विश्लेषणात्मक संकेत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Distinguish|विश्लेषणात्मक अभिव्यक्ति|विश्लेषणात्मक कार्य}}
{{Distinguish|विश्लेषणात्मक अभिव्यक्ति|विश्लेषणात्मक कार्य}}


गणित और [[ संकेत आगे बढ़ाना | सिग्नल प्रोसेसिंग]] में, एक विश्लेषणात्मक सिग्नल एक जटिल मूल्यवान फलन के रूप में होता है, जिसमें कोई [[नकारात्मक आवृत्ति]] घटक नहीं होता है।<ref>Smith, J.O. "Analytic Signals and Hilbert Transform Filters", in Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications, Second Edition, https://ccrma.stanford.edu/~jos/r320/Analytic_Signals_Hilbert_Transform.html, or https://www.dsprelated.com/freebooks/mdft/Analytic_Signals_Hilbert_Transform.html, online book, 2007 edition, accessed 2021-04-29.</ref> एक विश्लेषणात्मक संकेत के वास्तविक और काल्पनिक भाग हिल्बर्ट परिवर्तन द्वारा एक दूसरे से संबंधित वास्तविक-मूल्यवान फलन के रूप में होता है।
गणित और [[ संकेत आगे बढ़ाना |सिग्नल प्रोसेसिंग]] में, एक विश्लेषणात्मक सिग्नल एक जटिल मूल्यवान फलन के रूप में होता है, जिसमें कोई [[नकारात्मक आवृत्ति]] घटक नहीं होता है।<ref>Smith, J.O. "Analytic Signals and Hilbert Transform Filters", in Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications, Second Edition, https://ccrma.stanford.edu/~jos/r320/Analytic_Signals_Hilbert_Transform.html, or https://www.dsprelated.com/freebooks/mdft/Analytic_Signals_Hilbert_Transform.html, online book, 2007 edition, accessed 2021-04-29.</ref> एक विश्लेषणात्मक सिग्नल के वास्तविक और काल्पनिक भाग हिल्बर्ट परिवर्तन द्वारा एक दूसरे से संबंधित वास्तविक-मूल्यवान फलन के रूप में होता है।


[[वास्तविक फलन]] का विश्लेषणात्मक प्रतिनिधित्व एक मूल्यवान विश्लेषणात्मक संकेत के रूप में होता है, जिसमें मूल फलन और उसका हिल्बर्ट रूपांतरण के रूप में सम्मलित होते है। यह प्रतिनिधित्व कई गणितीय जोड़तोड़ की सुविधा प्रदान करते है। मूल विचार यह है कि फूरियर रूपांतरण या वास्तविक मूल्यवान फलन के स्पेक्ट्रम के नकारात्मक आवृत्ति घटक ऐसे [[स्पेक्ट्रम]] के [[हर्मिटियन समरूपता]] के कारण अनावश्यक रूप में होते है। इन नकारात्मक आवृत्ति घटकों को सूचना के हानि के बिना त्याग दिया जाता है, बशर्ते कोई जटिल मूल्यवान फलन से निपटने के लिए तैयार होता है। यह फलन की कुछ विशेषताओं को अधिक सुलभ रूप में बनाता है और मॉड्यूलेशन और डिमॉड्यूलेशन प्रोद्योगिकीय जैसे एकल साइडबैंड की व्युत्पत्ति की सुविधा प्रदान करता है।
[[वास्तविक फलन]] का विश्लेषणात्मक प्रतिनिधित्व एक मूल्यवान विश्लेषणात्मक सिग्नल के रूप में होता है, जिसमें मूल फलन और उसका हिल्बर्ट रूपांतरण के रूप में सम्मलित होते है। यह प्रतिनिधित्व कई गणितीय जोड़तोड़ की सुविधा प्रदान करते है। मूल विचार यह है कि फूरियर रूपांतरण या वास्तविक मूल्यवान फलन के स्पेक्ट्रम के नकारात्मक आवृत्ति घटक ऐसे [[स्पेक्ट्रम]] के [[हर्मिटियन समरूपता]] के कारण अनावश्यक रूप में होते है। इन नकारात्मक आवृत्ति घटकों को सूचना के हानि के बिना त्याग दिया जाता है, बशर्ते कोई जटिल मूल्यवान फलन से निपटने के लिए तैयार होता है। यह फलन की कुछ विशेषताओं को अधिक सुलभ रूप में बनाता है और मॉड्यूलेशन और डिमॉड्यूलेशन प्रोद्योगिकीय जैसे एकल साइडबैंड की व्युत्पत्ति की सुविधा प्रदान करता है।


जब तक हेरफेर किए गए फलन में कोई नकारात्मक आवृत्ति घटक नहीं होता है अर्थात, यह अभी भी '' विश्लेषणात्मक ''रूप में होता है, जटिल से वास्तविक में रूपांतरण केवल काल्पनिक भाग को छोड़ने की स्थिति के रूप में होती है। विश्लेषणात्मक प्रतिनिधित्व चरण साइन तरंगों की अवधारणा का एक सामान्यीकरण रूप होता है<ref name=Bracewell>Bracewell, Ron. ''The Fourier Transform and Its Applications''. McGraw-Hill, 1965. p&nbsp;269</ref> जबकि चरण समय-अपरिवर्तनीय आयाम चरण तक ही सीमित होते है और आवृत्ति विश्लेषणात्मक संकेत समय चर मापदंडों के लिए अनुमति देता है।
जब तक हेरफेर किए गए फलन में कोई नकारात्मक आवृत्ति घटक नहीं होता है अर्थात, यह अभी भी ''विश्लेषणात्मक ''रूप में होता है, जटिल से वास्तविक में रूपांतरण केवल काल्पनिक भाग को छोड़ने की स्थिति के रूप में होती है। विश्लेषणात्मक प्रतिनिधित्व चरण साइन तरंगों की अवधारणा का एक सामान्यीकरण रूप होता है<ref name=Bracewell>Bracewell, Ron. ''The Fourier Transform and Its Applications''. McGraw-Hill, 1965. p&nbsp;269</ref> जबकि चरण समय-अपरिवर्तनीय आयाम चरण तक ही सीमित होते है और आवृत्ति विश्लेषणात्मक सिग्नल समय चर मापदंडों के लिए अनुमति देता है।


== परिभाषा ==
== परिभाषा ==
[[File:Analytisches-signal-uebertragungsfunktion-en.svg|thumb|250px|एक विश्लेषणात्मक संकेत बनाने के लिए स्थानांतरण फलन ]]यदि <math>s(t)</math> फूरियर रूपांतरण के साथ एक वास्तविक-मूल्यवान फलन <math>S(f)</math> के रूप में होता है, तब परिवर्तन में [[हर्मिटियन फ़ंक्शन|हर्मिटियन]] फलन समरूपता <math>f = 0</math> एक्सिस पर होता है।
[[File:Analytisches-signal-uebertragungsfunktion-en.svg|thumb|250px|एक विश्लेषणात्मक सिग्नल बनाने के लिए स्थानांतरण फलन का प्रयोग करते है  ]]यदि <math>s(t)</math> फूरियर रूपांतरण के साथ एक वास्तविक-मूल्यवान फलन <math>S(f)</math> के रूप में होता है, तब परिवर्तन में [[हर्मिटियन फ़ंक्शन|हर्मिटियन]] फलन समरूपता <math>f = 0</math> एक्सिस पर होता है।
:<math>S(-f) = S(f)^*,</math>
:<math>S(-f) = S(f)^*,</math>
जहाँ <math>S(f)^*</math> का जटिल संयुग्म <math>S(f)</math> के रूप में होता है। फलन,
जहाँ <math>S(f)^*</math> का जटिल संयुग्म <math>S(f)</math> के रूप में होता है। फलन,
:<math>
:<math>
\begin{align}
\begin{align}
Line 24: Line 24:
जहाँ  
जहाँ  
*<math>\operatorname{u}(f)</math> [[हैवीसाइड स्टेप फंक्शन|हैवीसाइड स्टेप फलन]] के रूप में होते है।
*<math>\operatorname{u}(f)</math> [[हैवीसाइड स्टेप फंक्शन|हैवीसाइड स्टेप फलन]] के रूप में होते है।
*<math>\sgn(f)</math> [[साइन समारोह|साइन फलन]] के रूप में होते है।
*<math>\sgn(f)</math> [[साइन समारोह|साइन फलन]] के रूप में होते है।


