द्विरेखीय प्रतिचित्रण: Difference between revisions

From Vigyanwiki
(TEXT)
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 6: Line 6:


=== सदिश समष्टि ===
=== सदिश समष्टि ===
मान लीजिए कि <math>V, W </math> और <math>X</math> एक ही आधार [[क्षेत्र (गणित)|क्षेत्र <math>F</math>]] पर तीन सदिश समष्टियाँ हैं। द्विरेखीय प्रतिचित्रण एक फलन है
मान लीजिए कि <math>V, W </math> और <math>X</math> एक ही आधार [[क्षेत्र (गणित)|क्षेत्र <math>F</math>]] पर तीन सदिश समष्टियाँ हैं। द्विरेखीय मानचित्र एक फलन है
<math display=block>B : V \times W \to X</math>
<math display=block>B : V \times W \to X</math>
ऐसा है कि सभी <math>w \in W</math> के लिए, मानचित्र <math>B_w</math>
ऐसा है कि सभी <math>w \in W</math> के लिए, मानचित्र <math>B_w</math>
Line 17: Line 17:


* किसी भी <math>\lambda \in F</math>, <math>B(\lambda v,w) = B(v, \lambda w) = \lambda B(v, w)</math> के लिए।
* किसी भी <math>\lambda \in F</math>, <math>B(\lambda v,w) = B(v, \lambda w) = \lambda B(v, w)</math> के लिए।
* मानचित्र <math>B</math> दोनों घटकों में योज्य है: यदि <math>v_1, v_2 \in V</math> और <math>w_1, w_2 \in W,</math> तब <math>B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w)</math> और <math>B(v, w_1 + w_2) = B(v, w_1) + B(v, w_2).</math>
* मानचित्र <math>B</math> दोनों घटकों में योज्य है: यदि <math>v_1, v_2 \in V</math> और <math>w_1, w_2 \in W,</math> तब <math>B(v_1 + v_2, w) = B(v_1, w) + B(v_2, w)</math> और <math>B(v, w_1 + w_2) = B(v, w_1) + B(v, w_2)</math>
अगर <math>V = W</math> और हमारे पास सभी <math>v, w \in V,</math> के लिए  {{nowrap|1=''B''(''v'', ''w'') = ''B''(''w'', ''v'')}} है, तो हम कहते हैं कि B सममित है। यदि X आधार क्षेत्र F है, तो मानचित्र को [[द्विरेखीय रूप]] कहा जाता है, जिसका अच्छी तरह से अध्ययन किया जाता है (उदाहरण के लिए: अदिश गुणनफल, आंतर गुणनफल और [[द्विघात रूप]])।
अगर <math>V = W</math> और हमारे पास सभी <math>v, w \in V,</math> के लिए  {{nowrap|1=''B''(''v'', ''w'') = ''B''(''w'', ''v'')}} है, तो हम कहते हैं कि B सममित है। यदि X आधार क्षेत्र F है, तो मानचित्र को [[द्विरेखीय रूप]] कहा जाता है, जिसका अच्छी तरह से अध्ययन किया जाता है (उदाहरण के लिए: अदिश गुणनफल, आंतर गुणनफल और [[द्विघात रूप]])।


Line 33: Line 33:
परिभाषा का एक तात्कालिक परिणाम यह है कि {{nowrap|1=''B''(''v'', ''w'') = 0<sub>''X''</sub>}} जब भी {{nowrap|1=''v'' = 0<sub>''V''</sub>}} या {{nowrap|1=''w'' = 0<sub>''W''</sub>}}। इसे [[शून्य वेक्टर|शून्य सदिश]] 0<sub>''V''</sub> को 0 ⋅ 0<sub>''V''</sub> (और इसी तरह 0<sub>''W''</sub> के लिए) के रूप में लिखकर और अदिश 0 को रैखिकता द्वारा ''B'' के सामने "बाहर" ले जाकर देखा जा सकता है।   
परिभाषा का एक तात्कालिक परिणाम यह है कि {{nowrap|1=''B''(''v'', ''w'') = 0<sub>''X''</sub>}} जब भी {{nowrap|1=''v'' = 0<sub>''V''</sub>}} या {{nowrap|1=''w'' = 0<sub>''W''</sub>}}। इसे [[शून्य वेक्टर|शून्य सदिश]] 0<sub>''V''</sub> को 0 ⋅ 0<sub>''V''</sub> (और इसी तरह 0<sub>''W''</sub> के लिए) के रूप में लिखकर और अदिश 0 को रैखिकता द्वारा ''B'' के सामने "बाहर" ले जाकर देखा जा सकता है।   


