मल्टीपोल विस्तार: Difference between revisions
No edit summary |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Mathematical series}} | {{Short description|Mathematical series}} | ||
मल्टीपोल विस्तार | मल्टीपोल विस्तार गणितीय [[श्रृंखला (गणित)]] है जो फलन (गणित) का प्रतिनिधित्व करता है जो [[कोण|कोणों]] पर निर्भर करता है - जो सामान्यतः त्रि-आयामी [[यूक्लिडियन अंतरिक्ष]] <math>\R^3</math> के लिए [[गोलाकार समन्वय प्रणाली]] (ध्रुवीय और [[दिगंश]] कोण) में उपयोग किए जाने वाले दो कोण पर निर्भर करती है। इसी प्रकार [[टेलर श्रृंखला]] के लिए, मल्टीपोल विस्तार उपयोगी होते हैं क्योंकि मूल कार्य का अच्छा सन्निकटन प्रदान करने के लिए अधिकांश केवल पहले कुछ शब्दों की आवश्यकता होती है। विस्तारित किया जा रहा कार्य [[वास्तविक संख्या]]- या [[जटिल संख्या]]-मूल्यवान हो सकता है और इसे या तो <math>\R^3</math> परिभाषित किया गया है, या कुछ अन्य {{nowrap|<math>n</math>.}}के लिए <math>\R^n</math> पर कम बार परिभाषित किया गया है। | ||
मल्टीपोल विस्तार का उपयोग | मल्टीपोल विस्तार का उपयोग अधिकांश [[विद्युत चुम्बकीय]] और [[गुरुत्वाकर्षण क्षेत्र|गुरुत्वाकर्षण क्षेत्रों]] के अध्ययन में किया जाता है, जहां छोटे से क्षेत्र में स्रोतों के संदर्भ में दूर के बिंदुओं पर क्षेत्र दिए जाते हैं। कोणों के साथ मल्टीपोल विस्तार को अधिकांश त्रिज्या में विस्तार के साथ जोड़ दिया जाता है। ऐसा संयोजन त्रि-आयामी अंतरिक्ष में फलन का वर्णन करने वाला विस्तार देता है।<ref name=Edmonds>{{cite book | last = Edmonds | first = A. R. | title = क्वांटम यांत्रिकी में कोणीय गति| year = 1960 | url = https://archive.org/details/angularmomentumi0000edmo | url-access = registration | publisher = Princeton University Press| isbn = 9780691079127 }}</ref> | ||
मल्टीपोल विस्तार को उत्तरोत्तर महीन कोणीय विशेषताओं (आघूर्ण (गणित)) के साथ शब्दों के योग के रूप में व्यक्त किया गया है। पहले (शून्य-क्रम) पद को [[मोनोपोल (गणित)]] आघूर्ण कहा जाता है, दूसरे (प्रथम-क्रम) पद को [[द्विध्रुवीय]] आघूर्ण, तीसरा (द्वितीय-क्रम) चतुर्भुज आघूर्ण, चौथा (तीसरा- क्रम) कहा जाता है। शब्द को ऑक्टोपोल पल कहा जाता है, और इसी तरह। [[ग्रीक अंक|ग्रीक अंकों]] की सीमा को देखते हुए, उच्च क्रम के पदों को पारंपरिक रूप से ध्रुवों की संख्या में जोड़कर नामित किया जाता है - उदाहरण के लिए, 32-ध्रुव ( | मल्टीपोल विस्तार को उत्तरोत्तर महीन कोणीय विशेषताओं (आघूर्ण (गणित)) के साथ शब्दों के योग के रूप में व्यक्त किया गया है। पहले (शून्य-क्रम) पद को [[मोनोपोल (गणित)]] आघूर्ण कहा जाता है, दूसरे (प्रथम-क्रम) पद को [[द्विध्रुवीय]] आघूर्ण, तीसरा (द्वितीय-क्रम) चतुर्भुज आघूर्ण, चौथा (तीसरा- क्रम) कहा जाता है। शब्द को ऑक्टोपोल पल कहा जाता है, और इसी तरह। [[ग्रीक अंक|ग्रीक अंकों]] की सीमा को देखते हुए, उच्च क्रम के पदों को पारंपरिक रूप से ध्रुवों की संख्या में जोड़कर नामित किया जाता है - उदाहरण के लिए, 32-ध्रुव (संभवतः ही कभी डॉट्रियाकॉन्टापोल या ट्राइकोंटाडिपोल) और 64-ध्रुव (संभवतः ही कभी टेट्राहेक्साकॉन्टापोल या हेक्साकोंटाटेट्रापोल)।<ref>{{cite book|last1=Auzinsh|first1=Marcis| last2=Budker|first2=Dmitry|last3=Rochester|first3=Simon|title=Optically polarized atoms : understanding light-atom interactions| date=2010|publisher=New York|location=Oxford|isbn=9780199565122|page=100}}</ref><ref>{{cite journal|last1=Okumura|first1=Mitchio| last2=Chan|first2=Man-Chor|last3=Oka|first3=Takeshi|title=High-resolution infrared spectroscopy of solid hydrogen: The tetrahexacontapole-induced transitions|journal=Physical Review Letters|date=2 January 1989|volume=62|issue=1| pages=32–35| doi=10.1103/PhysRevLett.62.32|pmid=10039541|bibcode=1989PhRvL..62...32O|url=https://authors.library.caltech.edu/5428/1/OKUprl89.pdf }}</ref><ref>{{cite journal|last1=Ikeda|first1=Hiroaki|last2=Suzuki|first2=Michi-To|last3=Arita|first3=Ryotaro| last4=Takimoto|first4=Tetsuya|last5=Shibauchi|first5=Takasada|last6=Matsuda|first6=Yuji|title=Emergent rank-5 nematic order in URu2Si2| journal=Nature Physics|date=3 June 2012|volume=8|issue=7|pages=528–533| doi=10.1038/nphys2330| arxiv=1204.4016| bibcode=2012NatPh...8..528I|s2cid=119108102 }}</ref> मल्टीपोल आघूर्ण में सामान्यतः मूल बिंदु से दूरी के साथ-साथ कुछ कोणीय निर्भरता की [[घातांक]] (या व्युत्क्रम घात) सम्मिलित होती हैं। | ||
सिद्धांत रूप में, मल्टीपोल विस्तार क्षमता का | सिद्धांत रूप में, मल्टीपोल विस्तार क्षमता का त्रुटिहीन विवरण प्रदान करता है, और सामान्यतः [[अभिसरण श्रृंखला]] दो स्थितियों के अनुसार होती है: (1) यदि स्रोत (जैसे शुल्क) मूल के निकट स्थानीयकृत हैं और जिस बिंदु पर संभावित देखा गया है वह दूर है मूल; या (2) उल्टा, अर्थात्, यदि स्रोत मूल से दूर स्थित हैं और क्षमता मूल के निकट देखी गई है। पहले (अधिक सामान्य) स्थिति में, श्रृंखला विस्तार के गुणांक को बाहरी मल्टीपोल आघूर्ण या केवल मल्टीपोल आघूर्ण कहा जाता है, जबकि दूसरे स्थिति में, उन्हें आंतरिक मल्टीपोल आघूर्ण कहा जाता है। | ||
== [[गोलाकार हार्मोनिक्स]] में विस्तार == | == [[गोलाकार हार्मोनिक्स]] में विस्तार == | ||
सामान्यतः, श्रृंखला को गोलाकार हार्मोनिक्स के योग के रूप में लिखा जाता है। इस प्रकार, हम फलन <math>f(\theta,\varphi)</math> लिख सकते हैं योग के रूप में | सामान्यतः, श्रृंखला को गोलाकार हार्मोनिक्स के योग के रूप में लिखा जाता है। इस प्रकार, हम फलन <math>f(\theta,\varphi)</math> लिख सकते हैं योग के रूप में | ||
<math display="block">f(\theta,\varphi) = \sum_{\ell=0}^\infty\, \sum_{m=-\ell}^\ell\, C^m_\ell\, Y^m_\ell(\theta,\varphi)</math> | <math display="block">f(\theta,\varphi) = \sum_{\ell=0}^\infty\, \sum_{m=-\ell}^\ell\, C^m_\ell\, Y^m_\ell(\theta,\varphi)</math> | ||
जहाँ <math>Y^m_\ell(\theta,\varphi)</math> मानक गोलाकार हार्मोनिक्स हैं, और <math>C^m_\ell</math> निरंतर गुणांक हैं जो फलन पर निर्भर करते हैं। <math>C^0_0</math> शब्द मोनोपोल <math>C^{-1}_1,C^0_1,C^1_1</math> का प्रतिनिधित्व करता है; द्विध्रुव का प्रतिनिधित्व करते हैं; और इसी प्रकार । समतुल्य, श्रृंखला भी | जहाँ <math>Y^m_\ell(\theta,\varphi)</math> मानक गोलाकार हार्मोनिक्स हैं, और <math>C^m_\ell</math> निरंतर गुणांक हैं जो फलन पर निर्भर करते हैं। <math>C^0_0</math> शब्द मोनोपोल <math>C^{-1}_1,C^0_1,C^1_1</math> का प्रतिनिधित्व करता है; द्विध्रुव का प्रतिनिधित्व करते हैं; और इसी प्रकार । समतुल्य, श्रृंखला भी अधिकांश लिखी जाती है<ref>{{cite book | last=Thompson | first=William J. | title=कोनेदार गति| publisher=John Wiley & Sons, Inc.}}</ref> जैसे | ||