केवल गैर-नकारात्मक आवृत्ति घटक के रूप में सम्मलित होते है <math>S(f)</math>.और ऑपरेशन प्रतिवर्ती के रूप में है, <math>S(f)</math> की हर्मिटियन समरूपता के कारण होती है,
केवल गैर-नकारात्मक आवृत्ति घटक के रूप में सम्मलित होते है <math>S(f)</math>.और ऑपरेशन प्रतिवर्ती के रूप में है, <math>S(f)</math> की हर्मिटियन समरूपता के कारण होती है,
Line 38: Line 38:
\end{align}
\end{align}
</math>
</math>
<math>s(t)</math> का विश्लेषणात्मक संकेत  <math>S_\mathrm{a}(f)</math> का व्युत्क्रम फूरियर रूपांतरण के रूप में है
<math>s(t)</math> का विश्लेषणात्मक सिग्नल <math>S_\mathrm{a}(f)</math> का व्युत्क्रम फूरियर रूपांतरण के रूप में है
:<math>\begin{align}
:<math>\begin{align}
s_\mathrm{a}(t) &\triangleq \mathcal{F}^{-1}[S_\mathrm{a}(f)]\\
s_\mathrm{a}(t) &\triangleq \mathcal{F}^{-1}[S_\mathrm{a}(f)]\\
Line 59: Line 59:


===नकारात्मक आवृत्ति घटक===
===नकारात्मक आवृत्ति घटक===
तब से <math>s(t) = \operatorname{Re}[s_\mathrm{a}(t)]</math>, नकारात्मक आवृत्ति घटकों को पुनर्स्थापित करता है <math>\operatorname{Im}[s_\mathrm{a}(t)]</math> को त्यागने का एक साधारण स्थिति होती है, जो प्रति-सहज के रूप में लग सकती है। हम यह नोट कर सकते हैं कि जटिल संयुग्म <math>s_\mathrm{a}^*(t)</math> में केवल नकारात्मक आवृत्ति घटक के रूप में सम्मलित होती है। और इसलिए <math>s(t) = \operatorname{Re}[s_\mathrm{a}^*(t)]</math> दबा हुआ सकारात्मक आवृत्ति घटकों को पुनर्स्थापित करता है। एक अन्य दृष्टिकोण यह है कि किसी भी स्थिति में काल्पनिक घटक एक ऐसा शब्द है, जो आवृत्ति घटकों को <math>s(t).</math> से घटाता है। <math>\operatorname{Re}</math> ऑपरेटर नए घटकों को जोड़ने का आभास देते हुए, घटाव को हटा देता है।
तब से <math>s(t) = \operatorname{Re}[s_\mathrm{a}(t)]</math>, नकारात्मक आवृत्ति घटकों को पुनर्स्थापित करता है <math>\operatorname{Im}[s_\mathrm{a}(t)]</math> को त्यागने का एक साधारण स्थिति होती है, जो प्रति-सहज के रूप में लग सकती है। हम यह नोट कर सकते हैं कि जटिल संयुग्म <math>s_\mathrm{a}^*(t)</math> में केवल नकारात्मक आवृत्ति घटक के रूप में सम्मलित होती है। और इसलिए <math>s(t) = \operatorname{Re}[s_\mathrm{a}^*(t)]</math> दबा हुआ सकारात्मक आवृत्ति घटकों को पुनर्स्थापित करता है। एक अन्य दृष्टिकोण यह है कि किसी भी स्थिति में काल्पनिक घटक एक ऐसा शब्द है, जो आवृत्ति घटकों को <math>s(t).</math> से घटाता है। <math>\operatorname{Re}</math> ऑपरेटर नए घटकों को जोड़ने का आभास देते हुए, घटाव को हटा देता है।


== उदाहरण ==
== उदाहरण ==
Line 70: Line 70:
   s_\mathrm{a}(t) &= s(t) + j\hat{s}(t) = \cos(\omega t) + j\sin(\omega t) = e^{j\omega t}.
   s_\mathrm{a}(t) &= s(t) + j\hat{s}(t) = \cos(\omega t) + j\sin(\omega t) = e^{j\omega t}.
\end{align}</math>
\end{align}</math>
अंतिम समानता यूलर का सूत्र है, जिसका एक उपप्रमेय <math display="inline">\cos(\omega t) = \frac{1}{2} \left(e^{j\omega t} + e^{j (-\omega) t}\right).</math> के रूप में होता है, सामान्यतः एक साधारण साइन वक्र का विश्लेषणात्मक प्रतिनिधित्व इसे जटिल घातीयों के संदर्भ में व्यक्त करता है और नकारात्मक आवृत्ति घटक को छोड़कर सकारात्मक आवृत्ति घटक को दोगुना करके प्राप्त किया जाता है। और साइन वक्र के योग का विश्लेषणात्मक प्रतिनिधित्व व्यक्तिगत साइन वक्र के विश्लेषणात्मक प्रतिनिधित्वों का योग होता है।
अंतिम समानता यूलर का सूत्र है, जिसका एक उपप्रमेय <math display="inline">\cos(\omega t) = \frac{1}{2} \left(e^{j\omega t} + e^{j (-\omega) t}\right).</math> के रूप में होता है, सामान्यतः एक साधारण साइन वक्र का विश्लेषणात्मक प्रतिनिधित्व इसे जटिल घातीयों के संदर्भ में व्यक्त करता है और नकारात्मक आवृत्ति घटक को छोड़कर सकारात्मक आवृत्ति घटक को दोगुना करके प्राप्त किया जाता है। और साइन वक्र के योग का विश्लेषणात्मक प्रतिनिधित्व व्यक्तिगत साइन वक्र के विश्लेषणात्मक प्रतिनिधित्वों का योग होता है।


=== उदाहरण 2 ===
=== उदाहरण 2 ===
Line 88: Line 88:
नकारात्मक आवृत्ति घटकों को हटाने के लिए हिल्बर्ट ट्रांसफ़ॉर्म विधि का उपयोग करने का यह एक और उदाहरण है। हम ध्यान दें कि कुछ भी हमें गणना करने से नहीं रोकता है <math>s_\mathrm{a}(t)</math> एक जटिल-मूल्यवान के लिए <math>s(t)</math>.है, लेकिन यह प्रतिवर्ती प्रतिनिधित्व नहीं हो सकता है, क्योंकि मूल स्पेक्ट्रम सामान्य रूप से सममित नहीं होते है। इसलिए इस उदाहरण को छोड़कर सामान्य चर्चा वास्तविक-मूल्यवान <math>s(t)</math>.के रूप में होता है।
नकारात्मक आवृत्ति घटकों को हटाने के लिए हिल्बर्ट ट्रांसफ़ॉर्म विधि का उपयोग करने का यह एक और उदाहरण है। हम ध्यान दें कि कुछ भी हमें गणना करने से नहीं रोकता है <math>s_\mathrm{a}(t)</math> एक जटिल-मूल्यवान के लिए <math>s(t)</math>.है, लेकिन यह प्रतिवर्ती प्रतिनिधित्व नहीं हो सकता है, क्योंकि मूल स्पेक्ट्रम सामान्य रूप से सममित नहीं होते है। इसलिए इस उदाहरण को छोड़कर सामान्य चर्चा वास्तविक-मूल्यवान <math>s(t)</math>.के रूप में होता है।


:<math>s(t) = e^{-j\omega t}</math>, जहाँ <math>\omega > 0</math>.
:<math>s(t) = e^{-j\omega t}</math>, जहाँ <math>\omega > 0</math>.


