नियमित एकल बिंदु: Difference between revisions
No edit summary |
No edit summary |
||
(30 intermediate revisions by 5 users not shown) | |||
Line 1: | Line 1: | ||
गणित में, जटिल तल में साधारण अवकल समीकरणों के सिद्धांत में <math>\Complex</math>, अंक को सामान्य बिंदुओं में वर्गीकृत किया जाता है, जिस पर समीकरण के गुणांक [[विश्लेषणात्मक कार्य]] और [[विलक्षणता (गणित)]] उत्पन्न करते हैं। पुनः एकवचन बिंदुओं के मध्य, महत्वपूर्ण अवकल किया जाता है, जहां बीजगणितीय कार्य को समाधान की वृद्धि (किसी भी छोटे क्षेत्र में) और 'अनियमित एकवचन बिंदु' द्वारा किया जाता है, जहां पूर्ण समाधान समुच्चय के लिए उच्च वृद्धि वाले कार्यों की आवश्यकता होती है। उदाहरण के लिए, तीन नियमित एकवचन बिंदुओं को अतिज्यामितीय समीकरण के मध्य, और [[बेसेल समीकरण]] में [[सीमित मामला (गणित)|सीमित स्थिति]] होती है, किन्तु जहां विश्लेषणात्मक गुण अधिक भिन्न होते हैं। | |||
गणित में, जटिल तल में साधारण अवकल समीकरणों के सिद्धांत में <math>\Complex</math>, | |||
== औपचारिक परिभाषाएँ == | == औपचारिक परिभाषाएँ == | ||
अधिक त्रुटिहीन रूप से, | अधिक त्रुटिहीन रूप से, {{mvar|n}}-वीं कोटि के साधारण रैखिक अवकल समीकरण पर विचार करें | ||
<math display="block"> \sum_{i=0}^n p_i(z) f^{(i)} (z) = 0 </math> | <math display="block"> \sum_{i=0}^n p_i(z) f^{(i)} (z) = 0 </math> | ||
{{math|''p''<sub>''i''</sub>(''z'')}} [[मेरोमोर्फिक फ़ंक्शन|मेरोमोर्फिक फलन]] के साथ कोई ऐसा मान हो सकता है, | |||
<math display="block">p_n(z) = 1. </math> | <math display="block">p_n(z) = 1. </math> | ||
यदि ऐसा नहीं है तो उपरोक्त समीकरण को | यदि ऐसा नहीं है तो उपरोक्त समीकरण को {{math|''p''<sub>''n''</sub>(''z'')}} से विभाजित करना होगा यह विचार विलक्षण बिंदुओं को प्रस्तुत कर सकता है। | ||
एकवचन बिंदु के रूप में [[अनंत पर बिंदु]] को सम्मिलित करने के लिए समीकरण का [[रीमैन क्षेत्र]] पर अध्ययन किया जाना चाहिए। यदि आवश्यक हो तो जटिल तल के परिमित भाग में ∞ को स्थानांतरित करने के लिए मोबियस परिवर्तन प्रस्तावित किया जा सकता है, बेसल अवकल समीकरण का उदाहरण देखें। | |||
तब इंडिकियल समीकरण पर आधारित फ्रोबेनियस विधि को समाधानों का शोध करने के लिए प्रस्तावित किया जा सकता है जो शक्ति श्रेणी {{math|(''z'' − ''a'')<sup>''r''</sup>}} की जटिल शक्तियां हैं, किसी दिए गए {{mvar|a}} के निकट जटिल समतल में जहां {{mvar|r}} का पूर्णांक होना आवश्यक नहीं है; यह कार्य उपस्थित हो सकता है, इसलिए, शाखा से बाहर निकलने के लिए {{mvar|a}}, के निकट कुछ [[पंचर डिस्क|छिद्रित डिस्क]] की [[रीमैन सतह]] पर यह {{mvar|a}} कोई कठिनाई प्रस्तुत नहीं करता है {{mvar|a}} साधारण बिंदु ([[लाजर फुच्स]] 1866) है। जब {{mvar|a}} नियमित विलक्षण बिंदु है, जिसका परिभाषा के अनुसार तात्पर्य है | |||
<math display="block">p_{n-i}(z)</math> | <math display="block">p_{n-i}(z)</math> | ||