<math display="block">f(\theta,\varphi) = C + C_i n^i + C_{ij}n^i n^j + C_{ijk}n^i n^j n^k + C_{ijk\ell}n^i n^j n^k n^\ell + \cdots</math> | <math display="block">f(\theta,\varphi) = C + C_i n^i + C_{ij}n^i n^j + C_{ijk}n^i n^j n^k + C_{ijk\ell}n^i n^j n^k n^\ell + \cdots</math> | ||
जहां <math>n^i</math> कोणों <math>\theta</math> और <math>\varphi</math> द्वारा दी गई दिशा में [[इकाई वेक्टर]] के घटकों का प्रतिनिधित्व करते हैं, और सूचकांक [[आइंस्टीन योग सम्मेलन]] हैं। यहाँ, शब्द <math>C</math> मोनोपोल है; <math>C_i</math> द्विध्रुव का प्रतिनिधित्व करने वाली तीन संख्याओं का समूह है; और इसी तरह। | जहां <math>n^i</math> कोणों <math>\theta</math> और <math>\varphi</math> द्वारा दी गई दिशा में [[इकाई वेक्टर]] के घटकों का प्रतिनिधित्व करते हैं, और सूचकांक [[आइंस्टीन योग सम्मेलन]] हैं। यहाँ, शब्द <math>C</math> मोनोपोल है; <math>C_i</math> द्विध्रुव का प्रतिनिधित्व करने वाली तीन संख्याओं का समूह है; और इसी तरह। | ||
उपरोक्त विस्तार में, गुणांक वास्तविक संख्या या सम्मिश्र संख्या हो सकते हैं। यदि मल्टीपोल विस्तार के रूप में व्यक्त किया जा रहा कार्य वास्तविक है, | उपरोक्त विस्तार में, गुणांक वास्तविक संख्या या सम्मिश्र संख्या हो सकते हैं। यदि मल्टीपोल विस्तार के रूप में व्यक्त किया जा रहा कार्य वास्तविक है, चूंकि, गुणांक को कुछ गुणों को पूरा करना चाहिए। गोलाकार हार्मोनिक विस्तार में, हमारे पास होना चाहिए | ||
<math display="block">C_\ell^{-m} = (-1)^m C^{m\ast}_\ell \, .</math> | <math display="block">C_\ell^{-m} = (-1)^m C^{m\ast}_\ell \, .</math> | ||
बहु-वेक्टर विस्तार में, प्रत्येक गुणांक वास्तविक होना चाहिए: | बहु-वेक्टर विस्तार में, प्रत्येक गुणांक वास्तविक होना चाहिए: | ||
<math display="block">C = C^\ast;\ C_i = C_i^\ast;\ C_{ij} = C_{ij}^\ast;\ C_{ijk} = C_{ijk}^\ast;\ \ldots</math> | <math display="block">C = C^\ast;\ C_i = C_i^\ast;\ C_{ij} = C_{ij}^\ast;\ C_{ijk} = C_{ijk}^\ast;\ \ldots</math> | ||
जबकि स्केलर (गणितीय) कार्यों का विस्तार मल्टीपोल विस्तार का सबसे आम अनुप्रयोग है, उन्हें | जबकि स्केलर (गणितीय) कार्यों का विस्तार मल्टीपोल विस्तार का सबसे आम अनुप्रयोग है, उन्हें स्वैच्छिक रैंक के दसियों का वर्णन करने के लिए भी सामान्यीकृत किया जा सकता है।<ref>{{cite journal | last=Thorne | first=Kip S. | journal=Reviews of Modern Physics | title=गुरुत्वीय विकिरण का बहुध्रुवीय विस्तार|date=April 1980 | volume=52 | issue=2 | pages=299–339 | doi=10.1103/RevModPhys.52.299 | bibcode=1980RvMP...52..299T| url=https://authors.library.caltech.edu/11159/1/THOrmp80a.pdf }}</ref> यह विद्युत चुंबकत्व में सदिश क्षमता के मल्टीपोल विस्तार, या [[गुरुत्वाकर्षण तरंग|गुरुत्वाकर्षण तरंगों]] के वर्णन में मीट्रिक गड़बड़ी में उपयोग करता है। | ||
तीन आयामों के कार्यों का वर्णन करने के लिए, समन्वय मूल से दूर, मल्टीपोल विस्तार के गुणांक को मूल से दूरी के कार्यों के रूप में लिखा जा सकता है, <math>r</math>—सबसे अधिक बार, की | तीन आयामों के कार्यों का वर्णन करने के लिए, समन्वय मूल से दूर, मल्टीपोल विस्तार के गुणांक को मूल से दूरी के कार्यों के रूप में लिखा जा सकता है, <math>r</math>—सबसे अधिक बार, की घातयों में [[लॉरेंट श्रृंखला]] के रूप में <math>r</math>. उदाहरण के लिए, विद्युत चुम्बकीय क्षमता का वर्णन करने के लिए, <math>V</math>, मूल के पास छोटे से क्षेत्र में स्रोत से, गुणांक के रूप में लिखा जा सकता है: | ||
<math display="block">V(r,\theta,\varphi) = \sum_{\ell=0}^\infty\, \sum_{m=-l}^\ell C^m_\ell(r)\, Y^m_\ell(\theta,\varphi)= \sum_{j=1}^\infty\, \sum_{\ell=0}^\infty\, \sum_{m=-l}^\ell \frac{D^m_{\ell,j}}{r^j}\, Y^m_\ell(\theta,\varphi) .</math> | <math display="block">V(r,\theta,\varphi) = \sum_{\ell=0}^\infty\, \sum_{m=-l}^\ell C^m_\ell(r)\, Y^m_\ell(\theta,\varphi)= \sum_{j=1}^\infty\, \sum_{\ell=0}^\infty\, \sum_{m=-l}^\ell \frac{D^m_{\ell,j}}{r^j}\, Y^m_\ell(\theta,\varphi) .</math> | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
मल्टीपोल विस्तार का व्यापक रूप से [[द्रव्यमान]], [[विद्युत क्षेत्र]] और आवेश के [[चुंबकीय क्षेत्र]] और वर्तमान वितरण, और [[विद्युत चुम्बकीय तरंग]]ों के प्रसार के गुरुत्वाकर्षण क्षेत्र से जुड़ी समस्याओं में व्यापक रूप से उपयोग किया जाता है। उत्कृष्ट उदाहरण इलेक्ट्रॉनिक ऑर्बिटल्स के आंतरिक गुणकों के साथ उनकी अंतःक्रियात्मक ऊर्जा से [[परमाणु नाभिक]] के बाहरी मल्टीपोल आघूर्णों की गणना है। नाभिक के मल्टीपोल आघूर्ण नाभिक के भीतर आवेशों के वितरण और इस प्रकार नाभिक के आकार पर रिपोर्ट करते हैं। मल्टीपोल विस्तार का ट्रंकेशन इसके पहले गैर-शून्य शब्द तक | मल्टीपोल विस्तार का व्यापक रूप से [[द्रव्यमान]], [[विद्युत क्षेत्र]] और आवेश के [[चुंबकीय क्षेत्र]] और वर्तमान वितरण, और [[विद्युत चुम्बकीय तरंग]]ों के प्रसार के गुरुत्वाकर्षण क्षेत्र से जुड़ी समस्याओं में व्यापक रूप से उपयोग किया जाता है। उत्कृष्ट उदाहरण इलेक्ट्रॉनिक ऑर्बिटल्स के आंतरिक गुणकों के साथ उनकी अंतःक्रियात्मक ऊर्जा से [[परमाणु नाभिक]] के बाहरी मल्टीपोल आघूर्णों की गणना है। नाभिक के मल्टीपोल आघूर्ण नाभिक के भीतर आवेशों के वितरण और इस प्रकार नाभिक के आकार पर रिपोर्ट करते हैं। मल्टीपोल विस्तार का ट्रंकेशन इसके पहले गैर-शून्य शब्द तक अधिकांश सैद्धांतिक गणना के लिए उपयोगी होता है। | ||
मल्टीपोल विस्तार संख्यात्मक सिमुलेशन में भी उपयोगी होते हैं, और [[लेस्ली ग्रीनगार्ड]] और व्लादिमीर रोखलिन (अमेरिकी वैज्ञानिक) की [[फास्ट मल्टीपोल विधि]] का आधार बनाते हैं, जो [[कण]]ों के परस्पर क्रिया करने की प्रणालियों में ऊर्जा और बलों की कुशल गणना के लिए सामान्य | मल्टीपोल विस्तार संख्यात्मक सिमुलेशन में भी उपयोगी होते हैं, और [[लेस्ली ग्रीनगार्ड]] और व्लादिमीर रोखलिन (अमेरिकी वैज्ञानिक) की [[फास्ट मल्टीपोल विधि]] का आधार बनाते हैं, जो [[कण]]ों के परस्पर क्रिया करने की प्रणालियों में ऊर्जा और बलों की कुशल गणना के लिए सामान्य विधि है। मूल विचार कणों को समूहों में विघटित करना है; समूह के भीतर के कण सामान्य रूप से परस्पर क्रिया करते हैं (अर्थात्, पूरी क्षमता से), जबकि कणों के समूहों के बीच ऊर्जा और बलों की गणना उनके मल्टीपोल आघूर्णों से की जाती है। फास्ट मल्टीपोल विधि की दक्षता सामान्यतः [[इवाल्ड योग]] के समान होती है, किन्तु यदि कण क्लस्टर होते हैं, तो उत्तम होता है, अर्थात् सिस्टम में बड़े घनत्व में उतार-चढ़ाव होता है। | ||
'''इलेक्ट्रोस्टैटिक चार्ज वितरण के बाहर क्षमता का मल्टीपोल विस्तार''' | |||
असतत | |||