सभी द्विरेखीय मानचित्र का समुच्चय ''L''(''V'', ''W''; ''X'') ''V'' × ''W'' से ''X'' में सभी मानचित्र के अंतराल (अर्थात् सदिश समष्टि, मॉड्यूल) का एक रेखीय उपस्थान है।
सभी द्विरेखीय मानचित्र का समुच्चय ''L''(''V'', ''W''; ''X'') ''V'' × ''W'' से ''X'' में सभी मानचित्र के अंतराल (अर्थात् सदिश समष्टि, मॉड्यूल) का एक रेखीय उपसमष्‍टि है।


यदि ''V'', ''W'', ''X'' सीमित-आयामी हैं, तो {{nowrap|''L''(''V'', ''W''; ''X'')}} भी है। <math>X = F,</math> यानी द्विरेखीय रूपों के लिए, इस स्थान का आयाम dim V × dim W है (जबकि रैखिक रूपों का स्थान ''L''(''V'' × ''W''; ''F'') आयाम dim V + dim W का है)।  इसे देखने के लिए, V और W के लिए एक [[आधार (रैखिक बीजगणित)|आधार]] का चयन करे; तब प्रत्येक द्विरेखीय मानचित्र को विशिष्ट रूप से मैट्रिक्स {{nowrap|''B''(''e''<sub>''i''</sub>, ''f''<sub>''j''</sub>)}} द्वारा दर्शाया जा सकता है, और इसके विपरीत। अब, यदि X उच्च आयाम का स्थान है, तो हमारे पास स्पष्ट रूप से {{nowrap|1=dim ''L''(''V'', ''W''; ''X'') = dim ''V'' × dim ''W'' × dim ''X''}} है।  
यदि ''V'', ''W'', ''X'' सीमित-आयामी हैं, तो {{nowrap|''L''(''V'', ''W''; ''X'')}} भी है। <math>X = F,</math> यानी द्विरेखीय रूपों के लिए, इस समष्टि का आयाम dim V × dim W है (जबकि रैखिक रूपों की समष्टि ''L''(''V'' × ''W''; ''F'') आयाम dim V + dim W का है)।  इसे देखने के लिए, V और W के लिए एक [[आधार (रैखिक बीजगणित)|आधार]] का चयन करे; तब प्रत्येक द्विरेखीय मानचित्र को विशिष्ट रूप से मैट्रिक्स {{nowrap|''B''(''e''<sub>''i''</sub>, ''f''<sub>''j''</sub>)}} द्वारा दर्शाया जा सकता है, और इसके विपरीत। अब, यदि X उच्च आयाम का समष्टि है, तो हमारे पास स्पष्ट रूप से {{nowrap|1=dim ''L''(''V'', ''W''; ''X'') = dim ''V'' × dim ''W'' × dim ''X''}} है।  


== उदाहरण ==
== उदाहरण ==
Line 49: Line 49:


मान लीजिए <math>X, Y, \text{ and } Z</math> [[टोपोलॉजिकल वेक्टर स्पेस|सांस्थितिक सदिश समष्टि]] हैं और <math>b : X \times Y \to Z</math>  द्विरैखिक मानचित्र बनें। तब ''b'' को अलग-अलग निरंतर कहा जाता है यदि निम्नलिखित दो प्रतिबंध हैं:
मान लीजिए <math>X, Y, \text{ and } Z</math> [[टोपोलॉजिकल वेक्टर स्पेस|सांस्थितिक सदिश समष्टि]] हैं और <math>b : X \times Y \to Z</math>  द्विरैखिक मानचित्र बनें। तब ''b'' को अलग-अलग निरंतर कहा जाता है यदि निम्नलिखित दो प्रतिबंध हैं:
# सभी <math>x \in X</math> के लिए, <math>y \mapsto b(x, y)</math> द्वारा दिया गया मानचित्र <math>Y \to Z</math> निरंतर है;
# सभी <math>x \in X</math> के लिए, <math>y \mapsto b(x, y)</math> द्वारा दिए गए मानचित्र <math>Y \to Z</math> निरंतर है;
# सभी  <math>y \in Y</math>के लिए, <math>x \mapsto b(x, y)</math> द्वारा दिया गया मानचित्र <math>X \to Z</math> निरंतर है।  
# सभी  <math>y \in Y</math>के लिए, <math>x \mapsto b(x, y)</math> द्वारा दिए गए मानचित्र <math>X \to Z</math> निरंतर है।  