अधिक से अधिक | अधिक से अधिक {{mvar|i}} पर {{mvar|a}} क्रम का ध्रुव (जटिल विश्लेषण) है, फ्रोबेनियस विधि को कार्य करने और प्रदान करने के लिए भी बनाया जा सकता है, {{mvar|a}} के निकट {{mvar|n}} स्वतंत्र समाधान प्रदान कर सकता है। | ||
बिंदु {{mvar|a}} अनियमित विलक्षणता है। उस स्थिति में [[विश्लेषणात्मक निरंतरता]] द्वारा समाधानों से संबंधित [[मोनोड्रोमी समूह]] के निकट सामान्य रूप से अल्प है, और उनके स्पर्शोन्मुख विस्तार के संदर्भ में समाधानों का अध्ययन करना कठिन है। अनियमित विलक्षणता को पोंकारे रैंक ({{harvtxt|अर्सकोट |1995}}) द्वारा मापा जाता है। | |||
नियमितता की स्थिति | नियमितता की स्थिति [[न्यूटन बहुभुज]] स्थिति है, इस अर्थ में कि अनुमत ध्रुव क्षेत्र में हैं, जब {{var|i}} के विरुद्ध प्लॉट किया जाता है, जो अक्षों से 45° पर रेखा से घिरा हुआ है। | ||
साधारण अवकल समीकरण जिसके एकवचन बिंदु, जिसमें अनंत पर बिंदु भी सम्मिलित है, फ्यूचियन साधारण अवकल समीकरण कहलाते हैं। | |||
== दूसरे क्रम के | == दूसरे क्रम के अवकल समीकरणों के उदाहरण == | ||
इस स्थिति में उपरोक्त समीकरण को अल्प | इस स्थिति में उपरोक्त समीकरण को अल्प कर दिया गया है: | ||
<math display="block">f''(x) + p_1(x) f'(x) + p_0(x) f(x) = 0. </math> | <math display="block">f''(x) + p_1(x) f'(x) + p_0(x) f(x) = 0. </math> | ||
निम्नलिखित स्थितियों को भिन्न करता है: | |||
*बिंदु {{mvar|a}} | *बिंदु {{mvar|a}} सामान्य बिंदु है {{math|''p''<sub>1</sub>(''x'')}} और {{math|''p''<sub>0</sub>(''x'')}} {{math|1=''x'' = ''a''}} पर विश्लेषणात्मक हैं। | ||
*बिंदु {{mvar|a}} | *बिंदु {{mvar|a}} नियमित विलक्षण बिंदु है यदि {{math|''p''<sub>1</sub>(''x'')}} में {{math|1=''x'' = ''a''}} पर क्रम 1 तक ध्रुव है और {{math|''p''<sub>0</sub>}} में {{math|1=''x'' = ''a''}} पर क्रम 2 तक का ध्रुव है। | ||
*अन्यथा | *अन्यथा बिंदु {{mvar|a}} अनियमित विलक्षण बिंदु है। | ||
हम | हम परिक्षण कर सकते हैं कि प्रतिस्थापन का उपयोग करके अनंत पर अनियमित एकवचन बिंदु <math>w = 1/x</math> है, जिसका संबंध है: | ||
<math display="block">\frac{df}{dx}=-w^2\frac{df}{dw}</math> | <math display="block">\frac{df}{dx}=-w^2\frac{df}{dw}</math> | ||
<math display="block">\frac{d^2f}{dx^2}=w^4\frac{d^2f}{dw^2}+2w^3\frac{df}{dw}</math> | <math display="block">\frac{d^2f}{dx^2}=w^4\frac{d^2f}{dw^2}+2w^3\frac{df}{dw}</math>हम इस प्रकार समीकरण को {{mvar|w}} में परिवर्तित और उसका परिक्षण कर सकते हैं कि {{math|1=''w'' = 0}} पर क्या होता है। यदि <math>p_1(x)</math> और <math>p_2(x)</math> बहुपद के भागफल हैं, तो अनंत x पर अनियमित एकवचन बिंदु होगा जब तक कि बहुपद के भाजक में न हो <math>p_1(x)</math> बहुपद की घात उसके अंश और हर के घात से अल्प से अल्प अधिक होती है <math>p_2(x)</math> इसके अंश की डिग्री से अल्प से अल्प दो डिग्री अधिक है। | ||
हम इस प्रकार समीकरण को | |||
नीचे सूचीबद्ध गणितीय भौतिकी के सामान्य | नीचे सूचीबद्ध गणितीय भौतिकी के सामान्य अवकल समीकरणों में अनेक उदाहरण हैं जिनमें एकवचन बिंदु और ज्ञात समाधान हैं। | ||