तब:
तब:
Line 100: Line 100:


=== तात्कालिक आयाम और चरण ===
=== तात्कालिक आयाम और चरण ===
[[Image:analytic.svg|thumb|300px|नीले रंग में एक फलन और लाल रंग में इसके विश्लेषणात्मक प्रतिनिधित्व का परिमाण, लिफाफा प्रभाव दिखा रहा है।]]ध्रुवीय निर्देशांक में एक विश्लेषणात्मक संकेत भी व्यक्त किया जा सकता है:
[[Image:analytic.svg|thumb|300px|नीले रंग में एक फलन और लाल रंग में इसके विश्लेषणात्मक प्रतिनिधित्व का परिमाण, लिफाफा प्रभाव दिखा रहा है।]]ध्रुवीय निर्देशांक में एक विश्लेषणात्मक सिग्नल भी व्यक्त किया जाता है
:<math>s_\mathrm{a}(t) = s_\mathrm{m}(t)e^{j\phi(t)},</math>
:<math>s_\mathrm{a}(t) = s_\mathrm{m}(t)e^{j\phi(t)},</math>
जहां निम्नलिखित समय-भिन्न मात्राएं प्रस्तुत की जाती हैं:
जहां निम्नलिखित समय-भिन्न भौतिक राशियाँ के रूप में प्रस्तुत की जाती हैं
*<math>s_\mathrm{m}(t) \triangleq |s_\mathrm{a}(t)|</math> तात्कालिक आयाम या आवरण (तरंगें) कहा जाता है;
*<math>s_\mathrm{m}(t) \triangleq |s_\mathrm{a}(t)|</math> तात्कालिक आयाम या आवरण (तरंगें) कहा जाता
*<math>\phi(t) \triangleq \arg\!\left[s_\mathrm{a}(t)\right]</math> [[तात्कालिक चरण]] या चरण कोण कहा जाता है।
*<math>\phi(t) \triangleq \arg\!\left[s_\mathrm{a}(t)\right]</math> [[तात्कालिक चरण]] या चरण कोण कहा जाता है।


संलग्न आरेख में, नीला वक्र दर्शाता है <math>s(t)</math> और लाल वक्र इसी को दर्शाता है <math>s_\mathrm{m}(t)</math>.
संलग्न आरेख में, नीला वक्र <math>s(t)</math> को दर्शाता है और लाल वक्र संगत <math>s_\mathrm{m}(t)</math>.को दर्शाता है।


[[ चरण लपेटन ]] तात्कालिक चरण के समय व्युत्पन्न में रेडियन/सेकंड की इकाइयाँ होती हैं, और इसे तात्कालिक कोणीय आवृत्ति कहा जाता है:
[[ चरण लपेटन |अलिखित]] तात्कालिक चरण के समय व्युत्पन्न में रेडियन/सेकंड की इकाइयाँ होती हैं, और इसे तात्कालिक कोणीय आवृत्ति कहा जाता है
:<math>\omega(t) \triangleq \frac{d\phi}{dt}(t).</math>
:<math>\omega(t) \triangleq \frac{d\phi}{dt}(t).</math>
तात्कालिक चरण # तात्कालिक आवृत्ति ([[ हेटर्स ]] में) इसलिए है:
[[हर्ट्ज़]] में तात्कालिक चरण आवृत्ति है इसलिए,
:<math>f(t)\triangleq \frac{1}{2\pi}\omega(t).</math>  <ref>B. Boashash, "Estimating and Interpreting the Instantaneous Frequency of a Signal-Part I: Fundamentals", Proceedings of the IEEE, Vol. 80, No. 4, pp. 519–538, April 1992</ref>
:<math>f(t)\triangleq \frac{1}{2\pi}\omega(t).</math> <ref>B. Boashash, "Estimating and Interpreting the Instantaneous Frequency of a Signal-Part I: Fundamentals", Proceedings of the IEEE, Vol. 80, No. 4, pp. 519–538, April 1992</ref>
तात्कालिक आयाम, और तात्कालिक चरण और आवृत्ति सिग्नल की स्थानीय विशेषताओं को मापने और पता लगाने के लिए उपयोग किए जाने वाले कुछ अनुप्रयोगों में होती है। सिग्नल के विश्लेषणात्मक प्रतिनिधित्व का एक अन्य अनुप्रयोग [[मॉडुलन]] के विमॉडुलन से संबंधित है। ध्रुवीय निर्देशांक आसानी से आयाम मॉडुलन और चरण (या आवृत्ति) मॉडुलन के प्रभावों को अलग करते हैं, और कुछ प्रकार के संकेतों को प्रभावी ढंग से ध्वस्त करते हैं।
तात्कालिक आयाम, और तात्कालिक चरण और आवृत्ति सिग्नल की स्थानीय विशेषताओं को मापने और पता लगाने के लिए उपयोग किए जाने वाले कुछ अनुप्रयोगों में होती है। सिग्नल के विश्लेषणात्मक प्रतिनिधित्व का एक अन्य अनुप्रयोग [[मॉडुलन]] के विमॉडुलन से संबंधित होता है। ध्रुवीय निर्देशांक आसानी से आयाम मॉडुलन और चरण या आवृत्ति मॉडुलन के प्रभावों को अलग करते हैं और कुछ प्रकार के सिग्नलों को प्रभावी ढंग से ध्वस्त करते हैं।


=== {{anchor|Complex envelope}} जटिल लिफाफा/बेसबैंड ===
=== जटिल लिफाफा/बेसबैंड ===
विश्लेषणात्मक संकेतों को अधिकांशतः   0 हर्ट्ज की ओर आवृत्ति (नीचे-रूपांतरित) में स्थानांतरित किया जाता है, संभवतः [गैर-सममित] नकारात्मक आवृत्ति घटक बनाते हैं:
विश्लेषणात्मक सिग्नलों को अधिकांशतः 0 हर्ट्ज की ओर आवृत्ति नीचे-रूपांतरित में स्थानांतरित किया जाता है, संभवतः गैर-सममित नकारात्मक आवृत्ति घटक के रूप में होते है
<math display="block">{s_\mathrm{a}}_{\downarrow}(t) \triangleq s_\mathrm{a}(t)e^{-j\omega_0 t} = s_\mathrm{m}(t)e^{j(\phi(t) - \omega_0 t)},</math>
<math display="block">{s_\mathrm{a}}_{\downarrow}(t) \triangleq s_\mathrm{a}(t)e^{-j\omega_0 t} = s_\mathrm{m}(t)e^{j(\phi(t) - \omega_0 t)},</math>
जहाँ <math>\omega_0</math> एक मनमाना संदर्भ कोणीय आवृत्ति है।<ref name=Bracewell/>
जहाँ <math>\omega_0</math> एक यादृच्छिक संदर्भ कोणीय आवृत्ति के रूप में होती है।<ref name=Bracewell/>