एक असतत चार्ज वितरण पर विचार करें जिसमें स्थिति वैक्टर {{math|'''r'''<sub>''i''</sub>}} के साथ {{mvar|N}} पॉइंट चार्ज {{math|''q''<sub>''i''</sub>}} सम्मिलित है। हम चार्ज को मूल के चारों ओर क्लस्टर करने के लिए मानते हैं, जिससे सभी i: {{math|''r''<sub>''i''</sub> < ''r''<sub>max</sub>}} के लिए, जहां {{math|''r''<sub>max</sub>}} का कुछ परिमित मान हो। आवेश वितरण के कारण विभव {{math|''V''('''R''')}}, आवेश वितरण के बाहर एक बिंदु {{math|'''R'''}} पर, अर्थात {{math|{{abs|'''R'''}} > ''r''<sub>max</sub>}} को {{math|1/''R''}} की घातों में विस्तारित किया जा सकता है। इस विस्तार को बनाने के दो तरीके साहित्य में पाए जा सकते हैं: पहला कार्टेशियन निर्देशांक {{math|''x''}}, {{math|''y''}}, और {{math|''z''}} में टेलर श्रृंखला है, जबकि दूसरा गोलाकार हार्मोनिक्स के संदर्भ में है जो [[गोलाकार ध्रुवीय निर्देशांक]] पर निर्भर करता है। कार्टेशियन दृष्टिकोण का लाभ यह है कि लीजेंड्रे फ़ंक्शंस, गोलाकार हार्मोनिक्स इत्यादि के पूर्व ज्ञान की आवश्यकता नहीं है। इसका हानि यह है कि व्युत्पत्ति अधिक जटिल हैं (वास्तव में इसका बड़ा हिस्सा {{math|1 / {{abs|'''r''' − '''R'''}}}} के लिजेंड्रे के विस्तार का निहित पुनर्वितरण है, जो 1780 के दशक में [[एड्रियन मैरी लीजेंड्रे]] द्वारा बार और सभी के लिए किया गया था)। मल्टीपोल विस्तार की सामान्य अवधि के लिए बंद अभिव्यक्ति देना भी कठिन है - सामान्यतः केवल पहले कुछ शब्दों को दीर्घवृत्त के बाद दिया जाता है। | |||
=== कार्तीय निर्देशांकों में विस्तार === | === कार्तीय निर्देशांकों में विस्तार === | ||
होने देना <math>v</math> संतुष्ट | होने देना <math>v</math> संतुष्ट करता है <math>v(x) = v(-x)</math>. | ||
फिर की टेलर श्रृंखला {{math|1=''v''('''r''' − '''R''')}} उत्पत्ति के आसपास {{math|1='''r''' = '''0'''}} लिखा जा सकता है | फिर की टेलर श्रृंखला {{math|1=''v''('''r''' − '''R''')}} उत्पत्ति के आसपास {{math|1='''r''' = '''0'''}} लिखा जा सकता है | ||
<math display="block">v(\mathbf{r}- \mathbf{R}) = v(\mathbf{R}) - \sum_{\alpha=x,y,z} r_\alpha v_\alpha(\mathbf{R}) +\frac{1}{2} \sum_{\alpha=x,y,z}\sum_{\beta=x,y,z} r_\alpha r_\beta v_{\alpha\beta}(\mathbf{R}) | <math display="block">v(\mathbf{r}- \mathbf{R}) = v(\mathbf{R}) - \sum_{\alpha=x,y,z} r_\alpha v_\alpha(\mathbf{R}) +\frac{1}{2} \sum_{\alpha=x,y,z}\sum_{\beta=x,y,z} r_\alpha r_\beta v_{\alpha\beta}(\mathbf{R}) | ||
Line 41: | Line 43: | ||
<math display="block">v_\alpha(\mathbf{R}) \equiv\left( \frac{\partial v(\mathbf{r}-\mathbf{R}) }{\partial r_\alpha}\right)_{\mathbf{r} = \mathbf 0} \quad\text{and} \quad | <math display="block">v_\alpha(\mathbf{R}) \equiv\left( \frac{\partial v(\mathbf{r}-\mathbf{R}) }{\partial r_\alpha}\right)_{\mathbf{r} = \mathbf 0} \quad\text{and} \quad | ||
v_{\alpha\beta}(\mathbf{R}) \equiv\left( \frac{\partial^2 v(\mathbf{r}-\mathbf{R}) }{\partial r_{\alpha}\partial r_{\beta}}\right)_{\mathbf{r}= \mathbf0} .</math> | v_{\alpha\beta}(\mathbf{R}) \equiv\left( \frac{\partial^2 v(\mathbf{r}-\mathbf{R}) }{\partial r_{\alpha}\partial r_{\beta}}\right)_{\mathbf{r}= \mathbf0} .</math> | ||
यदि {{math|''v''('''r''' − '''R''')}} [[लाप्लास समीकरण]] को संतुष्ट करता है | |||
<math display="block">\left(\nabla^2 v(\mathbf{r}- \mathbf{R})\right)_{\mathbf{r}=\mathbf0} = \sum_{\alpha=x,y,z} v_{\alpha\alpha}(\mathbf{R}) = 0</math> | <math display="block">\left(\nabla^2 v(\mathbf{r}- \mathbf{R})\right)_{\mathbf{r}=\mathbf0} = \sum_{\alpha=x,y,z} v_{\alpha\alpha}(\mathbf{R}) = 0</math> | ||
तो विस्तार को ट्रेसलेस कार्टेशियन द्वितीय रैंक टेंसर के घटकों के संदर्भ में फिर से लिखा जा सकता है: | तो विस्तार को ट्रेसलेस कार्टेशियन द्वितीय रैंक टेंसर के घटकों के संदर्भ में फिर से लिखा जा सकता है: | ||
<math display="block">\sum_{\alpha=x,y,z}\sum_{\beta=x,y,z} r_\alpha r_\beta v_{\alpha\beta}(\mathbf{R}) | <math display="block">\sum_{\alpha=x,y,z}\sum_{\beta=x,y,z} r_\alpha r_\beta v_{\alpha\beta}(\mathbf{R}) | ||
= \frac{1}{3} \sum_{\alpha=x,y,z}\sum_{\beta=x,y,z} (3r_\alpha r_\beta - \delta_{\alpha\beta} r^2) v_{\alpha\beta}(\mathbf{R}) ,</math> | = \frac{1}{3} \sum_{\alpha=x,y,z}\sum_{\beta=x,y,z} (3r_\alpha r_\beta - \delta_{\alpha\beta} r^2) v_{\alpha\beta}(\mathbf{R}) ,</math> | ||
जहाँ {{math|''δ''<sub>''αβ''</sub>}} [[क्रोनकर डेल्टा]] | जहाँ {{math|''δ''<sub>''αβ''</sub>}} [[क्रोनकर डेल्टा]] और {{math|''r''<sup>2</sup> ≡ {{abs|'''r'''}}<sup>2</sup>}} है। ट्रेस हटाना सामान्य है, क्योंकि यह दूसरे रैंक टेंसर से घूर्णी रूप से अपरिवर्तनीय {{math|''r''<sup>2</sup>}} लेता है। | ||
उदाहरण | उदाहरण | ||
अब के निम्न | अब के निम्न {{math|''v''('''r''' − '''R''')}} रूप पर विचार करें: | ||
<math display="block">v(\mathbf{r}- \mathbf{R}) \equiv \frac{1}{|\mathbf{r}- \mathbf{R}|} .</math> | <math display="block">v(\mathbf{r}- \mathbf{R}) \equiv \frac{1}{|\mathbf{r}- \mathbf{R}|} .</math> | ||
फिर प्रत्यक्ष [[विभेदीकरण (गणित)]] द्वारा यह इस प्रकार है | फिर प्रत्यक्ष [[विभेदीकरण (गणित)]] द्वारा यह इस प्रकार है | ||
Line 65: | Line 67: | ||
<math display="block">\sum_{\alpha} v_{\alpha\alpha} = 0 \quad \hbox{and} \quad \sum_{\alpha} Q_{\alpha\alpha} = 0 .</math> | <math display="block">\sum_{\alpha} v_{\alpha\alpha} = 0 \quad \hbox{and} \quad \sum_{\alpha} Q_{\alpha\alpha} = 0 .</math> | ||
टिप्पणी: | टिप्पणी: | ||
यदि आवेश वितरण में विपरीत चिह्न वाले दो आवेश होते हैं जो अतिसूक्ष्म दूरी हैं {{mvar|d}} इसके | यदि आवेश वितरण में विपरीत चिह्न वाले दो आवेश होते हैं जो अतिसूक्ष्म दूरी हैं {{mvar|d}} इसके अतिरिक्त, जिससे {{math|''d''/''R'' ≫ (''d''/''R'')<sup>2</sup>}}, यह आसानी से दिखाया गया है कि विस्तार में केवल गैर-लुप्त होने वाला शब्द है | ||
<math display="block">V(\mathbf{R}) = \frac{1}{4\pi \varepsilon_0 R^3} (\mathbf{P}\cdot\mathbf{R}) ,</math> | <math display="block">V(\mathbf{R}) = \frac{1}{4\pi \varepsilon_0 R^3} (\mathbf{P}\cdot\mathbf{R}) ,</math> | ||
विद्युत द्विध्रुव से क्षेत्र। | |||
=== गोलाकार रूप === | === गोलाकार रूप === | ||
सामर्थ {{math|''V''('''R''')}} बिंदु पर {{math|'''R'''}} चार्ज वितरण के बाहर, | सामर्थ {{math|''V''('''R''')}} बिंदु पर {{math|'''R'''}} चार्ज वितरण के बाहर, अर्थात् {{math|{{abs|'''R'''}} > ''r''<sub>max</sub>}}, [[लाप्लास विस्तार (संभावित)]] द्वारा विस्तारित किया जा सकता है: | ||
<math display="block">V(\mathbf{R}) \equiv \sum_{i=1}^N \frac{q_i}{4\pi \varepsilon_0 |\mathbf{r}_i - \mathbf{R}|} | <math display="block">V(\mathbf{R}) \equiv \sum_{i=1}^N \frac{q_i}{4\pi \varepsilon_0 |\mathbf{r}_i - \mathbf{R}|} | ||