===बेसेल अवकल समीकरण=== | ===बेसेल अवकल समीकरण=== | ||
यह द्वितीय कोटि का | यह द्वितीय कोटि का साधारण अवकल समीकरण है। यह [[बेलनाकार निर्देशांक]] में लैपलेस के समीकरण के समाधान में पाया जाता है: | ||
<math display="block">x^2 \frac{d^2 f}{dx^2} + x \frac{df}{dx} + (x^2 - \alpha^2)f = 0</math> | <math display="block">x^2 \frac{d^2 f}{dx^2} + x \frac{df}{dx} + (x^2 - \alpha^2)f = 0</math> | ||
इच्छानुसार वास्तविक या जटिल संख्या {{mvar|α}} ([[बेसेल समारोह]] का क्रम) के लिए है। सबसे सामान्य और महत्वपूर्ण विशेष स्थिति है जहां {{mvar|α}} [[पूर्णांक]] {{mvar|n}} है। | |||
इस समीकरण को x | इस समीकरण को x<sup>2</sup> से विभाजित करने पर प्राप्त होता है: | ||
<math display="block">\frac{d^2 f}{dx^2} + \frac{1} {x} \frac{df}{dx} + \left (1 - \frac {\alpha^2} {x^2} \right )f = 0.</math> | <math display="block">\frac{d^2 f}{dx^2} + \frac{1} {x} \frac{df}{dx} + \left (1 - \frac {\alpha^2} {x^2} \right )f = 0.</math> | ||
इस स्थिति | इस स्थिति में {{math|1=''p''<sub>1</sub>(''x'') = 1/''x''}} में {{math|1=''x'' = 0}} पर प्रथम क्रम का ध्रुव है। जब {{math|''α'' ≠ 0}}, {{math|1=''p''<sub>0</sub>(''x'') = (1 − ''α''<sup>2</sup>/''x''<sup>2</sup>)}} {{math|1=''x'' = 0}} पर दूसरे क्रम का ध्रुव है। इस प्रकार इस समीकरण में 0 पर नियमित विलक्षणता है। | ||
यह देखने के लिए कि क्या होता है जब {{math|''x'' → ∞}} उदाहरण के लिए, मोबियस रूपांतरण <math>x = 1 / w</math> का उपयोग करना पड़ता है, बीजगणित करने के पश्चात: | |||
<math display="block">\frac{d^2 f}{d w^2} + \frac{1}{w} \frac{df}{dw} + | <math display="block">\frac{d^2 f}{d w^2} + \frac{1}{w} \frac{df}{dw} + | ||
\left[ \frac{1}{w^4} - \frac{\alpha ^2}{w^2} \right ] f= 0 | \left[ \frac{1}{w^4} - \frac{\alpha ^2}{w^2} \right ] f= 0 | ||
</math> | </math> | ||
जब {{nowrap|<math>w = 0</math>,}} | |||
<math display="block">p_1(w) = \frac{1}{w}</math> | <math display="block">p_1(w) = \frac{1}{w}</math> | ||
प्रथम क्रम का ध्रुव है, किन्तु | |||
<math display="block">p_0(w) = \frac {1} {w^4} - \frac {\alpha ^2} {w^2}</math> | <math display="block">p_0(w) = \frac {1} {w^4} - \frac {\alpha ^2} {w^2}</math> | ||
चौथे क्रम का | चौथे क्रम का ध्रुव है। इस प्रकार, इस समीकरण में <math>w = 0</math> अनियमित विलक्षणता है, जो ∞ पर x के अनुरूप होती है। | ||
=== | === लीजेंड्रे अवकल समीकरण === | ||
यह द्वितीय कोटि का | यह द्वितीय कोटि का साधारण अवकल समीकरण है। यह गोलीय निर्देशांकों में लाप्लास के समीकरण के समाधान में पाया जाता है: | ||
<math display="block">\frac{d}{dx} \left[ (1-x^2) \frac{d}{dx} f \right] + l(l+1)f = 0.</math> | <math display="block">\frac{d}{dx} \left[ (1-x^2) \frac{d}{dx} f \right] + l(l+1)f = 0.</math> | ||