यह फलन विभिन्न नामों से जाता है, जैसे जटिल लिफाफा और जटिल [[बेसबैंड]]जटिल लिफाफा अद्वितीय नहीं है; यह की पसंद से निर्धारित होता है <math>\omega_0</math>. इस अवधारणा का प्रयोग अधिकांशतः   [[पासबैंड संकेत]]ों के साथ काम करते समय किया जाता है। यदि <math>s(t)</math> एक संग्राहक संकेत है, <math>\omega_0</math> इसकी [[वाहक आवृत्ति]] के बराबर हो सकता है।
यह फलन विभिन्न नामों से जाता है, जैसे जटिल लिफाफा और जटिल [[बेसबैंड]] के रूप में होते है। जटिल लिफाफा अद्वितीय रूप में नहीं होते है; यह <math>\omega_0</math>.की पसंद से निर्धारित होता है। इस अवधारणा का प्रयोग अधिकांशतः [[पासबैंड संकेत|पासबैंड सिग्नल]] के साथ काम करते समय किया जाता है। यदि <math>s(t)</math> एक माडुलित सिग्नल के रूप में है, तो <math>\omega_0</math> इसकी [[वाहक आवृत्ति]] के बराबर हो सकता है।


अन्य स्थितियों में, <math>\omega_0</math> वांछित पासबैंड के बीच में कहीं चुना गया है। फिर वास्तविक गुणांक के साथ एक साधारण निम्न-पास फ़िल्टर ब्याज के हिस्से को बढ़ा सकता है। एक अन्य मकसद उच्चतम आवृत्ति को कम करना है, जो कि उपनाम-मुक्त नमूनाकरण के लिए न्यूनतम दर को कम करता है। एक आवृत्ति बदलाव जटिल सिग्नल प्रतिनिधित्व के गणितीय ट्रैक्टेबिलिटी को कम नहीं करता है। तो उस मायने में, डाउन-कन्वर्टेड सिग्नल अभी भी विश्लेषणात्मक है। चूँकि , वास्तविक-मूल्यवान प्रतिनिधित्व को पुनर्स्थापित करना अब केवल वास्तविक घटक को निकालने का सरल स्थिति नहीं है। अप-रूपांतरण की आवश्यकता हो सकती है, और यदि सिग्नल [[upsampling]] (सिग्नल प्रोसेसिंग) (असतत-समय) किया गया है, तो [[अलियासिंग]] से बचने के लिए [[ प्रक्षेप ]] (अपसैंपलिंग) भी आवश्यक हो सकता है।
अन्य स्थितियों में, <math>\omega_0</math> वांछित पासबैंड के बीच में कहीं चुना गया है। फिर वास्तविक गुणांक के साथ एक साधारण निम्न-पास फ़िल्टर इंटेरेस्ट के हिस्से को बढ़ा सकता है। एक अन्य मकसद उच्चतम आवृत्ति को कम करना है, जो कि उपनाम-मुक्त नमूनाकरण के लिए न्यूनतम दर को कम करता है। एक आवृत्ति बदलाव जटिल सिग्नल प्रतिनिधित्व के गणितीय ट्रैक्टेबिलिटी को कम नहीं करता है। तो उस मायने में, डाउन कन्वर्टेड सिग्नल अभी भी विश्लेषणात्मक रूप में होते है। चूँकि, वास्तविक-मूल्यवान प्रतिनिधित्व को पुनर्स्थापित करना अब केवल वास्तविक घटक को निकालने का सरल स्थिति नहीं है। अप रूपांतरण की आवश्यकता होती है और यदि सिग्नल को असतत नमूना के रूप में किया गया है, तो [[अलियासिंग]] से बचने के लिए [[ प्रक्षेप |इंटरपोलेशन]] अपसैंपलिंग भी आवश्यक हो सकता है।


यदि <math>\omega_0</math> की उच्चतम आवृत्ति से बड़ा चुना जाता है <math>s_\mathrm{a}(t),</math> तब <math>{s_\mathrm{a}}_{\downarrow}(t)</math> कोई सकारात्मक आवृत्तियाँ नहीं हैं। उस स्थिति में, वास्तविक घटक निकालने से उन्हें पुनर्स्थापित किया जाता है, लेकिन विपरीत क्रम में; कम आवृत्ति वाले घटक अब उच्च वाले हैं और इसके विपरीत। इसका उपयोग एक प्रकार के [[सिंगल-साइडबैंड मॉड्यूलेशन]]|सिंगल-साइडबैंड सिग्नल को लोअर साइडबैंड या इनवर्टेड साइडबैंड कहा जाता है।
यदि <math>\omega_0</math> की उच्चतम आवृत्ति से बड़ा चुना जाता है <math>s_\mathrm{a}(t),</math> तब <math>{s_\mathrm{a}}_{\downarrow}(t)</math> कोई सकारात्मक आवृत्तियाँ नहीं होती है। उस स्थिति में, वास्तविक घटक निकालने से उन्हें पुनर्स्थापित किया जाता है, लेकिन विपरीत क्रम में कम आवृत्ति वाले घटक अब उच्च वाले होते है और इसके विपरीत इसका उपयोग एक प्रकार के [[सिंगल-साइडबैंड मॉड्यूलेशन]] को कम करने के लिए किया जा सकता है जिसे लोअर साइडबैंड या इनवर्टेड साइडबैंड कहा जाता है।