कई अलग-अलग निरंतर द्विरेखीय जो निरंतर नहीं हैं, एक अतिरिक्त संपत्ति को संतुष्ट करते हैं: [[hypocontinuity|हाइपोकॉन्टीनिटी।]]{{sfn | Trèves | 2006 | pp=424-426}} सभी निरंतर द्विरैखिक मानचित्र हाइपोकॉन्टिनस होते हैं।
कई अलग-अलग निरंतर द्विरेखीय जो निरंतर नहीं हैं, एक अतिरिक्त संपत्ति को संतुष्ट करते हैं: [[hypocontinuity|हाइपोकॉन्टीनिटी।]]{{sfn | Trèves | 2006 | pp=424-426}} सभी निरंतर द्विरैखिक मानचित्र हाइपोकॉन्टिनस होते हैं।
Line 65: Line 65:
{{See also|समान अभिसरण की सांस्थिति}}
{{See also|समान अभिसरण की सांस्थिति}}


<math>X, Y, \text{ and } Z</math> को स्थानीय रूप से हौसडॉर्फ समष्टि उत्तल होने दें और <math>C : L(X; Y) \times L(Y; Z) \to L(X; Z)</math> द्वारा परिभाषित रचना मानचित्र <math>C(u, v) := v \circ u</math> हो। सामान्य रूप में, द्विरेखीय मानचित्र <math>C</math> निरंतर नहीं होता है (इससे कोई फर्क नहीं पड़ता कि रेखीय मानचित्रों के समष्टि दिए गए हैं)। हालाँकि, हमारे पास निम्नलिखित परिणाम हैं:
<math>X, Y, \text{ and } Z</math> को समष्टिीय रूप से हौसडॉर्फ समष्टि उत्तल होने दें और <math>C : L(X; Y) \times L(Y; Z) \to L(X; Z)</math> द्वारा परिभाषित रचना मानचित्र <math>C(u, v) := v \circ u</math> हो। सामान्य रूप में, द्विरेखीय मानचित्र <math>C</math> निरंतर नहीं होता है (इससे कोई फर्क नहीं पड़ता कि रेखीय मानचित्रों के समष्टि दिए गए हैं)। हालाँकि, हमारे पास निम्नलिखित परिणाम हैं:


रैखिक मानचित्रों के सभी तीन समष्टि को निम्नलिखित सांस्थितियों में से एक दें:
रैखिक मानचित्रों के सभी तीन समष्टि को निम्नलिखित सांस्थितियों में से एक दें:
Line 73: Line 73:


* यदि <math>E</math> <math>L(Y; Z)</math> का समानान्तर उपसमुच्चय है तो प्रतिबंध <math>C\big\vert_{L(X; Y) \times E} : L(X; Y) \times E \to L(X; Z)</math> सभी तीन सांस्थिति के लिए निरंतर है।{{sfn | Trèves | 2006 | pp=424-426}}
* यदि <math>E</math> <math>L(Y; Z)</math> का समानान्तर उपसमुच्चय है तो प्रतिबंध <math>C\big\vert_{L(X; Y) \times E} : L(X; Y) \times E \to L(X; Z)</math> सभी तीन सांस्थिति के लिए निरंतर है।{{sfn | Trèves | 2006 | pp=424-426}}
* अगर <math>Y</math> एक [[बैरल वाली जगह|बैरेल्ड समष्टि]] है, तो प्रत्येक अनुक्रम <math>\left(u_i\right)_{i=1}^{\infty}</math> के लिए <math>L(X; Y)</math> में <math>u</math> में अभिसरण करना और प्रत्येक अनुक्रम <math>\left(v_i\right)_{i=1}^{\infty}</math> में <math>v</math> में अभिसरण करना <math>L(Y; Z),</math> अनुक्रम <math>\left(v_i \circ u_i\right)_{i=1}^{\infty}</math> <math>L(Y; Z)</math> में <math>v \circ u</math> परिवर्तित होता है।  {{sfn | Trèves | 2006 | pp=424-426}}
* अगर <math>Y</math> एक [[बैरल वाली जगह|बैरेल्ड समष्टि]] है, तो प्रत्येक अनुक्रम <math>\left(u_i\right)_{i=1}^{\infty}</math> के लिए <math>L(X; Y)</math> में <math>u</math> में अभिसरण करने और प्रत्येक अनुक्रम <math>\left(v_i\right)_{i=1}^{\infty}</math> में <math>v</math> में अभिसरण करने <math>L(Y; Z),</math> अनुक्रम <math>\left(v_i \circ u_i\right)_{i=1}^{\infty}</math> <math>L(Y; Z)</math> में <math>v \circ u</math> परिवर्तित होते है।  {{sfn | Trèves | 2006 | pp=424-426}}