वर्ग कोष्ठक खोलने से मिलता है: | वर्ग कोष्ठक खोलने से मिलता है: | ||
<math display="block">\left(1-x^2\right){d^2 f \over dx^2} -2x {df \over dx } + l(l+1)f = 0.</math> | <math display="block">\left(1-x^2\right){d^2 f \over dx^2} -2x {df \over dx } + l(l+1)f = 0.</math> | ||
और | और {{math|(1 − ''x''<sup>2</sup>)}} से विभाजित करने पर: | ||
<math display="block">\frac{d^2 f}{dx^2} - \frac{2x}{1-x^2} \frac{df}{dx} + \frac{l(l+1)}{1-x^2} f = 0.</math> | <math display="block">\frac{d^2 f}{dx^2} - \frac{2x}{1-x^2} \frac{df}{dx} + \frac{l(l+1)}{1-x^2} f = 0.</math> | ||
इस अवकल समीकरण के ±1 और ∞ नियमित एकवचन बिंदु हैं। | इस अवकल समीकरण के ±1 और ∞ नियमित एकवचन बिंदु हैं। | ||
=== हर्मिट | === हर्मिट अवकल समीकरण === | ||
आयामी समय स्वतंत्र श्रोडिंगर समीकरण का समाधान करने में इस साधारण अवकल समीकरण का उपयोग किया जाता है: | |||
<math display="block">E\psi = -\frac{\hbar^2}{2m} \frac {d^2 \psi} {d x^2} + V(x)\psi</math> | <math display="block">E\psi = -\frac{\hbar^2}{2m} \frac {d^2 \psi} {d x^2} + V(x)\psi</math> | ||
[[क्वांटम हार्मोनिक ऑसिलेटर]] के | [[क्वांटम हार्मोनिक ऑसिलेटर]] के लिए, इस स्थिति में स्थितिज ऊर्जा V(x) है: | ||
<math display="block"> V(x) = \frac{1}{2} m \omega^2 x^2.</math> | <math display="block"> V(x) = \frac{1}{2} m \omega^2 x^2.</math> | ||
यह निम्न सामान्य द्वितीय क्रम | यह निम्न सामान्य द्वितीय क्रम अवकल समीकरण की ओर जाता है: | ||
<math display="block">\frac{d^2 f}{dx^2} - 2 x \frac{df}{dx} + \lambda f = 0.</math> | <math display="block">\frac{d^2 f}{dx^2} - 2 x \frac{df}{dx} + \lambda f = 0.</math> | ||
इस | इस अवकल समीकरण में ∞ पर अनियमित विलक्षणता है। इसके समाधान [[हर्मिट बहुपद]] हैं। | ||
=== अतिज्यामितीय समीकरण === | === अतिज्यामितीय समीकरण === | ||
समीकरण के रूप में परिभाषित किया जा सकता है | समीकरण के रूप में परिभाषित किया जा सकता है | ||
<math display="block">z(1-z)\frac {d^2f}{dz^2} + \left[c-(a+b+1)z \right] \frac {df}{dz} - abf = 0.</math> | <math display="block">z(1-z)\frac {d^2f}{dz^2} + \left[c-(a+b+1)z \right] \frac {df}{dz} - abf = 0.</math> | ||
दोनों पक्षों को {{math|''z''(1 − ''z'')}} से विभाजित करने पर प्राप्त होता है: | |||
<math display="block">\frac {d^2f}{dz^2} + \frac{c-(a+b+1)z } {z(1-z)} \frac {df}{dz} - \frac {ab} {z(1-z)} f = 0.</math> | <math display="block">\frac {d^2f}{dz^2} + \frac{c-(a+b+1)z } {z(1-z)} \frac {df}{dz} - \frac {ab} {z(1-z)} f = 0.</math> | ||
इस अवकल समीकरण के 0, 1 और ∞ नियमित एकवचन बिंदु हैं। | इस अवकल समीकरण के 0, 1 और ∞ नियमित एकवचन बिंदु हैं। समाधान अतिज्यामितीय फलन है। | ||
==संदर्भ== | ==संदर्भ== | ||
Line 93: | Line 89: | ||