संदर्भ आवृत्ति के अन्य विकल्पों पर कभी-कभी विचार किया जाता है:
संदर्भ आवृत्ति के अन्य विकल्पों पर कभी-कभी विचार किया जाता है।
* कभी-कभी <math>\omega_0</math> कम करने के लिए चुना गया है <math display="block">\int_0^{+\infty}(\omega - \omega_0)^2|S_\mathrm{a}(\omega)|^2\, d\omega.</math>
* कभी-कभी <math>\omega_0</math> कम करने के लिए चुना गया है <math display="block">\int_0^{+\infty}(\omega - \omega_0)^2|S_\mathrm{a}(\omega)|^2\, d\omega.</math>
* वैकल्पिक रूप से,<ref>{{Cite journal|last=Justice|first=J.|date=1979-12-01|title=संगीत संगणना में विश्लेषणात्मक सिग्नल प्रोसेसिंग| journal=IEEE Transactions on Acoustics, Speech, and Signal Processing|volume=27|issue=6|pages=670–684| doi=10.1109/TASSP.1979.1163321| issn=0096-3518}}</ref> <math>\omega_0</math> अलिखित तात्कालिक चरण को रैखिक रूप से अनुमानित करने में औसत वर्ग त्रुटि को कम करने के लिए चुना जा सकता है <math>\phi(t)</math>: <math display="block">\int_{-\infty}^{+\infty}[\omega(t) - \omega_0]^2 |s_\mathrm{a}(t)|^2\, dt</math>
* वैकल्पिक रूप से,<ref>{{Cite journal|last=Justice|first=J.|date=1979-12-01|title=संगीत संगणना में विश्लेषणात्मक सिग्नल प्रोसेसिंग| journal=IEEE Transactions on Acoustics, Speech, and Signal Processing|volume=27|issue=6|pages=670–684| doi=10.1109/TASSP.1979.1163321| issn=0096-3518}}</ref> <math>\omega_0</math> को अलिखित तात्कालिक चरण <math>\phi(t)</math> को रैखिक रूप से अनुमानित करने में औसत वर्ग त्रुटि को कम करने के लिए चुना जा सकता है।<math display="block">\int_{-\infty}^{+\infty}[\omega(t) - \omega_0]^2 |s_\mathrm{a}(t)|^2\, dt</math>
* या कोई अन्य विकल्प (कुछ इष्टतम के लिए <math>\theta</math>): <math display="block">\int_{-\infty}^{+\infty}[\phi(t) - (\omega_0 t + \theta)]^2\, dt.</math>
* या कुछ इष्टतम <math>\theta</math> के लिए कोई अन्य विकल्प के रूप में होते है<math display="block">\int_{-\infty}^{+\infty}[\phi(t) - (\omega_0 t + \theta)]^2\, dt.</math>
समय-आवृत्ति सिग्नल प्रोसेसिंग के क्षेत्र में, यह दिखाया गया था कि विग्नर-विले वितरण की परिभाषा में विश्लेषणात्मक सिग्नल की आवश्यकता थी जिससे कि व्यावहारिक अनुप्रयोगों के लिए आवश्यक वांछित गुण हो सकें।<ref>B. Boashash, “Notes on the use of the Wigner distribution for time frequency signal analysis”, IEEE Trans. on Acoustics, Speech, and Signal Processing , vol. 26, no. 9, 1987</ref>
समय-आवृत्ति सिग्नल प्रोसेसिंग के क्षेत्र में, यह दिखाया गया था कि विग्नर-विले वितरण की परिभाषा में विश्लेषणात्मक सिग्नल की आवश्यकता होती थी, जिससे कि व्यावहारिक अनुप्रयोगों के लिए आवश्यक वांछित गुण के रूप में हो सकें।<ref>B. Boashash, “Notes on the use of the Wigner distribution for time frequency signal analysis”, IEEE Trans. on Acoustics, Speech, and Signal Processing , vol. 26, no. 9, 1987</ref>
कभी-कभी वाक्यांश जटिल लिफाफे को एक (निरंतर-आवृत्ति) चरण के [[जटिल आयाम]] का सरल अर्थ दिया जाता है;{{efn|"the complex envelope (or complex amplitude)"<ref>{{Cite book|url=https://books.google.com/books?id=tOeeJyP95IQC |title=Time-Frequency Analysis|last1=Hlawatsch|first1=Franz|last2=Auger|first2=François|date=2013-03-01|publisher=John Wiley & Sons |isbn=9781118623831|language=en}}</ref>}}{{efn|"the complex envelope (or complex amplitude)", p.&nbsp;586 <ref>{{Cite book |url=https://books.google.com/books?id=kxICp6t-CDAC&q=%2522complex%2520amplitude%2522%2520%2522complex%2520envelope%2522&pg=RA1-PA586 |title=Encyclopedia of Optical Engineering: Abe-Las, pages 1-1024|last=Driggers|first=Ronald G.|date=2003-01-01 |publisher=CRC Press|isbn=9780824742508|language=en}}</ref>}}
दूसरी बार जटिल लिफाफा <math> s_m(t)</math> जैसा कि ऊपर परिभाषित किया गया है, जटिल आयाम के समय-निर्भर सामान्यीकरण के रूप में व्याख्या की गई है।{{efn|"Complex envelope is an extended interpretation of complex amplitude as a function of time." p.&nbsp;85<ref>{{Cite book|url=https://books.google.com/books?id=tXQy5JdQyZoC|title=Global Environment Remote Sensing| last=Okamoto|first=Kenʼichi|date=2001-01-01|publisher=IOS Press|isbn=9781586031015|language=en}}</ref>}} वास्तविक-मूल्य वाले स्थिति में उनका संबंध उससे अलग नहीं है: अलग-अलग लिफाफा (तरंगें) निरंतर [[आयाम]] को सामान्य करता है।


== एकाधिक चर के संकेतों के लिए विश्लेषणात्मक संकेत का विस्तार ==
कभी-कभी वाक्यांश जटिल लिफाफे को एक निरंतर-आवृत्ति चरण के [[जटिल आयाम]] का सरल अर्थ दिया जाता है;{{efn|"the complex envelope (or complex amplitude)"<ref>{{Cite book|url=https://books.google.com/books?id=tOeeJyP95IQC |title=Time-Frequency Analysis|last1=Hlawatsch|first1=Franz|last2=Auger|first2=François|date=2013-03-01|publisher=John Wiley & Sons |isbn=9781118623831|language=en}}</ref>}}{{efn|"the complex envelope (or complex amplitude)", p.&nbsp;586 <ref>{{Cite book |url=https://books.google.com/books?id=kxICp6t-CDAC&q=%2522complex%2520amplitude%2522%2520%2522complex%2520envelope%2522&pg=RA1-PA586 |title=Encyclopedia of Optical Engineering: Abe-Las, pages 1-1024|last=Driggers|first=Ronald G.|date=2003-01-01 |publisher=CRC Press|isbn=9780824742508|language=en}}</ref>}} दूसरी बार जटिल लिफाफा <math> s_m(t)</math> जैसा कि ऊपर परिभाषित किया गया है, जटिल आयाम के समय-निर्भर सामान्यीकरण के रूप में व्याख्या की गई है।{{efn|"Complex envelope is an extended interpretation of complex amplitude as a function of time." p.&nbsp;85<ref>{{Cite book|url=https://books.google.com/books?id=tXQy5JdQyZoC|title=Global Environment Remote Sensing| last=Okamoto|first=Kenʼichi|date=2001-01-01|publisher=IOS Press|isbn=9781586031015|language=en}}</ref>}} वास्तविक-मूल्य वाले स्थिति में उनका संबंध उससे अलग नहीं होता है और अलग-अलग लिफाफा तरंगें निरंतर [[आयाम]] को सामान्य करते है।
विश्लेषणात्मक संकेत की अवधारणा एकल चर के संकेतों के लिए अच्छी तरह से परिभाषित है जो सामान्यतः  समय है। दो या दो से अधिक चर के संकेतों के लिए, एक विश्लेषणात्मक संकेत को अलग-अलग विधियों  से परिभाषित किया जा सकता है, और दो दृष्टिकोण नीचे प्रस्तुत किए गए हैं।


=== तदर्थ दिशा === के आधार पर बहु-आयामी विश्लेषणात्मक संकेत
== एकाधिक चर के सिग्नलों के लिए विश्लेषणात्मक सिग्नल का विस्तार ==
एक बार यह स्थापित हो जाने के बाद कि इस स्थिति के लिए नकारात्मक आवृत्तियों का क्या मतलब है, एक बहु-आयामी संकेत के लिए विश्लेषणात्मक संकेत का एक सीधा सामान्यीकरण किया जा सकता है। यह एक [[इकाई वेक्टर]] की शुरुआत करके किया जा सकता है <math>\boldsymbol \hat{u}</math> फूरियर डोमेन में और किसी आवृत्ति वेक्टर को लेबल करें <math>\boldsymbol \xi</math> नकारात्मक के रूप में यदि  <math>\boldsymbol \xi \cdot \boldsymbol \hat{u} < 0</math>. एक-चर संकेतों के स्थिति में वर्णित प्रक्रिया के अनुसार, सभी नकारात्मक आवृत्तियों को हटाकर और परिणाम को 2 से गुणा करके विश्लेषणात्मक संकेत उत्पन्न किया जाता है। चूँकि , इसके लिए कोई विशेष दिशा नहीं है <math>\boldsymbol \hat{u}</math> जिसे तब तक चुना जाना चाहिए जब तक कि कुछ अतिरिक्त बाधाएँ न हों। इसलिए, का चुनाव <math>\boldsymbol \hat{u}</math> तदर्थ है, या अनुप्रयोग विशिष्ट है।
विश्लेषणात्मक सिग्नल की अवधारणा एकल चर के सिग्नलों के लिए अच्छी तरह से परिभाषित है, जो सामान्यतः समय है। दो या दो से अधिक चर के सिग्नलों के लिए, एक विश्लेषणात्मक सिग्नल को अलग-अलग विधियों से परिभाषित किया जाता है और इस प्रकार दो दृष्टिकोण नीचे प्रस्तुत किए गए हैं।