== यह भी देखें ==
== यह भी देखें ==
Line 100: Line 100:
{{Authority control}}
{{Authority control}}


{{DEFAULTSORT:Bilinear Map}}[[Category: द्विरेखीय मानचित्र]] [[Category: बहुरेखीय बीजगणित]]
{{DEFAULTSORT:Bilinear Map}}


 
[[Category:Articles with hatnote templates targeting a nonexistent page|Bilinear Map]]
 
[[Category:Collapse templates|Bilinear Map]]
[[Category: Machine Translated Page]]
[[Category:Created On 17/03/2023|Bilinear Map]]
[[Category:Created On 17/03/2023]]
[[Category:Lua-based templates|Bilinear Map]]
[[Category:Machine Translated Page|Bilinear Map]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists|Bilinear Map]]
[[Category:Pages with script errors|Bilinear Map]]
[[Category:Short description with empty Wikidata description|Bilinear Map]]
[[Category:Sidebars with styles needing conversion|Bilinear Map]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready|Bilinear Map]]
[[Category:Templates generating microformats|Bilinear Map]]
[[Category:Templates that add a tracking category|Bilinear Map]]
[[Category:Templates that are not mobile friendly|Bilinear Map]]
[[Category:Templates that generate short descriptions|Bilinear Map]]
[[Category:Templates using TemplateData|Bilinear Map]]
[[Category:Wikipedia metatemplates|Bilinear Map]]
[[Category:द्विरेखीय मानचित्र|Bilinear Map]]
[[Category:बहुरेखीय बीजगणित|Bilinear Map]]

Latest revision as of 09:45, 28 March 2023

गणित में, द्विरेखीय मानचित्र एक ऐसा फलन है जो दो सदिश समष्टियों के तत्वों को मिलाकर तीसरे सदिश समष्टि का एक अवयव प्राप्त करता है, और इसके प्रत्येक तर्क में रैखिक होता है। मैट्रिक्स गुणा एक उदाहरण है।

परिभाषा

सदिश समष्टि

मान लीजिए कि और एक ही आधार क्षेत्र पर तीन सदिश समष्टियाँ हैं। द्विरेखीय मानचित्र एक फलन है

ऐसा है कि सभी के लिए, मानचित्र
से तक एक रैखिक मानचित्र है,और सभी के लिए, मानचित्र
से तक एक रेखीय मानचित्र है। दूसरे शब्दों में, जब हम दूसरी प्रविष्टि को बदलते हुए द्विरेखीय मानचित्र की पहली प्रविष्टि को स्थिर रखते हैं, तो परिणाम एक रैखिक संकारक होता है, और इसी तरह जब हम दूसरी प्रविष्टि को स्थिर रखते हैं।

ऐसा मानचित्र निम्नलिखित गुणों को संतुष्ट करता है।

  • किसी भी , के लिए।
  • मानचित्र दोनों घटकों में योज्य है: यदि और तब और

अगर और हमारे पास सभी के लिए B(v, w) = B(w, v) है, तो हम कहते हैं कि B सममित है। यदि X आधार क्षेत्र F है, तो मानचित्र को द्विरेखीय रूप कहा जाता है, जिसका अच्छी तरह से अध्ययन किया जाता है (उदाहरण के लिए: अदिश गुणनफल, आंतर गुणनफल और द्विघात रूप)।