* {{cite book | last = Teschl | first = Gerald | authorlink=Gerald Teschl | title = Ordinary Differential Equations and Dynamical Systems | publisher=[[American Mathematical Society]] | place = [[Providence, Rhode Island|Providence]] | year = 2012 | isbn = 978-0-8218-8328-0 | url = https://www.mat.univie.ac.at/~gerald/ftp/book-ode/}} | * {{cite book | last = Teschl | first = Gerald | authorlink=Gerald Teschl | title = Ordinary Differential Equations and Dynamical Systems | publisher=[[American Mathematical Society]] | place = [[Providence, Rhode Island|Providence]] | year = 2012 | isbn = 978-0-8218-8328-0 | url = https://www.mat.univie.ac.at/~gerald/ftp/book-ode/}} | ||
* [[E. T. Whittaker]] and [[G. N. Watson]] ''[[A Course of Modern Analysis]]'' pp. 188−ff. (Cambridge University Press, 1915) | * [[E. T. Whittaker]] and [[G. N. Watson]] ''[[A Course of Modern Analysis]]'' pp. 188−ff. (Cambridge University Press, 1915) | ||
[[Category:Created On 03/03/2023]] | [[Category:Created On 03/03/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:जटिल विश्लेषण]] | |||
[[Category:सामान्य अवकल समीकरण]] |
Latest revision as of 15:29, 2 November 2023
गणित में, जटिल तल में साधारण अवकल समीकरणों के सिद्धांत में , अंक को सामान्य बिंदुओं में वर्गीकृत किया जाता है, जिस पर समीकरण के गुणांक विश्लेषणात्मक कार्य और विलक्षणता (गणित) उत्पन्न करते हैं। पुनः एकवचन बिंदुओं के मध्य, महत्वपूर्ण अवकल किया जाता है, जहां बीजगणितीय कार्य को समाधान की वृद्धि (किसी भी छोटे क्षेत्र में) और 'अनियमित एकवचन बिंदु' द्वारा किया जाता है, जहां पूर्ण समाधान समुच्चय के लिए उच्च वृद्धि वाले कार्यों की आवश्यकता होती है। उदाहरण के लिए, तीन नियमित एकवचन बिंदुओं को अतिज्यामितीय समीकरण के मध्य, और बेसेल समीकरण में सीमित स्थिति होती है, किन्तु जहां विश्लेषणात्मक गुण अधिक भिन्न होते हैं।
औपचारिक परिभाषाएँ
अधिक त्रुटिहीन रूप से, n-वीं कोटि के साधारण रैखिक अवकल समीकरण पर विचार करें
एकवचन बिंदु के रूप में अनंत पर बिंदु को सम्मिलित करने के लिए समीकरण का रीमैन क्षेत्र पर अध्ययन किया जाना चाहिए। यदि आवश्यक हो तो जटिल तल के परिमित भाग में ∞ को स्थानांतरित करने के लिए मोबियस परिवर्तन प्रस्तावित किया जा सकता है, बेसल अवकल समीकरण का उदाहरण देखें।
तब इंडिकियल समीकरण पर आधारित फ्रोबेनियस विधि को समाधानों का शोध करने के लिए प्रस्तावित किया जा सकता है जो शक्ति श्रेणी (z − a)r की जटिल शक्तियां हैं, किसी दिए गए a के निकट जटिल समतल में जहां r का पूर्णांक होना आवश्यक नहीं है; यह कार्य उपस्थित हो सकता है, इसलिए, शाखा से बाहर निकलने के लिए a, के निकट कुछ छिद्रित डिस्क की रीमैन सतह पर यह a कोई कठिनाई प्रस्तुत नहीं करता है a साधारण बिंदु (लाजर फुच्स 1866) है। जब a नियमित विलक्षण बिंदु है, जिसका परिभाषा के अनुसार तात्पर्य है
