ऑर्थोगोनल फ़ंक्शन: Difference between revisions
m (6 revisions imported from alpha:ऑर्थोगोनल_फ़ंक्शन) |
No edit summary |
||
Line 51: | Line 51: | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
* [http://mathworld.wolfram.com/OrthogonalFunctions.html Orthogonal Functions], on MathWorld. | * [http://mathworld.wolfram.com/OrthogonalFunctions.html Orthogonal Functions], on MathWorld. | ||
[[Category:Articles with hatnote templates targeting a nonexistent page]] | |||
[[Category: | |||
[[Category:Created On 03/03/2023]] | [[Category:Created On 03/03/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:कार्यात्मक विश्लेषण]] | |||
[[Category:कार्यों के प्रकार]] |
Latest revision as of 10:10, 21 March 2023
गणित में, ऑर्थोगोनल फलन, फलन स्पेस से संबंधित होते हैं जो कि द्विरेखीय फॉर्म से लैस सदिश स्पेस होता है। जब फलन स्पेस में फलन के डोमेन के रूप में अंतराल होता है, तो द्विरेखीय रूप अंतराल पर फलनों के उत्पाद का अभिन्न अंग हो सकता है:
जब यह अभिन्न शून्य है, तो फलन और ऑर्थोगोनल होते हैं, उदाहरण, जब कभी भी है। परिमित-आयामी अंतरिक्ष में सदिश के आधार (रैखिक बीजगणित) के साथ, ऑर्थोगोनल फलन फलन स्पेस के लिए अनंत आधार बना सकते हैं। संकल्पनात्मक रूप से, उपरोक्त अभिन्न सदिश डॉट उत्पाद के बराबर है; दो सदिश परस्पर स्वतंत्र (ऑर्थोगोनल) हैं यदि उनका बिंदु-उत्पाद शून्य है।
माना गैर-शून्य L2-मानदंड के ऑर्थोगोनल फलन का क्रम है। यह क्रम L2-मानदंड के इस क्रम का अनुसरण करके ओर्थोनॉर्मल अनुक्रम बनाता है। परिभाषित L2-मानदंड होने के लिए, अभिन्न को बाध्य होना चाहिए, जो फलनों को वर्ग-अभिन्न होने के लिए प्रतिबंधित करता है।
त्रिकोणमितीय फलन
ऑर्थोगोनल फलन के कई समुच्चय अनुमानित फलनों के लिए मानक आधार बन गए हैं। उदाहरण के लिए, साइन फलन sin nx और sin mx, अंतराल जब और n तथा m धनात्मक पूर्णांक पर ऑर्थोगोनल हैं। तब के लिए:
और दो साइन फलनों के उत्पाद का अभिन्न अंग लुप्त हो जाता है।[1] कोसाइन फलन के साथ, इन ऑर्थोगोनल फलन को त्रिकोणमितीय बहुपद में इकट्ठा किया जा सकता है जिससे इसकी फोरियर श्रेणी के साथ अंतराल पर दिए गए फलन का अनुमान लगाया जा सकता है।
बहुपद
यदि कोई मोनोमियल अनुक्रम , अंतराल पर प्रारंभ होता है और ग्राम-श्मिट प्रक्रिया को प्रयुक्त करता है, फिर लेजेंड्रे बहुपद प्राप्त करता है। ऑर्थोगोनल बहुपदों का एक और संग्रह संबंधित लीजेंड्रे बहुपद हैं।
ऑर्थोगोनल बहुपदों के अध्ययन में वजन फलन सम्मिलित हैं, जो द्विरेखीय फॉर्म में डाले गए हैं:
लैगुएरे बहुपदों के लिए वजन फलन है।
पर भौतिक विज्ञानी और संभाव्यता सिद्धांतकार दोनों ही हर्मिट बहुपदों का उपयोग करते हैं, जहां वजन फलन या है।
पर, चेबीशेव बहुपदों को परिभाषित किया गया है, और वजन या का प्रयोग करें।
ज़र्निके बहुपदों को इकाई डिस्क पर परिभाषित किया गया है और इसमें रेडियल और कोणीय दोनों भागों की ऑर्थोगोनल है।
बाइनरी-वैल्यूड फलन
वाल्श फलन और हार तरंगिकाएँ असतत श्रेणियों के साथ ऑर्थोगोनल फलन के उदाहरण हैं।
तर्कसंगत फलन
लीजेंड्रे और चेबीशेव बहुपद [−1, 1] अंतराल के लिए ऑर्थोगोनल परिवार प्रदान करते हैं, जबकि कभी-कभी ऑर्थोगोनल परिवारों की [0, ∞) आवश्यकता होती है। इस स्थिति में तर्क को [−1, 1] में लाने के लिए पहले केली रूपांतरण को प्रयुक्त करना सुविधाजनक है। इस प्रक्रिया के परिणामस्वरूप तर्कसंगत फलन ऑर्थोगोनल फलन के परिवार होते हैं, जिन्हें लीजेंड्रे तर्कसंगत फलन और चेबीशेव तर्कसंगत फलन कहा जाता है।
अंतर समीकरण में
सीमा स्थितियों के साथ रैखिक अंतर समीकरणों के समाधान को अधिकांशतः ऑर्थोगोनल समाधान फलनों (उपनाम आइजनफलन) के भारित योग के रूप में लिखा जा सकता है, जिससे सामान्यीकृत फोरियर श्रृंखला हो सकती है।
यह भी देखें
- आइगेनवैल्यूज़ एवं आइगेनवेक्टर्स
- हिल्बर्ट अंतरिक्ष
- करहुनेन-लोव प्रमेय
- लॉरिसेला की प्रमेय
- वानियर फलन
संदर्भ
- ↑ Antoni Zygmund (1935) Trigonometrical Series, page 6, Mathematical Seminar, University of Warsaw
- George B. Arfken & Hans J. Weber (2005) Mathematical Methods for Physicists, 6th edition, chapter 10: Sturm-Liouville Theory — Orthogonal Functions, Academic Press.
- Price, Justin J. (1975). "Topics in orthogonal functions". American Mathematical Monthly. 82: 594–609. doi:10.2307/2319690.
- Giovanni Sansone (translated by Ainsley H. Diamond) (1959) Orthogonal Functions, Interscience Publishers.
बाहरी संबंध
- Orthogonal Functions, on MathWorld.