=\frac{1}{4\pi \varepsilon_0} \sum_{\ell=0}^\infty \sum_{m=-\ell}^{\ell} | =\frac{1}{4\pi \varepsilon_0} \sum_{\ell=0}^\infty \sum_{m=-\ell}^{\ell} | ||
(-1)^m I^{-m}_\ell(\mathbf{R}) \sum_{i=1}^N q_i R^m_\ell(\mathbf{r}_i),</math> | (-1)^m I^{-m}_\ell(\mathbf{R}) \sum_{i=1}^N q_i R^m_\ell(\mathbf{r}_i),</math> | ||
जहाँ <math>I^{-m}_{\ell}(\mathbf{R})</math> अनियमित [[ठोस हार्मोनिक]] है (नीचे [[गोलाकार हार्मोनिक]] फलन | जहाँ <math>I^{-m}_{\ell}(\mathbf{R})</math> अनियमित [[ठोस हार्मोनिक]] है (नीचे [[गोलाकार हार्मोनिक]] फलन <math>R^{\ell+1}</math> द्वारा विभाजित के रूप में परिभाषित किया गया है) और <math>R^m_{\ell}(\mathbf{r})</math> नियमित ठोस हार्मोनिक (गोलाकार हार्मोनिक समय {{math|r<sup>''ℓ''</sup>}}) है। हम चार्ज वितरण के गोलाकार मल्टीपोल पल को निम्नानुसार परिभाषित करते हैं | ||
<math display="block">Q^m_\ell \equiv \sum_{i=1}^N q_i R^m_\ell(\mathbf{r}_i),\quad\ -\ell \le m \le \ell.</math> | <math display="block">Q^m_\ell \equiv \sum_{i=1}^N q_i R^m_\ell(\mathbf{r}_i),\quad\ -\ell \le m \le \ell.</math> | ||
ध्यान दें कि मल्टीपोल पल पूरी तरह चार्ज वितरण (एन शुल्कों की स्थिति और परिमाण) द्वारा निर्धारित किया जाता है। | ध्यान दें कि मल्टीपोल पल पूरी तरह चार्ज वितरण (एन शुल्कों की स्थिति और परिमाण) द्वारा निर्धारित किया जाता है। | ||
Line 80: | Line 82: | ||
गोलाकार हार्मोनिक इकाई वेक्टर पर निर्भर करता है <math>\hat{R}</math>. (इकाई वेक्टर दो गोलाकार ध्रुवीय कोणों द्वारा निर्धारित किया जाता है।) इस प्रकार, परिभाषा के अनुसार, अनियमित ठोस हार्मोनिक्स को इस प्रकार लिखा जा सकता है | गोलाकार हार्मोनिक इकाई वेक्टर पर निर्भर करता है <math>\hat{R}</math>. (इकाई वेक्टर दो गोलाकार ध्रुवीय कोणों द्वारा निर्धारित किया जाता है।) इस प्रकार, परिभाषा के अनुसार, अनियमित ठोस हार्मोनिक्स को इस प्रकार लिखा जा सकता है | ||
<math display="block">I^m_{\ell}(\mathbf{R}) \equiv \sqrt{\frac{4\pi}{2\ell+1}} \frac{Y^m_{\ell}(\hat{R})}{R^{\ell+1}}</math> | <math display="block">I^m_{\ell}(\mathbf{R}) \equiv \sqrt{\frac{4\pi}{2\ell+1}} \frac{Y^m_{\ell}(\hat{R})}{R^{\ell+1}}</math> | ||
जिससे क्षेत्र के multipole विस्तार {{math|''V''('''R''')}} बिंदु पर {{math|'''R'''}} बाहरी आवेश वितरण द्वारा दिया गया है | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
Line 88: | Line 90: | ||
& = \frac{1}{4\pi\varepsilon_{0}}\sum_{\ell=0}^{\infty}\left[\frac{4\pi}{2\ell + 1}\right]^{1/2}\;\frac{1}{R^{\ell + 1}} | & = \frac{1}{4\pi\varepsilon_{0}}\sum_{\ell=0}^{\infty}\left[\frac{4\pi}{2\ell + 1}\right]^{1/2}\;\frac{1}{R^{\ell + 1}} | ||
\sum_{m=-\ell}^{\ell}(-1)^{m} Y^{-m}_{\ell}(\hat{R}) Q^{m}_{\ell}, \qquad R > r_{\mathrm{max}} | \sum_{m=-\ell}^{\ell}(-1)^{m} Y^{-m}_{\ell}(\hat{R}) Q^{m}_{\ell}, \qquad R > r_{\mathrm{max}} | ||
\end{align}</math> | \end{align}</math>यह विस्तार पूरी तरह से सामान्य है क्योंकि यह केवल पहले कुछ के लिए ही नहीं बल्कि सभी पदों के लिए एक बंद रूप देता है। यह दर्शाता है कि गोलीय बहुध्रुव आघूर्ण विभव के {{math|1/''R''}} विस्तार में गुणांक के रूप में दिखाई देते हैं। | ||
यह विस्तार पूरी तरह से सामान्य है क्योंकि यह सभी पदों के लिए बंद रूप देता | |||
वास्तविक रूप में पहले कुछ शब्दों पर विचार करना दिलचस्पी का विषय है, जो सामान्यतः अंडरग्रेजुएट पाठ्यपुस्तकों में पाए जाने वाले एकमात्र शब्द हैं। | वास्तविक रूप में पहले कुछ शब्दों पर विचार करना दिलचस्पी का विषय है, जो सामान्यतः अंडरग्रेजुएट पाठ्यपुस्तकों में पाए जाने वाले एकमात्र शब्द हैं। | ||
चूँकि m योग का योग साथ दोनों कारकों के एकात्मक परिवर्तन के | |||
चूँकि m योग का योग साथ दोनों कारकों के एकात्मक परिवर्तन के अनुसार अपरिवर्तनीय है और चूंकि जटिल गोलाकार हार्मोनिक्स का वास्तविक रूप में परिवर्तन ठोस हार्मोनिक्स वास्तविक रूप से होता है, इसलिए हम वास्तविक अनियमित ठोस हार्मोनिक्स और वास्तविक मल्टीपोल आघूर्णों को स्थानापन्न कर सकते हैं। वह {{math|1=''ℓ'' = 0}} पद बन जाता है | |||
<math display="block">V_{\ell=0}(\mathbf{R}) = | <math display="block">V_{\ell=0}(\mathbf{R}) = | ||
\frac{q_\mathrm{tot}}{4\pi \varepsilon_0 R} \quad\hbox{with}\quad q_\mathrm{tot}\equiv\sum_{i=1}^N q_i.</math> | \frac{q_\mathrm{tot}}{4\pi \varepsilon_0 R} \quad\hbox{with}\quad q_\mathrm{tot}\equiv\sum_{i=1}^N q_i.</math> | ||
यह वास्तव में फिर से कूलम्ब का नियम है। | यह वास्तव में फिर से कूलम्ब का नियम है। {{math|1=''ℓ'' = 1}} के लिए शब्द हम प्रस्तुत करते हैं | ||
<math display="block">\mathbf{R} = (R_x, R_y, R_z),\quad \mathbf{P} = (P_x, P_y, P_z)\quad | <math display="block">\mathbf{R} = (R_x, R_y, R_z),\quad \mathbf{P} = (P_x, P_y, P_z)\quad | ||
\hbox{with}\quad P_\alpha \equiv \sum_{i=1}^N q_i r_{i\alpha}, \quad \alpha=x,y,z.</math> | \hbox{with}\quad P_\alpha \equiv \sum_{i=1}^N q_i r_{i\alpha}, \quad \alpha=x,y,z.</math> | ||
Line 108: | Line 110: | ||
साहित्य में पाया जा सकता है। स्पष्ट रूप से जटिल अंकन की उपयोगिता को प्रदर्शित करते हुए, वास्तविक अंकन बहुत जल्द अजीब हो जाता है। | साहित्य में पाया जा सकता है। स्पष्ट रूप से जटिल अंकन की उपयोगिता को प्रदर्शित करते हुए, वास्तविक अंकन बहुत जल्द अजीब हो जाता है। | ||
==दो | ==दो गैर-अतिव्यापी चार्ज वितरणों की सहभागिता== | ||
बिन्दु आवेशों के दो समुच्चय पर विचार करें, समुच्चय {{math|{''q''<sub>''i''</sub>}<nowiki/>}} बिंदु | बिन्दु आवेशों के दो समुच्चय पर विचार करें, समुच्चय {{math|{''q''<sub>''i''</sub>}<nowiki/>}} बिंदु {{mvar|A}} के आसपास और सेट {{math|{''q''<sub>''j''</sub>}<nowiki/>}} बिंदु {{mvar|B}} के आसपास क्लस्टर किया गया है। उदाहरण के लिए दो [[अणु]]ओं के बारे में सोचें, और याद रखें कि परिभाषा के अनुसार अणु में [[इलेक्ट्रॉन]] (ऋणात्मक बिंदु आवेश) और परमाणु नाभिक (धनात्मक बिंदु आवेश) होते हैं। कुल इलेक्ट्रोस्टैटिक इंटरैक्शन ऊर्जा {{math|''U''<sub>''AB''</sub>}} दो वितरणों के बीच है | ||
<math display="block">U_{AB} = \sum_{i\in A} \sum_{j\in B} \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}}.</math> | <math display="block">U_{AB} = \sum_{i\in A} \sum_{j\in B} \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}}.</math> | ||
इस ऊर्जा को {{mvar|A}} और {{mvar|B}} की व्युत्क्रम दूरी में एक घात श्रृंखला में विस्तारित किया जा सकता है। इस विस्तार को U<sub>''AB''</sub> के मल्टीपोल विस्तार के रूप में जाना जाता है। | |||
इस विस्तार को | |||