बिंदु a अनियमित विलक्षणता है। उस स्थिति में विश्लेषणात्मक निरंतरता द्वारा समाधानों से संबंधित मोनोड्रोमी समूह के निकट सामान्य रूप से अल्प है, और उनके स्पर्शोन्मुख विस्तार के संदर्भ में समाधानों का अध्ययन करना कठिन है। अनियमित विलक्षणता को पोंकारे रैंक (अर्सकोट (1995) ) द्वारा मापा जाता है।
नियमितता की स्थिति न्यूटन बहुभुज स्थिति है, इस अर्थ में कि अनुमत ध्रुव क्षेत्र में हैं, जब i के विरुद्ध प्लॉट किया जाता है, जो अक्षों से 45° पर रेखा से घिरा हुआ है।
साधारण अवकल समीकरण जिसके एकवचन बिंदु, जिसमें अनंत पर बिंदु भी सम्मिलित है, फ्यूचियन साधारण अवकल समीकरण कहलाते हैं।
दूसरे क्रम के अवकल समीकरणों के उदाहरण
इस स्थिति में उपरोक्त समीकरण को अल्प कर दिया गया है:
- बिंदु a सामान्य बिंदु है p1(x) और p0(x) x = a पर विश्लेषणात्मक हैं।
- बिंदु a नियमित विलक्षण बिंदु है यदि p1(x) में x = a पर क्रम 1 तक ध्रुव है और p0 में x = a पर क्रम 2 तक का ध्रुव है।
- अन्यथा बिंदु a अनियमित विलक्षण बिंदु है।
हम परिक्षण कर सकते हैं कि प्रतिस्थापन का उपयोग करके अनंत पर अनियमित एकवचन बिंदु है, जिसका संबंध है:
नीचे सूचीबद्ध गणितीय भौतिकी के सामान्य अवकल समीकरणों में अनेक उदाहरण हैं जिनमें एकवचन बिंदु और ज्ञात समाधान हैं।
बेसेल अवकल समीकरण
यह द्वितीय कोटि का साधारण अवकल समीकरण है। यह बेलनाकार निर्देशांक में लैपलेस के समीकरण के समाधान में पाया जाता है:
इस समीकरण को x2 से विभाजित करने पर प्राप्त होता है:
यह देखने के लिए कि क्या होता है जब x → ∞ उदाहरण के लिए, मोबियस रूपांतरण का उपयोग करना पड़ता है, बीजगणित करने के पश्चात:
लीजेंड्रे अवकल समीकरण
यह द्वितीय कोटि का साधारण अवकल समीकरण है। यह गोलीय निर्देशांकों में लाप्लास के समीकरण के समाधान में पाया जाता है:
हर्मिट अवकल समीकरण
आयामी समय स्वतंत्र श्रोडिंगर समीकरण का समाधान करने में इस साधारण अवकल समीकरण का उपयोग किया जाता है:
अतिज्यामितीय समीकरण
समीकरण के रूप में परिभाषित किया जा सकता है
संदर्भ
- Coddington, Earl A.; Levinson, Norman (1955). Theory of Ordinary Differential Equations. New York: McGraw-Hill.
- E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable (1935)
- Fedoryuk, M. V. (2001) [1994], "Fuchsian equation", Encyclopedia of Mathematics, EMS Press
- A. R. Forsyth Theory of Differential Equations Vol. IV: Ordinary Linear Equations (Cambridge University Press, 1906)
- Édouard Goursat, A Course in Mathematical Analysis, Volume II, Part II: Differential Equations pp. 128−ff. (Ginn & co., Boston, 1917)
- E. L. Ince, Ordinary Differential Equations, Dover Publications (1944)
- Il'yashenko, Yu. S. (2001) [1994], "Regular singular point", Encyclopedia of Mathematics, EMS Press
- T. M. MacRobert Functions of a Complex Variable p. 243 (MacMillan, London, 1917)
- Teschl, Gerald (2012). Ordinary Differential Equations and Dynamical Systems. Providence: American Mathematical Society. ISBN 978-0-8218-8328-0.
- E. T. Whittaker and G. N. Watson A Course of Modern Analysis pp. 188−ff. (Cambridge University Press, 1915)