=== [[ मोनोजेनिक संकेत ]] ===
=== तदर्थ दिशा के आधार पर बहु-आयामी विश्लेषणात्मक सिग्नल ===
<nowiki>विश्लेषणात्मक संकेत के वास्तविक और काल्पनिक भाग वेक्टर-मूल्यवान मोनोजेनिक सिग्नल के दो तत्वों के अनुरूप होते हैं, क्योंकि यह एक-चर संकेतों के लिए परिभाषित किया गया है। चूँकि , मोनोजेनिक सिग्नल को एक सीधे विधि से चर की मनमानी संख्या तक बढ़ाया जा सकता है, जिससे एक उत्पादन होता है {{nobreak|(</nowiki>''n'' + 1)}एन-वैरिएबल सिग्नल के स्थिति में }-डायमेंशनल वेक्टर-वैल्यू फंक्शन।
एक बार यह स्थापित हो जाने के बाद कि इस स्थिति के लिए नकारात्मक आवृत्तियों का क्या मतलब है, एक बहु-आयामी सिग्नल के लिए विश्लेषणात्मक सिग्नल का एक सीधा सामान्यीकरण किया जाता है। यह एक [[इकाई वेक्टर]] की शुरुआत करके किया जा सकता है <math>\boldsymbol \hat{u}</math> फूरियर डोमेन में और किसी आवृत्ति वेक्टर को लेबल करते है <math>\boldsymbol \xi</math> नकारात्मक के रूप में यदि <math>\boldsymbol \xi \cdot \boldsymbol \hat{u} < 0</math>. एक-चर सिग्नलों के स्थिति में वर्णित प्रक्रिया के अनुसार, सभी नकारात्मक आवृत्तियों को हटाकर और परिणाम को 2 से गुणा करके विश्लेषणात्मक सिग्नल उत्पन्न किया जाता है। चूँकि, <math>\boldsymbol \hat{u}</math> के लिए कोई विशेष दिशा नहीं होती है, जिसे तब तक चुना जाना चाहिए जब तक कि कुछ अतिरिक्त बाधाएँ न हों। इसलिए <math>\boldsymbol \hat{u}</math> का चुनाव तदर्थ या अनुप्रयोग विशिष्ट के रूप में होता है।
 
=== [[ मोनोजेनिक संकेत | मोनोजेनिक सिग्नल]] ===
विश्लेषणात्मक सिग्नल के वास्तविक और काल्पनिक भाग वेक्टर-मूल्यवान मोनोजेनिक सिग्नल के दो तत्वों के अनुरूप होते हैं, क्योंकि यह एक-चर सिग्नलों के लिए परिभाषित किया गया है। चूँकि, एन-वैरिएबल सिग्नल के स्थिति में एक (''n'' + 1) आयामी वेक्टर मूल्यवान फलन का उत्पादन करते हुए, मोनोजेनिक सिग्नल को सीधे विधि से चर की यादृच्छिक संख्या तक बढ़ाया जाता है


== यह भी देखें ==
== यह भी देखें ==
*हिल्बर्ट ट्रांसफॉर्म#असतत हिल्बर्ट ट्रांसफॉर्म
*हिल्बर्ट रूपांतरण की गणना के लिए व्यावहारिक विचार के रूप में होते है
* नकारात्मक आवृत्ति
* नकारात्मक आवृत्ति


Line 149: Line 149:
* सिंगल-साइडबैंड मॉड्यूलेशन
* सिंगल-साइडबैंड मॉड्यूलेशन
* [[चतुर्भुज फ़िल्टर]]
* [[चतुर्भुज फ़िल्टर]]
* [[कारण फ़िल्टर]]
* [[कारण फ़िल्टर|कौसल फ़िल्टर]]


==टिप्पणियाँ==
==टिप्पणियाँ==
Line 169: Line 169:
*[http://www.dsprelated.com/freebooks/mdft/Analytic_Signals_Hilbert_Transform.html Analytic Signals and Hilbert Transform Filters]
*[http://www.dsprelated.com/freebooks/mdft/Analytic_Signals_Hilbert_Transform.html Analytic Signals and Hilbert Transform Filters]


{{DEFAULTSORT:Analytic Signal}}[[Category: संकेत आगे बढ़ाना]] [[Category: समय-आवृत्ति विश्लेषण]] [[Category: फूरियर विश्लेषण]]
{{DEFAULTSORT:Analytic Signal}}
 
 


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page|Analytic Signal]]
[[Category:Created On 03/03/2023]]
[[Category:Articles with invalid date parameter in template|Analytic Signal]]
[[Category:CS1 English-language sources (en)]]
[[Category:Created On 03/03/2023|Analytic Signal]]
[[Category:Machine Translated Page|Analytic Signal]]
[[Category:Pages with script errors|Analytic Signal]]
[[Category:Templates Vigyan Ready|Analytic Signal]]
[[Category:Wikipedia further reading cleanup|Analytic Signal]]
[[Category:Wikipedia spam cleanup from October 2014|Analytic Signal]]
[[Category:फूरियर विश्लेषण|Analytic Signal]]
[[Category:संकेत आगे बढ़ाना|Analytic Signal]]
[[Category:समय-आवृत्ति विश्लेषण|Analytic Signal]]

Latest revision as of 12:00, 19 March 2023

गणित और सिग्नल प्रोसेसिंग में, एक विश्लेषणात्मक सिग्नल एक जटिल मूल्यवान फलन के रूप में होता है, जिसमें कोई नकारात्मक आवृत्ति घटक नहीं होता है।[1] एक विश्लेषणात्मक सिग्नल के वास्तविक और काल्पनिक भाग हिल्बर्ट परिवर्तन द्वारा एक दूसरे से संबंधित वास्तविक-मूल्यवान फलन के रूप में होता है।

वास्तविक फलन का विश्लेषणात्मक प्रतिनिधित्व एक मूल्यवान विश्लेषणात्मक सिग्नल के रूप में होता है, जिसमें मूल फलन और उसका हिल्बर्ट रूपांतरण के रूप में सम्मलित होते है। यह प्रतिनिधित्व कई गणितीय जोड़तोड़ की सुविधा प्रदान करते है। मूल विचार यह है कि फूरियर रूपांतरण या वास्तविक मूल्यवान फलन के स्पेक्ट्रम के नकारात्मक आवृत्ति घटक ऐसे स्पेक्ट्रम के हर्मिटियन समरूपता के कारण अनावश्यक रूप में होते है। इन नकारात्मक आवृत्ति घटकों को सूचना के हानि के बिना त्याग दिया जाता है, बशर्ते कोई जटिल मूल्यवान फलन से निपटने के लिए तैयार होता है। यह फलन की कुछ विशेषताओं को अधिक सुलभ रूप में बनाता है और मॉड्यूलेशन और डिमॉड्यूलेशन प्रोद्योगिकीय जैसे एकल साइडबैंड की व्युत्पत्ति की सुविधा प्रदान करता है।

