्राहकों को प्रभावित कर सकती हैं। हार्मोनिक समस्याओं को अच्छे डिजाइन अभ्यास और अच्छी तरह सिद्ध कमी उपकरण के संयोजन से निपटाया जा सकता है।
शक्ति कंडीशनिंग
शक्ति कंडीशनर इसकी गुणवत्ता में सुधार करने के लिए शक्ति को संशोधित कर रहा है।
यदि लाइन पर क्षणिक (दोलन) (अस्थायी) स्थिति है, तो मुख्य विद्युत को बंद करने के लिए अबाधित विद्युत आपूर्ति (यूपीएस) का उपयोग किया जा सकता है। चूंकि सस्ती यूपीएस इकाइयां साइन तरंग के ऊपर उच्च-आवृत्ति और कम-आयाम वर्ग तरंग लगाने के समान ही विफल-गुणवत्ता वाली विद्युत उत्पन्न करती हैं। उच्च-गुणवत्ता वाली यूपीएस इकाइयाँ दोहरे रूपांतरण टोपोलॉजी का उपयोग करती हैं जो डीसी में आने वाली एसी शक्ति को तोड़ती है, बैटरी को आवेशित करती है, फिर एसी साइन तरंग को फिर से बनाती है। यह पुन: निर्मित साइन वेव मूल एसी शक्ति फीड की तुलना में उच्च गुणवत्ता वाला है।[5]
एक डायनेमिक वोल्टेज रेगुलेटर (DVR) और स्थिर तुल्यकालिक श्रृंखला कम्पेसाटर (SSSC) का उपयोग श्रेणी़ वोल्टेज-सैग क्षतिपूर्ति के लिए किया जाता है।
एक वृद्धि रक्षक या साधारण संधारित्र या वैरिस्टर अधिकांश ओवरवॉल्टेज स्थितियों से रक्षा कर सकता है, जबकि तड़ित पकड़क गंभीर स्पाइक्स से बचाता है।
इलेक्ट्रॉनिक फिल्टर हार्मोनिक्स को हटा सकते हैं।
समार्ट ग्रिड और विद्युत की गुणवत्ता
आधुनिक प्रणालियाँ विद्युत की गुणवत्ता की जाँच के लिए अपने पूरे नेटवर्क में वितरित फेजर मापन इकाइयों (पीएमयू) नामक सेंसर का उपयोग करती हैं और कुछ स्थितियों में स्वचालित रूप से उनका उत्तर देती हैं। नेटवर्क में विसंगतियों के तेजी से संवेदन और स्वचालित स्व-उपचार की ऐसी स्मार्ट ग्रिड सुविधाओं का उपयोग उच्च गुणवत्ता वाली विद्युत और कम डाउनटाइम लाने का प्रमाण उत्पन्न करती हैं, साथ ही साथ आंतरायिक विद्युत स्रोतों और वितरित उत्पादन से विद्युत का समर्थन करता है, जो कि अनियंत्रित विद्युत की गुणवत्ता को कम कर देता हैं।
संपीड़न एल्गोरिथ्म
एक शक्ति क्वालिटी कम्प्रेशन कलन विधि एल्गोरिथम है जिसका उपयोग शक्ति क्वालिटी के विश्लेषण में किया जाता है। उच्च गुणवत्ता वाली विद्युत शक्ति सेवा प्रदान करने के लिए, विद्युत विद्युत नेटवर्क के साथ विभिन्न स्थानों पर विद्युत संकेतों की गुणवत्ता की जाँच करना आवश्यक है, जिसे विद्युत की गुणवत्ता (PQ) भी कहा जाता है। इस प्रकार से विद्युत उपयोगिताओं विभिन्न नेटवर्क स्थानों पर तरंगों और धाराओं की लगातार जाँच करती हैं, यह समझने के लिए कि विद्युत आउटेज और ब्लैकआउट जैसी किसी भी अप्रत्याशित घटना का क्या कारण है। यह उन जगहों पर विशेष रूप से महत्वपूर्ण है जहां पर्यावरण और सार्वजनिक सुरक्षा खतरे में है (अस्पतालों, सीवेज उपचार संयंत्रों, खानों आदि जैसे संस्थान इसका उदाहरण हैं)।