इस मल्टीपोल विस्तार को प्राप्त करने के लिए, हम लिखते हैं {{math|1='''r'''<sub>XY</sub> = '''r'''<sub>''Y''</sub> − '''r'''<sub>''X''</sub>}}, जो | इस मल्टीपोल विस्तार को प्राप्त करने के लिए, हम लिखते हैं {{math|1='''r'''<sub>XY</sub> = '''r'''<sub>''Y''</sub> − '''r'''<sub>''X''</sub>}}, जो {{mvar|X}} की ओर {{mvar|Y}} वेक्टर से ओर संकेत कर रहा है। ध्यान दें कि | ||
<math display="block">\mathbf{R}_{AB}+\mathbf{r}_{Bj}+\mathbf{r}_{ji}+\mathbf{r}_{iA} = 0 | <math display="block">\mathbf{R}_{AB}+\mathbf{r}_{Bj}+\mathbf{r}_{ji}+\mathbf{r}_{iA} = 0 | ||
\quad \iff \quad | \quad \iff \quad | ||
Line 120: | Line 121: | ||
हम मानते हैं कि दो वितरण ओवरलैप नहीं होते हैं: | हम मानते हैं कि दो वितरण ओवरलैप नहीं होते हैं: | ||
<math display="block"> |\mathbf{R}_{AB}| > |\mathbf{r}_{Bj}-\mathbf{r}_{Ai}| \text{ for all } i,j.</math> | <math display="block"> |\mathbf{R}_{AB}| > |\mathbf{r}_{Bj}-\mathbf{r}_{Ai}| \text{ for all } i,j.</math> | ||
इस शर्त के | इस शर्त के अनुसार हम लाप्लास विस्तार (संभावित) को निम्नलिखित रूप में प्रायुक्त कर सकते हैं | ||
<math display="block">\frac{1}{|\mathbf{r}_{j}-\mathbf{r}_i|} = \frac{1}{|\mathbf{R}_{AB} - (\mathbf{r}_{Ai}- \mathbf{r}_{Bj})| } = | <math display="block">\frac{1}{|\mathbf{r}_{j}-\mathbf{r}_i|} = \frac{1}{|\mathbf{R}_{AB} - (\mathbf{r}_{Ai}- \mathbf{r}_{Bj})| } = | ||
\sum_{L=0}^\infty \sum_{M=-L}^L \, (-1)^M I_L^{-M}(\mathbf{R}_{AB})\; | \sum_{L=0}^\infty \sum_{M=-L}^L \, (-1)^M I_L^{-M}(\mathbf{R}_{AB})\; | ||
R^M_L( \mathbf{r}_{Ai} - \mathbf{r}_{Bj}),</math> | R^M_L( \mathbf{r}_{Ai} - \mathbf{r}_{Bj}),</math> | ||
जहाँ <math>I^M_L</math> और <math>R^M_L</math> क्रमशः अनियमित और नियमित [[ठोस हार्मोनिक्स]] हैं। ठोस हार्मोनिक्स | जहाँ <math>I^M_L</math> और <math>R^M_L</math> क्रमशः अनियमित और नियमित [[ठोस हार्मोनिक्स]] हैं। ठोस हार्मोनिक्स जोड़ प्रमेय परिमित विस्तार देता है, | ||
<math display="block">R^M_L(\mathbf{r}_{Ai}-\mathbf{r}_{Bj}) = \sum_{\ell_A=0}^L (-1)^{L-\ell_A} \binom{2L}{2\ell_A}^{1/2} | <math display="block">R^M_L(\mathbf{r}_{Ai}-\mathbf{r}_{Bj}) = \sum_{\ell_A=0}^L (-1)^{L-\ell_A} \binom{2L}{2\ell_A}^{1/2} | ||
\times \sum_{m_A=-\ell_A}^{\ell_A} R^{m_A}_{\ell_A}(\mathbf{r}_{Ai}) | \times \sum_{m_A=-\ell_A}^{\ell_A} R^{m_A}_{\ell_A}(\mathbf{r}_{Ai}) | ||
Line 130: | Line 131: | ||
\langle \ell_A, m_A; L-\ell_A, M-m_A\mid L M \rangle, | \langle \ell_A, m_A; L-\ell_A, M-m_A\mid L M \rangle, | ||
</math> | </math> | ||
जहां नुकीले कोष्ठकों के बीच की मात्रा क्लेब्स-गॉर्डन गुणांक है। आगे हमने | जहां नुकीले कोष्ठकों के बीच की मात्रा क्लेब्स-गॉर्डन गुणांक है। आगे हमने प्रयोग किया | ||
<math display="block">R^{m}_{\ell}(-\mathbf{r}) = (-1)^{\ell} R^{m}_{\ell}(\mathbf{r}) .</math> | <math display="block">R^{m}_{\ell}(-\mathbf{r}) = (-1)^{\ell} R^{m}_{\ell}(\mathbf{r}) .</math> | ||
गोलीय मल्टीपोल आघूर्ण की परिभाषा का प्रयोग#सामान्य गोलीय मल्टीपोल आघूर्ण {{math|''Q''{{supsub|''m''|''ℓ''}}}} और समन रेंज को कुछ अलग क्रम में कवर करना (जो केवल अनंत सीमा के लिए अनुमत है {{mvar|L}}) अंत में देता है | गोलीय मल्टीपोल आघूर्ण की परिभाषा का प्रयोग#सामान्य गोलीय मल्टीपोल आघूर्ण {{math|''Q''{{supsub|''m''|''ℓ''}}}} और समन रेंज को कुछ अलग क्रम में कवर करना (जो केवल अनंत सीमा के लिए अनुमत है {{mvar|L}}) अंत में देता है | ||
Line 140: | Line 141: | ||
\langle \ell_A, m_A; \ell_B, m_B\mid \ell_A+\ell_B, m_A+m_B \rangle. | \langle \ell_A, m_A; \ell_B, m_B\mid \ell_A+\ell_B, m_A+m_B \rangle. | ||
\end{align}</math> | \end{align}</math> | ||
यह दो गैर-अतिव्यापी आवेश वितरणों की परस्पर क्रिया ऊर्जा का मल्टीपोल विस्तार है जो | यह दो गैर-अतिव्यापी आवेश वितरणों की परस्पर क्रिया ऊर्जा का मल्टीपोल विस्तार है जो ''R<sub>AB</sub>'' से एक दूरी पर हैं। तब से | ||
<math display="block">I_{\ell_A+\ell_B}^{-(m_A+m_B)}(\mathbf{R}_{AB}) \equiv \left[\frac{4\pi}{2\ell_A+2\ell_B+1}\right]^{1/2}\; | <math display="block">I_{\ell_A+\ell_B}^{-(m_A+m_B)}(\mathbf{R}_{AB}) \equiv \left[\frac{4\pi}{2\ell_A+2\ell_B+1}\right]^{1/2}\; | ||
\frac{Y^{-(m_A+m_B)}_{\ell_A+\ell_B}\left(\widehat{\mathbf{R}}_{AB}\right)}{R^{\ell_A+\ell_B+1}_{AB}},</math> | \frac{Y^{-(m_A+m_B)}_{\ell_A+\ell_B}\left(\widehat{\mathbf{R}}_{AB}\right)}{R^{\ell_A+\ell_B+1}_{AB}},</math> | ||
यह विस्तार स्पष्ट रूप से | यह विस्तार स्पष्ट रूप से {{math|1 / ''R<sub>AB</sub>''}} की शक्तियों में है। फलन {{math|''Y''<sup>''m''</sup><sub>''l''</sub>}} सामान्यीकृत गोलाकार हार्मोनिक है। | ||
=== आणविक आघूर्ण === | === आणविक आघूर्ण === | ||
सभी परमाणुओं और अणुओं (एस-राज्य परमाणुओं को छोड़कर) में या से अधिक गैर-लुप्त होने वाले स्थायी मल्टीपोल आघूर्ण होते हैं। साहित्य में विभिन्न परिभाषाएँ पाई जा सकती हैं, | सभी परमाणुओं और अणुओं (एस-राज्य परमाणुओं को छोड़कर) में या से अधिक गैर-लुप्त होने वाले स्थायी मल्टीपोल आघूर्ण होते हैं। साहित्य में विभिन्न परिभाषाएँ पाई जा सकती हैं, किन्तु गोलाकार रूप में निम्नलिखित परिभाषा का लाभ यह है कि यह सामान्य समीकरण में समाहित है। क्योंकि यह जटिल रूप में है, इसका अतिरिक्त लाभ यह है कि इसके वास्तविक समकक्ष की तुलना में गणना में हेरफेर करना आसान है। | ||
हम चार्ज eZ के साथ N कणों (इलेक्ट्रॉनों और नाभिक) से युक्त अणु पर विचार करते | हम चार्ज eZ<sub>''i''</sub> के साथ N कणों (इलेक्ट्रॉनों और नाभिक) से युक्त अणु पर विचार करते हैं। (इलेक्ट्रॉनों का Z-मान -1 है, जबकि नाभिक के लिए यह [[परमाणु संख्या]] है)। कण i के गोलाकार ध्रुवीय निर्देशांक r<sub>''i''</sub>, θ<sub>''i''</sub>, और φ<sub>''i''</sub> और कार्तीय निर्देशांक x<sub>''i''</sub>, y<sub>''i''</sub>, और z<sub>''i''</sub>.हैं। (जटिल) इलेक्ट्रोस्टैटिक मल्टीपोल ऑपरेटर है | ||
(जटिल) इलेक्ट्रोस्टैटिक मल्टीपोल ऑपरेटर है | |||
<math display="block">Q^m_\ell \equiv \sum_{i=1}^N e Z_i \; R^m_{\ell}(\mathbf{r}_i),</math> | <math display="block">Q^m_\ell \equiv \sum_{i=1}^N e Z_i \; R^m_{\ell}(\mathbf{r}_i),</math> | ||
जहाँ <math>R^m_{\ell}(\mathbf{r}_i)</math> ठोस हार्मोनिक्स में नियमित ठोस हार्मोनिक्स फलन है | जहाँ <math>R^m_{\ell}(\mathbf{r}_i)</math> ठोस हार्मोनिक्स में नियमित ठोस हार्मोनिक्स फलन है | राका का सामान्यीकरण (जिसे श्मिट के अर्ध-सामान्यीकरण के रूप में भी जाना जाता है)। | ||
यदि अणु में कुल सामान्यीकृत तरंग फलन Ψ है (इलेक्ट्रॉनों और नाभिक के निर्देशांक के आधार पर), तो आदेश का मल्टीपोल आघूर्ण <math>\ell</math> उम्मीद | |||