जब तक हेरफेर किए गए फलन में कोई नकारात्मक आवृत्ति घटक नहीं होता है अर्थात, यह अभी भी विश्लेषणात्मक रूप में होता है, जटिल से वास्तविक में रूपांतरण केवल काल्पनिक भाग को छोड़ने की स्थिति के रूप में होती है। विश्लेषणात्मक प्रतिनिधित्व चरण साइन तरंगों की अवधारणा का एक सामान्यीकरण रूप होता है[2] जबकि चरण समय-अपरिवर्तनीय आयाम चरण तक ही सीमित होते है और आवृत्ति विश्लेषणात्मक सिग्नल समय चर मापदंडों के लिए अनुमति देता है।

परिभाषा

एक विश्लेषणात्मक सिग्नल बनाने के लिए स्थानांतरण फलन का प्रयोग करते है

यदि फूरियर रूपांतरण के साथ एक वास्तविक-मूल्यवान फलन के रूप में होता है, तब परिवर्तन में हर्मिटियन फलन समरूपता एक्सिस पर होता है।

जहाँ का जटिल संयुग्म के रूप में होता है। फलन,

जहाँ

केवल गैर-नकारात्मक आवृत्ति घटक के रूप में सम्मलित होते है .और ऑपरेशन प्रतिवर्ती के रूप में है, की हर्मिटियन समरूपता के कारण होती है,

का विश्लेषणात्मक सिग्नल का व्युत्क्रम फूरियर रूपांतरण के रूप में है

जहाँ

  • का हिल्बर्ट रूपांतरण है।
  • बाइनरी कनवल्शन ऑपरेटर के रूप में होते है।
  • काल्पनिक इकाई के रूप में होती है।

नोट किया कि इसे फ़िल्टरिंग ऑपरेशन के रूप में भी व्यक्त किया जा सकता है, जो नकारात्मक आवृत्ति घटकों को सीधे हटा देता है


नकारात्मक आवृत्ति घटक

तब से , नकारात्मक आवृत्ति घटकों को पुनर्स्थापित करता है को त्यागने का एक साधारण स्थिति होती है, जो प्रति-सहज के रूप में लग सकती है। हम यह नोट कर सकते हैं कि जटिल संयुग्म में केवल नकारात्मक आवृत्ति घटक के रूप में सम्मलित होती है। और इसलिए दबा हुआ सकारात्मक आवृत्ति घटकों को पुनर्स्थापित करता है। एक अन्य दृष्टिकोण यह है कि किसी भी स्थिति में काल्पनिक घटक एक ऐसा शब्द है, जो आवृत्ति घटकों को से घटाता है। ऑपरेटर नए घटकों को जोड़ने का आभास देते हुए, घटाव को हटा देता है।

उदाहरण

उदाहरण 1

जहाँ

तब:

अंतिम समानता यूलर का सूत्र है, जिसका एक उपप्रमेय के रूप में होता है, सामान्यतः एक साधारण साइन वक्र का विश्लेषणात्मक प्रतिनिधित्व इसे जटिल घातीयों के संदर्भ में व्यक्त करता है और नकारात्मक आवृत्ति घटक को छोड़कर सकारात्मक आवृत्ति घटक को दोगुना करके प्राप्त किया जाता है। और साइन वक्र के योग का विश्लेषणात्मक प्रतिनिधित्व व्यक्तिगत साइन वक्र के विश्लेषणात्मक प्रतिनिधित्वों का योग होता है।

उदाहरण 2

यहां हम नकारात्मक आवृत्ति को पहचानने और त्यागने के लिए यूलर के सूत्र का उपयोग करते हैं।

तब:


उदाहरण 3

नकारात्मक आवृत्ति घटकों को हटाने के लिए हिल्बर्ट ट्रांसफ़ॉर्म विधि का उपयोग करने का यह एक और उदाहरण है। हम ध्यान दें कि कुछ भी हमें गणना करने से नहीं रोकता है एक जटिल-मूल्यवान के लिए .है, लेकिन यह प्रतिवर्ती प्रतिनिधित्व नहीं हो सकता है, क्योंकि मूल स्पेक्ट्रम सामान्य रूप से सममित नहीं होते है। इसलिए इस उदाहरण को छोड़कर सामान्य चर्चा वास्तविक-मूल्यवान .के रूप में होता है।

, जहाँ .

तब:


गुण

तात्कालिक आयाम और चरण

नीले रंग में एक फलन और लाल रंग में इसके विश्लेषणात्मक प्रतिनिधित्व का परिमाण, लिफाफा प्रभाव दिखा रहा है।

ध्रुवीय निर्देशांक में एक विश्लेषणात्मक सिग्नल भी व्यक्त किया जाता है

जहां निम्नलिखित समय-भिन्न भौतिक राशियाँ के रूप में प्रस्तुत की जाती हैं

  • तात्कालिक आयाम या आवरण (तरंगें) कहा जाता ह
  • तात्कालिक चरण या चरण कोण कहा जाता है।

संलग्न आरेख में, नीला वक्र को दर्शाता है और लाल वक्र संगत .को दर्शाता है।

अलिखित तात्कालिक चरण के समय व्युत्पन्न में रेडियन/सेकंड की इकाइयाँ होती हैं, और इसे तात्कालिक कोणीय आवृत्ति कहा जाता है

हर्ट्ज़ में तात्कालिक चरण आवृत्ति है इसलिए,

[3]

तात्कालिक आयाम, और तात्कालिक चरण और आवृत्ति सिग्नल की स्थानीय विशेषताओं को मापने और पता लगाने के लिए उपयोग किए जाने वाले कुछ अनुप्रयोगों में होती है। सिग्नल के विश्लेषणात्मक प्रतिनिधित्व का एक अन्य अनुप्रयोग मॉडुलन के विमॉडुलन से संबंधित होता है। ध्रुवीय निर्देशांक आसानी से आयाम मॉडुलन और चरण या आवृत्ति मॉडुलन के प्रभावों को अलग करते हैं और कुछ प्रकार के सिग्नलों को प्रभावी ढंग से ध्वस्त करते हैं।

जटिल लिफाफा/बेसबैंड

विश्लेषणात्मक सिग्नलों को अधिकांशतः 0 हर्ट्ज की ओर आवृत्ति नीचे-रूपांतरित में स्थानांतरित किया जाता है, संभवतः गैर-सममित नकारात्मक आवृत्ति घटक के रूप में होते है

जहाँ एक यादृच्छिक संदर्भ कोणीय आवृत्ति के रूप में होती है।[2]

यह फलन विभिन्न नामों से जाता है, जैसे जटिल लिफाफा और जटिल बेसबैंड के रूप में होते है। जटिल लिफाफा अद्वितीय रूप में नहीं होते है; यह .की पसंद से निर्धारित होता है। इस अवधारणा का प्रयोग अधिकांशतः पासबैंड सिग्नल के साथ काम करते समय किया जाता है। यदि एक माडुलित सिग्नल के रूप में है, तो इसकी वाहक आवृत्ति के बराबर हो सकता है।

अन्य स्थितियों में, वांछित पासबैंड के बीच में कहीं चुना गया है। फिर वास्तविक गुणांक के साथ एक साधारण निम्न-पास फ़िल्टर इंटेरेस्ट के हिस्से को बढ़ा सकता है। एक अन्य मकसद उच्चतम आवृत्ति को कम करना है, जो कि उपनाम-मुक्त नमूनाकरण के लिए न्यूनतम दर को कम करता है। एक आवृत्ति बदलाव जटिल सिग्नल प्रतिनिधित्व के गणितीय ट्रैक्टेबिलिटी को कम नहीं करता है। तो उस मायने में, डाउन कन्वर्टेड सिग्नल अभी भी विश्लेषणात्मक रूप में होते है। चूँकि, वास्तविक-मूल्यवान प्रतिनिधित्व को पुनर्स्थापित करना अब केवल वास्तविक घटक को निकालने का सरल स्थिति नहीं है। अप रूपांतरण की आवश्यकता होती है और यदि सिग्नल को असतत नमूना के रूप में किया गया है, तो अलियासिंग से बचने के लिए इंटरपोलेशन अपसैंपलिंग भी आवश्यक हो सकता है।