चुनौतियां
इंजीनियर कई प्रकार के मीटर का उपयोग करते हैं,[6] जो विद्युत शक्ति तरंगों को पढ़ता और प्रदर्शित करता है और तरंगों के मापदंडों की गणना करता है। वे मापते हैं, उदाहरण के लिए:
- विद्युत प्रवाह और वोल्टेज आरएमएस
- बहु-चरण संकेत के तरंगों के बीच चरण संबंध
- ऊर्जा घटक
- उपयोगिता आवृत्ति
- कुल हार्मोनिक विरूपण (THD)
- सक्रिय शक्ति (किलोवाट)
- प्रतिक्रियाशील शक्ति (केवीएआर)
- स्पष्ट शक्ति (केवीए)
- सक्रिय ऊर्जा (kWh)
- प्रतिक्रियाशील ऊर्जा (kVArh)
- स्पष्ट ऊर्जा (केवीएएच)
- और भी कई
अप्रत्याशित घटनाओं की पर्याप्त जाँच करने के लिए रिबेरो एट अल [7] बताते हैं कि इन मापदंडों को प्रदर्शित करना ही पर्याप्त नहीं है, बल्कि हर समय वोल्टेज तरंग डेटा को भी कैप्चर करना है। बड़ी मात्रा में डेटा सम्मिलित होने के कारण यह अव्यावहारिक है, जिसे "बोतल प्रभाव" के रूप में जाना जाता है। उदाहरण के लिए, प्रति चक्र 32 नमूनों की नमूना दर पर, प्रति सेकंड 1,920 नमूने एकत्र किए जाते हैं। तीन-चरण मीटर के लिए जो वोल्टेज और धारा तरंग दोनों को मापते हैं, डेटा 6-8 गुना ज्यादा है। हाल के वर्षों में विकसित अधिक व्यावहारिक समाधान डेटा को केवल तभी संग्रहीत करते हैं जब कोई घटना होती है (उदाहरण के लिए, जब उच्च स्तर के शक्ति प्रणाली हार्मोनिक्स का पता लगाया जाता है) या वैकल्पिक रूप से विद्युत संकेतों के आरएमएस मूल्य को संग्रहीत करने के लिए किए जाते हैं।[8] चूंकि, यह डेटा हमेशा समस्याओं की सटीक प्रकृति को निर्धारित करने के लिए पर्याप्त नहीं होता है।
कच्चा डेटा संपीड़न
निसेनब्लैट एट अल।[9] विद्युत गुणवत्ता संपीड़न एल्गोरिदम (हानिपूर्ण संपीड़न विधियों के समान) के विचार का प्रस्ताव करता है जो मीटर को या अधिक विद्युत संकेतों के तरंग को क्रमशः स्टोर करने में सक्षम बनाता है, भले ही ब्याज की घटना की पहचान की गई हो या नहीं की गई हों। PQZip के रूप में संदर्भित यह एल्गोरिथ्म प्रोसेसर को मेमोरी के साथ सशक्त बनाता है जो तरंग को स्टोर करने के लिए पर्याप्त है, सामान्य विद्युत की स्थिति में, कम से कम महीने, दो महीने या वर्ष की लंबी अवधि में प्राप्त होते हैं। इस प्रकार संपीड़न वास्तविक समय में किया जाता है, क्योंकि सिग्नल प्राप्त होते हैं; सभी संपीड़ित डेटा प्राप्त होने से पहले यह संपीड़न निर्णय की गणना करता है। उदाहरण के लिए, पैरामीटर स्थिर रहना चाहिए, और अन्य में उतार-चढ़ाव होता है, संपीड़न निर्णय केवल निरंतर