यदि अणु में कुल सामान्यीकृत तरंग फलन Ψ है (इलेक्ट्रॉनों और नाभिक के निर्देशांक के आधार पर), तो आदेश का मल्टीपोल आघूर्ण <math>\ell</math> उम्मीद मान (क्वांटम यांत्रिकी) | अपेक्षा (अपेक्षित) मान द्वारा अणु का दिया जाता है: | |||
<math display="block">M^m_\ell \equiv \langle \Psi \mid Q^m_\ell \mid \Psi \rangle.</math> | <math display="block">M^m_\ell \equiv \langle \Psi \mid Q^m_\ell \mid \Psi \rangle.</math> | ||
यदि अणु में | यदि अणु में निश्चित बिंदु समूह समरूपता है, तो यह तरंग समारोह में परिलक्षित होता है: Ψ [[समूह (गणित)]] के निश्चित इरेड्यूसबल प्रतिनिधित्व λ के अनुसार रूपांतरित होता है ( Ψ में समरूपता प्रकार λ है)। इसका परिणाम यह है कि [[चयन नियम]] मल्टीपोल ऑपरेटर के अपेक्षा मान के लिए या दूसरे शब्दों में, कि समरूपता के कारण अपेक्षा मान लुप्त हो सकता है। इसका प्रसिद्ध उदाहरण यह तथ्य है कि व्युत्क्रम केंद्र वाले अणुओं में द्विध्रुव नहीं होता ( {{math|1=''m'' = −1, 0, 1}} के लिये <math> Q^m_1 </math> का अपेक्षित मान लुप्त हो जाता है) है। समरूपता के बिना अणु के लिए, कोई चयन नियम ऑपरेटिव नहीं हैं और ऐसे अणु में किसी भी क्रम के गैर-लुप्त होने वाले मल्टीपोल होंगे (यह द्विध्रुव और साथ ही साथ चतुर्ध्रुव, ऑक्टोपोल, हेक्साडेकैपोल, आदि ले जाएगा)। | ||
नियमित ठोस हार्मोनिक्स | नियमित ठोस हार्मोनिक्स (कोंडन-शॉर्टली चरण के साथ) के निम्नतम स्पष्ट रूप देते हैं: | ||
<math display="block"> M^0_0 = \sum_{i=1}^N e Z_i, </math> | <math display="block"> M^0_0 = \sum_{i=1}^N e Z_i, </math> | ||
(अणु का कुल आवेश)। (जटिल) द्विध्रुवीय घटक हैं: | (अणु का कुल आवेश)। (जटिल) द्विध्रुवीय घटक हैं: | ||
Line 162: | Line 163: | ||
M^{-1}_{1} = \tfrac{1}{\sqrt 2} \sum_{i=1}^N e Z_i \langle \Psi | x_i - iy_i | \Psi \rangle. </math> | M^{-1}_{1} = \tfrac{1}{\sqrt 2} \sum_{i=1}^N e Z_i \langle \Psi | x_i - iy_i | \Psi \rangle. </math> | ||
<math display="block"> M^0_1 = \sum_{i=1}^N e Z_i \langle \Psi | z_i | \Psi \rangle.</math> | <math display="block"> M^0_1 = \sum_{i=1}^N e Z_i \langle \Psi | z_i | \Psi \rangle.</math> | ||
ध्यान दें कि साधारण | ध्यान दें कि एक साधारण रैखिक संयोजन से जटिल मल्टीपोल ऑपरेटरों को वास्तविक में बदल सकते हैं। वास्तविक मल्टीपोल ऑपरेटर कोसाइन प्रकार <math> C^m_\ell</math> या साइन प्रकार <math>S^m_\ell</math> के होते हैं। इनमें से कुछ निम्न हैं: | ||
<math> C^m_\ell</math> या साइन प्रकार <math>S^m_\ell</math> | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
C^0_1 &= \sum_{i=1}^N eZ_i \; z_i \\ | C^0_1 &= \sum_{i=1}^N eZ_i \; z_i \\ | ||
Line 177: | Line 177: | ||
==== सम्मेलनों पर ध्यान दें ==== | ==== सम्मेलनों पर ध्यान दें ==== | ||
ऊपर दी गई जटिल आणविक मल्टीपोल आघूर्ण की परिभाषा | ऊपर दी गई जटिल आणविक मल्टीपोल आघूर्ण की परिभाषा इस लेख में दी गई परिभाषा का जटिल संयुग्म है, जो सामान्यीकरण को छोड़कर जैक्सन द्वारा मौलिक विद्युतगतिकी पर मानक पाठ्यपुस्तक की परिभाषा का अनुसरण करता है,<ref name=Jackson75/>{{rp|137}} इसके अतिरिक्त, जैक्सन की मौलिक परिभाषा में n-कण [[क्वांटम यांत्रिकी]] अपेक्षा मान के बराबर कण चार्ज वितरण पर [[अभिन्न]] अंग है। याद रखें कि एक-कण क्वांटम मैकेनिकल सिस्टम के स्थिति में उम्मीद का मान और कुछ नहीं बल्कि चार्ज डिस्ट्रीब्यूशन (वेवफंक्शन स्क्वायर के मॉड्यूलस) पर इंटीग्रल है, जिससे इस लेख की परिभाषा जैक्सन की परिभाषा का क्वांटम मैकेनिकल एन-कण सामान्यीकरण हो . | ||
इस लेख की परिभाषा अन्य बातों के | इस लेख की परिभाषा अन्य बातों के साथ-साथ फानो और राकाह<ref>U. Fano and G. Racah, ''Irreducible Tensorial Sets'', Academic Press, New York (1959). p. 31</ref> और ब्रिंक और सैचलर।<ref>D. M. Brink and G. R. Satchler, ''Angular Momentum'', 2nd edition, Clarendon Press, Oxford, UK (1968). p. 64. See also footnote on p. 90.</ref> से सहमत है। | ||
== उदाहरण == | == उदाहरण == | ||
कई प्रकार के मल्टीपोल आघूर्ण हैं, क्योंकि कई प्रकार की क्षमताएं हैं और [[श्रृंखला विस्तार]] द्वारा क्षमता का अनुमान लगाने के कई तरीके हैं, जो समन्वय प्रणाली और चार्ज वितरण की [[समरूपता]] पर निर्भर करता है। सबसे आम विस्तार में | कई प्रकार के मल्टीपोल आघूर्ण हैं, क्योंकि कई प्रकार की क्षमताएं हैं और [[श्रृंखला विस्तार]] द्वारा क्षमता का अनुमान लगाने के कई तरीके हैं, जो समन्वय प्रणाली और चार्ज वितरण की [[समरूपता]] पर निर्भर करता है। सबसे आम विस्तार में सम्मिलित हैं: | ||
* A का अक्षीय मल्टीपोल आघूर्ण {{math|1/''R''}} संभावना; | * A का अक्षीय मल्टीपोल आघूर्ण {{math|1/''R''}} संभावना; | ||
* | * A के गोलाकार मल्टीपोल आघूर्ण {{math|1/''R''}} संभावना; और | ||
* बेलनाकार मल्टीपोल आघूर्ण | * बेलनाकार मल्टीपोल आघूर्ण A {{math|में ''R''}} संभावना | ||
इसके उदाहरण {{math|1/''R''}} संभावितों में विद्युत क्षमता, चुंबकीय स्केलर क्षमता और बिंदु स्रोतों की [[गुरुत्वाकर्षण क्षमता]] | इसके उदाहरण {{math|1/''R''}} संभावितों में विद्युत क्षमता, चुंबकीय स्केलर क्षमता और बिंदु स्रोतों की [[गुरुत्वाकर्षण क्षमता]] सम्मिलित है। A का उदाहरण {{math|में ''R''}} संभावित अनंत लाइन चार्ज की विद्युत क्षमता है। | ||
== सामान्य गणितीय गुण == | == सामान्य गणितीय गुण == | ||
गणित और [[गणितीय भौतिकी]] में मल्टीपोल आघूर्ण समारोह के अपघटन के लिए [[ओर्थोगोनल]] आधार बनाते हैं, जो [[क्षेत्र (भौतिकी)]] की प्रतिक्रिया के आधार पर बिंदु स्रोतों पर आधारित होते हैं जो दूसरे के असीम रूप से | गणित और [[गणितीय भौतिकी]] में मल्टीपोल आघूर्ण समारोह के अपघटन के लिए [[ओर्थोगोनल]] आधार बनाते हैं, जो [[क्षेत्र (भौतिकी)]] की प्रतिक्रिया के आधार पर बिंदु स्रोतों पर आधारित होते हैं जो दूसरे के असीम रूप से निकट लाए जाते हैं। इन्हें विभिन्न ज्यामितीय आकारों में व्यवस्थित किया जा सकता है, या [[वितरण (गणित)]] के अर्थ में, दिशात्मक डेरिवेटिव के रूप में माना जा सकता है। | ||
मल्टीपोल विस्तार भौतिक | मल्टीपोल विस्तार भौतिक नियमों के अंतर्निहित घूर्णी समरूपता और उनके संबद्ध [[अंतर समीकरण|अंतर समीकरणों]] से संबंधित हैं। चाहे स्रोत की शर्तें (जैसे द्रव्यमान, आवेश या धाराएं) सममित न हों, कोई भी उन्हें घूर्णी [[समरूपता समूह]] के [[समूह प्रतिनिधित्व]] के संदर्भ में विस्तारित कर सकता है, जो गोलाकार हार्मोनिक्स और ऑर्थोगोनल कार्यों के संबंधित सेट की ओर जाता है। रेडियल निर्भरताओं के लिए संबंधित समाधान निकालने के लिए वेरिएबल्स को अलग करने की विधि का उपयोग करता है। | ||