यदि की उच्चतम आवृत्ति से बड़ा चुना जाता है तब कोई सकारात्मक आवृत्तियाँ नहीं होती है। उस स्थिति में, वास्तविक घटक निकालने से उन्हें पुनर्स्थापित किया जाता है, लेकिन विपरीत क्रम में कम आवृत्ति वाले घटक अब उच्च वाले होते है और इसके विपरीत इसका उपयोग एक प्रकार के सिंगल-साइडबैंड मॉड्यूलेशन को कम करने के लिए किया जा सकता है जिसे लोअर साइडबैंड या इनवर्टेड साइडबैंड कहा जाता है।

संदर्भ आवृत्ति के अन्य विकल्पों पर कभी-कभी विचार किया जाता है।

  • कभी-कभी कम करने के लिए चुना गया है
  • वैकल्पिक रूप से,[4] को अलिखित तात्कालिक चरण को रैखिक रूप से अनुमानित करने में औसत वर्ग त्रुटि को कम करने के लिए चुना जा सकता है।
  • या कुछ इष्टतम के लिए कोई अन्य विकल्प के रूप में होते है

समय-आवृत्ति सिग्नल प्रोसेसिंग के क्षेत्र में, यह दिखाया गया था कि विग्नर-विले वितरण की परिभाषा में विश्लेषणात्मक सिग्नल की आवश्यकता होती थी, जिससे कि व्यावहारिक अनुप्रयोगों के लिए आवश्यक वांछित गुण के रूप में हो सकें।[5]

कभी-कभी वाक्यांश जटिल लिफाफे को एक निरंतर-आवृत्ति चरण के जटिल आयाम का सरल अर्थ दिया जाता है;[lower-alpha 1][lower-alpha 2] दूसरी बार जटिल लिफाफा जैसा कि ऊपर परिभाषित किया गया है, जटिल आयाम के समय-निर्भर सामान्यीकरण के रूप में व्याख्या की गई है।[lower-alpha 3] वास्तविक-मूल्य वाले स्थिति में उनका संबंध उससे अलग नहीं होता है और अलग-अलग लिफाफा तरंगें निरंतर आयाम को सामान्य करते है।

एकाधिक चर के सिग्नलों के लिए विश्लेषणात्मक सिग्नल का विस्तार

विश्लेषणात्मक सिग्नल की अवधारणा एकल चर के सिग्नलों के लिए अच्छी तरह से परिभाषित है, जो सामान्यतः समय है। दो या दो से अधिक चर के सिग्नलों के लिए, एक विश्लेषणात्मक सिग्नल को अलग-अलग विधियों से परिभाषित किया जाता है और इस प्रकार दो दृष्टिकोण नीचे प्रस्तुत किए गए हैं।

तदर्थ दिशा के आधार पर बहु-आयामी विश्लेषणात्मक सिग्नल

एक बार यह स्थापित हो जाने के बाद कि इस स्थिति के लिए नकारात्मक आवृत्तियों का क्या मतलब है, एक बहु-आयामी सिग्नल के लिए विश्लेषणात्मक सिग्नल का एक सीधा सामान्यीकरण किया जाता है। यह एक इकाई वेक्टर की शुरुआत करके किया जा सकता है फूरियर डोमेन में और किसी आवृत्ति वेक्टर को लेबल करते है नकारात्मक के रूप में यदि . एक-चर सिग्नलों के स्थिति में वर्णित प्रक्रिया के अनुसार, सभी नकारात्मक आवृत्तियों को हटाकर और परिणाम को 2 से गुणा करके विश्लेषणात्मक सिग्नल उत्पन्न किया जाता है। चूँकि, के लिए कोई विशेष दिशा नहीं होती है, जिसे तब तक चुना जाना चाहिए जब तक कि कुछ अतिरिक्त बाधाएँ न हों। इसलिए का चुनाव तदर्थ या अनुप्रयोग विशिष्ट के रूप में होता है।

मोनोजेनिक सिग्नल

विश्लेषणात्मक सिग्नल के वास्तविक और काल्पनिक भाग वेक्टर-मूल्यवान मोनोजेनिक सिग्नल के दो तत्वों के अनुरूप होते हैं, क्योंकि यह एक-चर सिग्नलों के लिए परिभाषित किया गया है। चूँकि, एन-वैरिएबल सिग्नल के स्थिति में एक (n + 1) आयामी वेक्टर मूल्यवान फलन का उत्पादन करते हुए, मोनोजेनिक सिग्नल को सीधे विधि से चर की यादृच्छिक संख्या तक बढ़ाया जाता है

यह भी देखें

  • हिल्बर्ट रूपांतरण की गणना के लिए व्यावहारिक विचार के रूप में होते है
  • नकारात्मक आवृत्ति

अनुप्रयोग

टिप्पणियाँ

  1. "the complex envelope (or complex amplitude)"[6]
  2. "the complex envelope (or complex amplitude)", p. 586 [7]
  3. "Complex envelope is an extended interpretation of complex amplitude as a function of time." p. 85[8]


संदर्भ

  1. Smith, J.O. "Analytic Signals and Hilbert Transform Filters", in Mathematics of the Discrete Fourier Transform (DFT) with Audio Applications, Second Edition, https://ccrma.stanford.edu/~jos/r320/Analytic_Signals_Hilbert_Transform.html, or https://www.dsprelated.com/freebooks/mdft/Analytic_Signals_Hilbert_Transform.html, online book, 2007 edition, accessed 2021-04-29.
  2. 2.0 2.1 Bracewell, Ron. The Fourier Transform and Its Applications. McGraw-Hill, 1965. p 269
  3. B. Boashash, "Estimating and Interpreting the Instantaneous Frequency of a Signal-Part I: Fundamentals", Proceedings of the IEEE, Vol. 80, No. 4, pp. 519–538, April 1992
  4. Justice, J. (1979-12-01). "संगीत संगणना में विश्लेषणात्मक सिग्नल प्रोसेसिंग". IEEE Transactions on Acoustics, Speech, and Signal Processing. 27 (6): 670–684. doi:10.1109/TASSP.1979.1163321. ISSN 0096-3518.
  5. B. Boashash, “Notes on the use of the Wigner distribution for time frequency signal analysis”, IEEE Trans. on Acoustics, Speech, and Signal Processing , vol. 26, no. 9, 1987
  6. Hlawatsch, Franz; Auger, François (2013-03-01). Time-Frequency Analysis (in English). John Wiley & Sons. ISBN 9781118623831.
  7. Driggers, Ronald G. (2003-01-01). Encyclopedia of Optical Engineering: Abe-Las, pages 1-1024 (in English). CRC Press. ISBN 9780824742508.
  8. Okamoto, Kenʼichi (2001-01-01). Global Environment Remote Sensing (in English). IOS Press. ISBN 9781586031015.


अग्रिम पठन

  • Leon Cohen, Time-frequency analysis, Prentice Hall, Upper Saddle River, 1995.
  • Frederick W. King, Hilbert Transforms, vol. II, Cambridge University Press, Cambridge, 2009.
  • B. Boashash, Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, Elsevier Science, Oxford, 2003.


बाहरी संबंध