डेटा से प्रासंगिक होता है, और सभी उतार-चढ़ाव डेटा को निरंतर रखता है। यह तब तरंग के विभिन्न अवधियों में, कई घटकों के शक्ति सिग्नल के तरंग को विघटित करता है। यह अलग-अलग अवधियों में इनमें से कम से कम कुछ घटकों के मूल्यों को अलग-अलग संकुचित करके प्रक्रिया को समाप्त करता है। यह वास्तविक समय संपीड़न एल्गोरिदम इसकी पहचान करने से स्वतंत्र प्रदर्शन करती है, इस प्रकार डेटा अंतराल को रोकता है और इसमें 1000: 1 संपीड़न अनुपात होता है।
कुल डेटा संपीड़न
शक्ति विश्लेषक का विशिष्ट कार्य दिए गए अंतराल पर एकत्रित किए गए डेटा संग्रह का निर्माण होता है। इस प्रकार सामान्यतः 10 मिनट या 1 मिनट के अंतराल का उपयोग IEC/IEEE PQ मानकों द्वारा निर्दिष्ट के रूप में किया जाता है। इस प्रकार के उपकरण के संचालन के समय महत्वपूर्ण संग्रह क्रॉस एट अल के रूप में आकार बनाया जाता है।।[10] इस प्रकार लैम्पेल-जिव-मार्कोव चेन एल्गोरिथम, bzip या अन्य समान दोषरहित संपीड़न एल्गोरिदम का उपयोग करके ऐसे अभिलेखागार पर संपीड़न अनुपात का प्रदर्शन किया जा सकता है। वास्तविक रूप से विद्युत गुणवत्ता संग्रह में संग्रहीत समय श्रृंखला पर भविष्यवाणी और मॉडलिंग का उपयोग करके पोस्ट प्रोसेसिंग संपीड़न की दक्षता में सामान्यतः और सुधार होता है। इस प्रकार की सरलीकृत तकनीकों के इस संयोजन से डेटा संग्रहण और डेटा अधिग्रहण प्रक्रियाओं दोनों में बचत होती है।
मानक
आपूर्ति की गई विद्युत की गुणवत्ता अंतरराष्ट्रीय मानकों और विभिन्न देशों द्वारा अपनाए गए उनके स्थानीय डेरिवेटिव में निर्धारित करते है:
इस प्रकार EN50160 विद्युत की गुणवत्ता के लिए यूरोपीय मानक है, जो एसी शक्ति में वोल्टेज को परिभाषित करने वाले विभिन्न मापदंडों के लिए विरूपण की स्वीकार्य सीमा निर्धारित करता है।
IEEE-519 विद्युत प्रणालियों के लिए उत्तर अमेरिकी दिशानिर्देशन करता हैं। इसे अनुशंसित अभ्यास के रूप में परिभाषित किया गया है[11] और, EN50160 के विपरीत, यह दिशानिर्देश धारा विरूपण के साथ-साथ वोल्टेज को संदर्भित करता है।
IEC 61000-4-30 विद्युत की गुणवत्ता की जाँच के लिए मानक परिभाषित करने की विधि हैं। संस्करण 3 (2015) में धारा माप सम्मिलित हैं, पिछले संस्करणों के विपरीत जो अकेले वोल्टेज की माप करने से संबंधित रहता हैं।
यह भी देखें
संदर्भ
- ↑ Von Meier, Alexandra (2006). Electric power systems: a conceptual introduction. John Wiley & Sons. p. 1. ISBN 9780470036402.
- ↑ Energy Storage Association
- ↑ "वोल्टेज सहिष्णुता सीमा" (PDF). pge.com. Pacific Gas and Electric Company. Retrieved 21 June 2022.