व्यवहार में, कई क्षेत्रों को मल्टीपोल आघूर्णों की सीमित संख्या के साथ अच्छी तरह से अनुमानित किया जा सकता है ( | व्यवहार में, कई क्षेत्रों को मल्टीपोल आघूर्णों की सीमित संख्या के साथ अच्छी तरह से अनुमानित किया जा सकता है (चूंकि क्षेत्र को ठीक से पुनर्निर्माण करने के लिए अनंत संख्या की आवश्यकता हो सकती है)। विशिष्ट अनुप्रयोग अपने मोनोपोल (गणित) और द्विध्रुव शब्दों द्वारा स्थानीयकृत आवेश वितरण के क्षेत्र का अनुमान लगाना है। मल्टीपोल आघूर्ण के दिए गए क्रम के लिए बार हल की गई समस्या किसी दिए गए स्रोत के लिए अंतिम अनुमानित समाधान बनाने के लिए [[रैखिक संयोजन]] हो सकती है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 209: | Line 209: | ||
==संदर्भ== | ==संदर्भ== | ||
<references /> | <references /> | ||
[[Category:Created On 03/03/2023]] | [[Category:Created On 03/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:पल (भौतिकी)]] | |||
[[Category:वेक्टर पथरी]] | |||
[[Category:संभावित सिद्धांत]] |
Latest revision as of 09:57, 21 March 2023
मल्टीपोल विस्तार गणितीय श्रृंखला (गणित) है जो फलन (गणित) का प्रतिनिधित्व करता है जो कोणों पर निर्भर करता है - जो सामान्यतः त्रि-आयामी यूक्लिडियन अंतरिक्ष के लिए गोलाकार समन्वय प्रणाली (ध्रुवीय और दिगंश कोण) में उपयोग किए जाने वाले दो कोण पर निर्भर करती है। इसी प्रकार टेलर श्रृंखला के लिए, मल्टीपोल विस्तार उपयोगी होते हैं क्योंकि मूल कार्य का अच्छा सन्निकटन प्रदान करने के लिए अधिकांश केवल पहले कुछ शब्दों की आवश्यकता होती है। विस्तारित किया जा रहा कार्य वास्तविक संख्या- या जटिल संख्या-मूल्यवान हो सकता है और इसे या तो परिभाषित किया गया है, या कुछ अन्य .के लिए पर कम बार परिभाषित किया गया है।
मल्टीपोल विस्तार का उपयोग अधिकांश विद्युत चुम्बकीय और गुरुत्वाकर्षण क्षेत्रों के अध्ययन में किया जाता है, जहां छोटे से क्षेत्र में स्रोतों के संदर्भ में दूर के बिंदुओं पर क्षेत्र दिए जाते हैं। कोणों के साथ मल्टीपोल विस्तार को अधिकांश त्रिज्या में विस्तार के साथ जोड़ दिया जाता है। ऐसा संयोजन त्रि-आयामी अंतरिक्ष में फलन का वर्णन करने वाला विस्तार देता है।[1]
मल्टीपोल विस्तार को उत्तरोत्तर महीन कोणीय विशेषताओं (आघूर्ण (गणित)) के साथ शब्दों के योग के रूप में व्यक्त किया गया है। पहले (शून्य-क्रम) पद को मोनोपोल (गणित) आघूर्ण कहा जाता है, दूसरे (प्रथम-क्रम) पद को द्विध्रुवीय आघूर्ण, तीसरा (द्वितीय-क्रम) चतुर्भुज आघूर्ण, चौथा (तीसरा- क्रम) कहा जाता है। शब्द को ऑक्टोपोल पल कहा जाता है, और इसी तरह। ग्रीक अंकों की सीमा को देखते हुए, उच्च क्रम के पदों को पारंपरिक रूप से ध्रुवों की संख्या में जोड़कर नामित किया जाता है - उदाहरण के लिए, 32-ध्रुव (संभवतः ही कभी डॉट्रियाकॉन्टापोल या ट्राइकोंटाडिपोल) और 64-ध्रुव (संभवतः ही कभी टेट्राहेक्साकॉन्टापोल या हेक्साकोंटाटेट्रापोल)।[2][3][4] मल्टीपोल आघूर्ण में सामान्यतः मूल बिंदु से दूरी के साथ-साथ कुछ कोणीय निर्भरता की घातांक (या व्युत्क्रम घात) सम्मिलित होती हैं।
सिद्धांत रूप में, मल्टीपोल विस्तार क्षमता का त्रुटिहीन विवरण प्रदान करता है, और सामान्यतः अभिसरण श्रृंखला दो स्थितियों के अनुसार होती है: (1) यदि स्रोत (जैसे शुल्क) मूल के निकट स्थानीयकृत हैं और जिस बिंदु पर संभावित देखा गया है वह दूर है मूल; या (2) उल्टा, अर्थात्, यदि स्रोत मूल से दूर स्थित हैं और क्षमता मूल के निकट देखी गई है। पहले (अधिक सामान्य) स्थिति में, श्रृंखला विस्तार के गुणांक को बाहरी मल्टीपोल आघूर्ण या केवल मल्टीपोल आघूर्ण कहा जाता है, जबकि दूसरे स्थिति में, उन्हें आंतरिक मल्टीपोल आघूर्ण कहा जाता है।
गोलाकार हार्मोनिक्स में विस्तार
सामान्यतः, श्रृंखला को गोलाकार हार्मोनिक्स के योग के रूप में लिखा जाता है। इस प्रकार, हम फलन लिख सकते हैं योग के रूप में
उपरोक्त विस्तार में, गुणांक वास्तविक संख्या या सम्मिश्र संख्या हो सकते हैं। यदि मल्टीपोल विस्तार के रूप में व्यक्त किया जा रहा कार्य वास्तविक है, चूंकि, गुणांक को कुछ गुणों को पूरा करना चाहिए। गोलाकार हार्मोनिक विस्तार में, हमारे पास होना चाहिए
तीन आयामों के कार्यों का वर्णन करने के लिए, समन्वय मूल से दूर, मल्टीपोल विस्तार के गुणांक को मूल से दूरी के कार्यों के रूप में लिखा जा सकता है, —सबसे अधिक बार, की घातयों में लॉरेंट श्रृंखला के रूप में . उदाहरण के लिए, विद्युत चुम्बकीय क्षमता का वर्णन करने के लिए, , मूल के पास छोटे से क्षेत्र में स्रोत से, गुणांक के रूप में लिखा जा सकता है:
अनुप्रयोग
मल्टीपोल विस्तार का व्यापक रूप से द्रव्यमान, विद्युत क्षेत्र और आवेश के चुंबकीय क्षेत्र और वर्तमान वितरण, और विद्युत चुम्बकीय तरंगों के प्रसार के गुरुत्वाकर्षण क्षेत्र से जुड़ी समस्याओं में व्यापक रूप से उपयोग किया जाता है। उत्कृष्ट उदाहरण इलेक्ट्रॉनिक ऑर्बिटल्स के आंतरिक गुणकों के साथ उनकी अंतःक्रियात्मक ऊर्जा से परमाणु नाभिक के बाहरी मल्टीपोल आघूर्णों की गणना है। नाभिक के मल्टीपोल आघूर्ण नाभिक के भीतर आवेशों के वितरण और इस प्रकार नाभिक के आकार पर रिपोर्ट करते हैं। मल्टीपोल विस्तार का ट्रंकेशन इसके पहले गैर-शून्य शब्द तक अधिकांश सैद्धांतिक गणना के लिए उपयोगी होता है।
मल्टीपोल विस्तार संख्यात्मक सिमुलेशन में भी उपयोगी होते हैं, और लेस्ली ग्रीनगार्ड और व्लादिमीर रोखलिन (अमेरिकी वैज्ञानिक) की फास्ट मल्टीपोल विधि का आधार बनाते हैं, जो कणों के परस्पर क्रिया करने की प्रणालियों में ऊर्जा और बलों की कुशल गणना के लिए सामान्य विधि है। मूल विचार कणों को समूहों में विघटित करना है; समूह के भीतर के कण सामान्य रूप से परस्पर क्रिया करते हैं (अर्थात्, पूरी क्षमता से), जबकि कणों के समूहों के बीच ऊर्जा और बलों की गणना उनके मल्टीपोल आघूर्णों से की जाती है। फास्ट मल्टीपोल विधि की दक्षता सामान्यतः इवाल्ड योग के समान होती है, किन्तु यदि कण क्लस्टर होते हैं, तो उत्तम होता है, अर्थात् सिस्टम में बड़े घनत्व में उतार-चढ़ाव होता है।
इलेक्ट्रोस्टैटिक चार्ज वितरण के बाहर क्षमता का मल्टीपोल विस्तार
एक असतत चार्ज वितरण पर विचार करें जिसमें स्थिति वैक्टर ri के साथ N पॉइंट चार्ज qi सम्मिलित है। हम चार्ज को मूल के चारों ओर क्लस्टर करने के लिए मानते हैं, जिससे सभी i: ri < rmax के लिए, जहां rmax का कुछ परिमित मान हो। आवेश वितरण के कारण विभव V(R), आवेश वितरण के बाहर एक बिंदु R पर, अर्थात |R| > rmax को 1/R की घातों में विस्तारित किया जा सकता है। इस विस्तार को बनाने के दो तरीके साहित्य में पाए जा सकते हैं: पहला कार्टेशियन निर्देशांक x, y, और z में टेलर श्रृंखला है, जबकि दूसरा गोलाकार हार्मोनिक्स के संदर्भ में है जो गोलाकार ध्रुवीय निर्देशांक पर निर्भर करता है। कार्टेशियन दृष्टिकोण का लाभ यह है कि लीजेंड्रे फ़ंक्शंस, गोलाकार हार्मोनिक्स इत्यादि के पूर्व ज्ञान की आवश्यकता नहीं है। इसका हानि यह है कि व्युत्पत्ति अधिक जटिल हैं (वास्तव में इसका बड़ा हिस्सा 1 / |r − R| के लिजेंड्रे के विस्तार का निहित पुनर्वितरण है, जो 1780 के दशक में एड्रियन मैरी लीजेंड्रे द्वारा बार और सभी के लिए किया गया था)। मल्टीपोल विस्तार की सामान्य अवधि के लिए बंद अभिव्यक्ति देना भी कठिन है - सामान्यतः केवल पहले कुछ शब्दों को दीर्घवृत्त के बाद दिया जाता है।
कार्तीय निर्देशांकों में विस्तार
होने देना संतुष्ट करता है .