- ↑ 4.0 4.1 Shertukde, Hemchandra Madhusudan (2014). वितरित फोटोवोल्टिक ग्रिड ट्रांसफार्मर. p. 91. ISBN 978-1482247190. OCLC 897338163.
- ↑ "डेटा सेंटर में हार्मोनिक फ़िल्टरिंग? [यूपीएस डिजाइन पर बिजली की गुणवत्ता पर चर्चा]". DataCenterFix.com. Archived from the original on 2011-07-08. Retrieved 2010-12-14.
- ↑ Galli; et al. (Oct 1996). "वेवलेट विश्लेषण की शक्ति की खोज". IEEE Computer Applications in Power. IEEE. 9 (4): 37–41. doi:10.1109/67.539845.
- ↑ Ribeiro; et al. (2001). "बिजली गुणवत्ता विश्लेषण में अनुप्रयोगों के लिए एक उन्नत डेटा संपीड़न विधि". IECON '01. Nov. 29-Dec. 2, 2001, IEEE, The 27th Annual Conference of the IEEE Industrial Electronics Society. Vol. 1. pp. 676–681. doi:10.1109/IECON.2001.976594.
- ↑ Ribeiro; et al. (Apr 2004). "बिजली गुणवत्ता मूल्यांकन में सिग्नल प्रोसेसिंग और संपीड़न के लिए एक बेहतर तरीका". IEEE Transactions on Power Delivery. IEEE. 19 (2): 464–471. doi:10.1109/PES.2003.1270480. ISBN 0-7803-7989-6. S2CID 62578540.
- ↑ US 7415370, Nisenblat, Pol; Broshi, Amir M. & Efrati, Ofir, "बिजली गुणवत्ता निगरानी", published April 18, 2004, issued September 21, 2006
- ↑ Kraus, Jan; Tobiska, Tomas; Bubla, Viktor (2009). "बिजली की गुणवत्ता वाले डेटासेट पर दोषरहित एनकोडिंग और कम्प्रेशन एल्गोरिदम लागू होते हैं". CIRED 2009 - 20th International Conference and Exhibition on Electricity Distribution - Part 1. 20th International Conference and Exhibition on Electricity Distribution, 8–11 June 2009. pp. 1–4. ISBN 978-1-84919126-5.
- ↑ "IEEE 519-2014 - IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems". standards.ieee.org. Retrieved 2020-11-16.
साहित्य
- Dugan, Roger C.; Mark McGranaghan; Surya Santoso; H. Wayne Beaty (2003). इलेक्ट्रिकल पावर सिस्टम्स गुणवत्ता. McGraw-Hill Companies, Inc. ISBN 978-0-07-138622-7.
- Meier, Alexandra von (2006). इलेक्ट्रिक पावर सिस्टम्स: एक वैचारिक परिचय. John Wiley & Sons, Inc. ISBN 978-0471178590.
- Heydt, G.T. (1991). बिजली की गुणवत्ता. Stars in a Circle Publications. Library Of Congress 621.3191. ISBN 978-9992203040.
- Bollen, Math H.J. (2000). बिजली की गुणवत्ता की समस्याओं को समझना: वोल्टेज में कमी और रुकावटें. New York: IEEE Press. ISBN 0-7803-4713-7.
- Sankaran, C. (2002). बिजली की गुणवत्ता. CRC Press LLC. ISBN 978-0-8493-1040-9.
- Baggini, A. (2008). बिजली की गुणवत्ता की पुस्तिका. Wiley. ISBN 978-0-470-06561-7.
- Kusko, Alex; Marc Thompson (2007). विद्युत प्रणालियों में विद्युत गुणवत्ता. McGraw Hill. ISBN 978-0-07-147075-9.
- Chattopadhyay, Surajit; Mitra, Madhuchhanda; Sengupta, Samarjit (2011). बिजली की गुणवत्ता. Springer Science+Business. ISBN 978-94-007-0634-7.