फिर की टेलर श्रृंखला v(r − R) उत्पत्ति के आसपास r = 0 लिखा जा सकता है
उदाहरण
अब के निम्न v(r − R) रूप पर विचार करें:
गोलाकार रूप
सामर्थ V(R) बिंदु पर R चार्ज वितरण के बाहर, अर्थात् |R| > rmax, लाप्लास विस्तार (संभावित) द्वारा विस्तारित किया जा सकता है:
गोलाकार हार्मोनिक इकाई वेक्टर पर निर्भर करता है . (इकाई वेक्टर दो गोलाकार ध्रुवीय कोणों द्वारा निर्धारित किया जाता है।) इस प्रकार, परिभाषा के अनुसार, अनियमित ठोस हार्मोनिक्स को इस प्रकार लिखा जा सकता है
वास्तविक रूप में पहले कुछ शब्दों पर विचार करना दिलचस्पी का विषय है, जो सामान्यतः अंडरग्रेजुएट पाठ्यपुस्तकों में पाए जाने वाले एकमात्र शब्द हैं।
चूँकि m योग का योग साथ दोनों कारकों के एकात्मक परिवर्तन के अनुसार अपरिवर्तनीय है और चूंकि जटिल गोलाकार हार्मोनिक्स का वास्तविक रूप में परिवर्तन ठोस हार्मोनिक्स वास्तविक रूप से होता है, इसलिए हम वास्तविक अनियमित ठोस हार्मोनिक्स और वास्तविक मल्टीपोल आघूर्णों को स्थानापन्न कर सकते हैं। वह ℓ = 0 पद बन जाता है
लिखने के लिए ℓ = 2 शब्द, हमें चतुष्कोणीय आघूर्ण के पांच वास्तविक घटकों और वास्तविक गोलाकार हार्मोनिक्स के लिए आशुलिपि संकेतन प्रस्तुत करना है। प्रकार की सूचनाएं
दो गैर-अतिव्यापी चार्ज वितरणों की सहभागिता
बिन्दु आवेशों के दो समुच्चय पर विचार करें, समुच्चय {qi} बिंदु A के आसपास और सेट {qj} बिंदु B के आसपास क्लस्टर किया गया है। उदाहरण के लिए दो अणुओं के बारे में सोचें, और याद रखें कि परिभाषा के अनुसार अणु में इलेक्ट्रॉन (ऋणात्मक बिंदु आवेश) और परमाणु नाभिक (धनात्मक बिंदु आवेश) होते हैं। कुल इलेक्ट्रोस्टैटिक इंटरैक्शन ऊर्जा UAB दो वितरणों के बीच है
इस मल्टीपोल विस्तार को प्राप्त करने के लिए, हम लिखते हैं rXY = rY − rX, जो X की ओर Y वेक्टर से ओर संकेत कर रहा है। ध्यान दें कि
ℓ और समन रेंज को कुछ अलग क्रम में कवर करना (जो केवल अनंत सीमा के लिए अनुमत है L) अंत में देता है
आणविक आघूर्ण
सभी परमाणुओं और अणुओं (एस-राज्य परमाणुओं को छोड़कर) में या से अधिक गैर-लुप्त होने वाले स्थायी मल्टीपोल आघूर्ण होते हैं। साहित्य में विभिन्न परिभाषाएँ पाई जा सकती हैं, किन्तु गोलाकार रूप में निम्नलिखित परिभाषा का लाभ यह है कि यह सामान्य समीकरण में समाहित है। क्योंकि यह जटिल रूप में है, इसका अतिरिक्त लाभ यह है कि इसके वास्तविक समकक्ष की तुलना में गणना में हेरफेर करना आसान है।
हम चार्ज eZi के साथ N कणों (इलेक्ट्रॉनों और नाभिक) से युक्त अणु पर विचार करते हैं। (इलेक्ट्रॉनों का Z-मान -1 है, जबकि नाभिक के लिए यह परमाणु संख्या है)। कण i के गोलाकार ध्रुवीय निर्देशांक ri, θi, और φi और कार्तीय निर्देशांक xi, yi, और zi.हैं। (जटिल) इलेक्ट्रोस्टैटिक मल्टीपोल ऑपरेटर है
यदि अणु में कुल सामान्यीकृत तरंग फलन Ψ है (इलेक्ट्रॉनों और नाभिक के निर्देशांक के आधार पर), तो आदेश का मल्टीपोल आघूर्ण उम्मीद मान (क्वांटम यांत्रिकी) | अपेक्षा (अपेक्षित) मान द्वारा अणु का दिया जाता है:
नियमित ठोस हार्मोनिक्स (कोंडन-शॉर्टली चरण के साथ) के निम्नतम स्पष्ट रूप देते हैं:
सम्मेलनों पर ध्यान दें
ऊपर दी गई जटिल आणविक मल्टीपोल आघूर्ण की परिभाषा इस लेख में दी गई परिभाषा का जटिल संयुग्म है, जो सामान्यीकरण को छोड़कर जैक्सन द्वारा मौलिक विद्युतगतिकी पर मानक पाठ्यपुस्तक की परिभाषा का अनुसरण करता है,[7]: 137 इसके अतिरिक्त, जैक्सन की मौलिक परिभाषा में n-कण क्वांटम यांत्रिकी अपेक्षा मान के बराबर कण चार्ज वितरण पर अभिन्न अंग है। याद रखें कि एक-कण क्वांटम मैकेनिकल सिस्टम के स्थिति में उम्मीद का मान और कुछ नहीं बल्कि चार्ज डिस्ट्रीब्यूशन (वेवफंक्शन स्क्वायर के मॉड्यूलस) पर इंटीग्रल है, जिससे इस लेख की परिभाषा जैक्सन की परिभाषा का क्वांटम मैकेनिकल एन-कण सामान्यीकरण हो .
इस लेख की परिभाषा अन्य बातों के साथ-साथ फानो और राकाह[8] और ब्रिंक और सैचलर।[9] से सहमत है।
उदाहरण
कई प्रकार के मल्टीपोल आघूर्ण हैं, क्योंकि कई प्रकार की क्षमताएं हैं और श्रृंखला विस्तार द्वारा क्षमता का अनुमान लगाने के कई तरीके हैं, जो समन्वय प्रणाली और चार्ज वितरण की समरूपता पर निर्भर करता है। सबसे आम विस्तार में सम्मिलित हैं:
- A का अक्षीय मल्टीपोल आघूर्ण 1/R संभावना;
- A के गोलाकार मल्टीपोल आघूर्ण 1/R संभावना; और
- बेलनाकार मल्टीपोल आघूर्ण A में R संभावना
इसके उदाहरण 1/R संभावितों में विद्युत क्षमता, चुंबकीय स्केलर क्षमता और बिंदु स्रोतों की गुरुत्वाकर्षण क्षमता सम्मिलित है। A का उदाहरण में R संभावित अनंत लाइन चार्ज की विद्युत क्षमता है।
सामान्य गणितीय गुण
गणित और गणितीय भौतिकी में मल्टीपोल आघूर्ण समारोह के अपघटन के लिए ओर्थोगोनल आधार बनाते हैं, जो क्षेत्र (भौतिकी) की प्रतिक्रिया के आधार पर बिंदु स्रोतों पर आधारित होते हैं जो दूसरे के असीम रूप से निकट लाए जाते हैं। इन्हें विभिन्न ज्यामितीय आकारों में व्यवस्थित किया जा सकता है, या वितरण (गणित) के अर्थ में, दिशात्मक डेरिवेटिव के रूप में माना जा सकता है।
मल्टीपोल विस्तार भौतिक नियमों के अंतर्निहित घूर्णी समरूपता और उनके संबद्ध अंतर समीकरणों से संबंधित हैं। चाहे स्रोत की शर्तें (जैसे द्रव्यमान, आवेश या धाराएं) सममित न हों, कोई भी उन्हें घूर्णी समरूपता समूह के समूह प्रतिनिधित्व के संदर्भ में विस्तारित कर सकता है, जो गोलाकार हार्मोनिक्स और ऑर्थोगोनल कार्यों के संबंधित सेट की ओर जाता है। रेडियल निर्भरताओं के लिए संबंधित समाधान निकालने के लिए वेरिएबल्स को अलग करने की विधि का उपयोग करता है।
व्यवहार में, कई क्षेत्रों को मल्टीपोल आघूर्णों की सीमित संख्या के साथ अच्छी तरह से अनुमानित किया जा सकता है (चूंकि क्षेत्र को ठीक से पुनर्निर्माण करने के लिए अनंत संख्या की आवश्यकता हो सकती है)। विशिष्ट अनुप्रयोग अपने मोनोपोल (गणित) और द्विध्रुव शब्दों द्वारा स्थानीयकृत आवेश वितरण के क्षेत्र का अनुमान लगाना है। मल्टीपोल आघूर्ण के दिए गए क्रम के लिए बार हल की गई समस्या किसी दिए गए स्रोत के लिए अंतिम अनुमानित समाधान बनाने के लिए रैखिक संयोजन हो सकती है।
यह भी देखें
- बार्न्स-हट सिमुलेशन
- फास्ट मल्टीपोल विधि
- लाप्लास विस्तार (संभावित)
- लीजेंड्रे बहुपद
- कण त्वरक में चौगुना चुंबक का उपयोग किया जाता है
- ठोस हार्मोनिक्स
- टॉरॉयडल पल
संदर्भ
- ↑ Edmonds, A. R. (1960). क्वांटम यांत्रिकी में कोणीय गति. Princeton University Press. ISBN 9780691079127.
- ↑ Auzinsh, Marcis; Budker, Dmitry; Rochester, Simon (2010). Optically polarized atoms : understanding light-atom interactions. Oxford: New York. p. 100. ISBN 9780199565122.
- ↑ Okumura, Mitchio; Chan, Man-Chor; Oka, Takeshi (2 January 1989). "High-resolution infrared spectroscopy of solid hydrogen: The tetrahexacontapole-induced transitions" (PDF). Physical Review Letters. 62 (1): 32–35. Bibcode:1989PhRvL..62...32O. doi:10.1103/PhysRevLett.62.32. PMID 10039541.
- ↑ Ikeda, Hiroaki; Suzuki, Michi-To; Arita, Ryotaro; Takimoto, Tetsuya; Shibauchi, Takasada; Matsuda, Yuji (3 June 2012). "Emergent rank-5 nematic order in URu2Si2". Nature Physics. 8 (7): 528–533. arXiv:1204.4016. Bibcode:2012NatPh...8..528I. doi:10.1038/nphys2330. S2CID 119108102.
- ↑ Thompson, William J. कोनेदार गति. John Wiley & Sons, Inc.
- ↑ Thorne, Kip S. (April 1980). "गुरुत्वीय विकिरण का बहुध्रुवीय विस्तार" (PDF). Reviews of Modern Physics. 52 (2): 299–339. Bibcode:1980RvMP...52..299T. doi:10.1103/RevModPhys.52.299.
- ↑ 7.0 7.1 Jackson, John David (1975). शास्त्रीय इलेक्ट्रोडायनामिक्स (2d ed.). New York: Wiley. ISBN 047143132X.
- ↑ U. Fano and G. Racah, Irreducible Tensorial Sets, Academic Press, New York (1959). p. 31
- ↑ D. M. Brink and G. R. Satchler, Angular Momentum, 2nd edition, Clarendon Press, Oxford, UK (1968). p. 64. See also footnote on p. 90.