मॉड्यूल

परिभाषा बिना किसी परिवर्तन के काम करती है यदि क्षेत्र F पर सदिश समष्टि के बदले, हम एक क्रमविनिमेय रिंग R पर मॉड्यूल का उपयोग करते हैं। यह n-आरी फलन के लिए सामान्यीकरण करता है, जहाँ उचित अवधि बहुरेखीय मानचित्र है।

गैर विनिमेय रिंग R और S के लिए, एक बायां R-मॉड्यूल M और एक दायां S-मॉड्यूल N, एक द्विरेखीय मानचित्र एक मानचित्र B : M × NT T (R, S) - द्विमाड्यूल के साथ, और जिसके लिए N mB(m, n) में कोई भी n, एक R-मॉड्यूल समरूपता है, और m में किसी भी M के लिए, nB(m, n) एक S-मॉड्यूल समरूपता है। यह संतुष्ट करता है

B(rm, n) = rB(m, n)
B(m, ns) = B(m, n) ⋅ s

m में सभी M के लिए, n में N, r में R और s में S, साथ ही B प्रत्येक तर्क में योगात्मक है।

गुण

परिभाषा का एक तात्कालिक परिणाम यह है कि B(v, w) = 0X जब भी v = 0V या w = 0W। इसे शून्य सदिश 0V को 0 ⋅ 0V (और इसी तरह 0W के लिए) के रूप में लिखकर और अदिश 0 को रैखिकता द्वारा B के सामने "बाहर" ले जाकर देखा जा सकता है।

सभी द्विरेखीय मानचित्र का समुच्चय L(V, W; X) V × W से X में सभी मानचित्र के अंतराल (अर्थात् सदिश समष्टि, मॉड्यूल) का एक रेखीय उपसमष्‍टि है।

यदि V, W, X सीमित-आयामी हैं, तो L(V, W; X) भी है। यानी द्विरेखीय रूपों के लिए, इस समष्टि का आयाम dim V × dim W है (जबकि रैखिक रूपों की समष्टि L(V × W; F) आयाम dim V + dim W का है)। इसे देखने के लिए, V और W के लिए एक आधार का चयन करे; तब प्रत्येक द्विरेखीय मानचित्र को विशिष्ट रूप से मैट्रिक्स B(ei, fj) द्वारा दर्शाया जा सकता है, और इसके विपरीत। अब, यदि X उच्च आयाम का समष्टि है, तो हमारे पास स्पष्ट रूप से dim L(V, W; X) = dim V × dim W × dim X है।

उदाहरण

  • मैट्रिक्स गुणन एक द्विरेखीय मानचित्र M(m, n) × M(n, p) → M(m, p) है।
  • यदि वास्तविक संख्या पर एक सदिश समष्टि V एक आंतरिक उत्पाद रखता है, तो आंतरिक उत्पाद एक द्विरेखीय मानचित्र है। उत्पाद सदिश समष्टि का एक आयाम है।
  • सामान्य रूप में, क्षेत्र F पर सदिश समष्टि V के लिए, V पर द्विरेखीय रूप द्विरेखीय मानचित्र V × VF के समान होता है।
  • यदि V दोहरी समष्टि V के साथ एक सदिश समष्टि है, तो एप्लिकेशन प्रचालक, b(f, v) = f(v) V × V से आधार क्षेत्र तक एक द्विरेखीय मानचित्र है।
  • मान लीजिए कि V और W एक ही आधार क्षेत्र F पर सदिश समष्टियाँ हैं। यदि f, V का एक सदस्य है और g, W का सदस्य हैं, तो b(v, w) = f(v)g(w) द्विरेखीय मानचित्र V × WF को परिभाषित करता है।
  • में अन्योन्य गुणन द्विरेखीय मानचित्र है।
  • चलो एक द्विरेखीय मानचित्र हो, और एक रेखीय मानचित्र हो, तो (v, u) ↦ B(v, Lu) V × U पर एक द्विरेखीय मानचित्र है।

निरंतरता और अलग निरंतरता

मान लीजिए सांस्थितिक सदिश समष्टि हैं और द्विरैखिक मानचित्र बनें। तब b को अलग-अलग निरंतर कहा जाता है यदि निम्नलिखित दो प्रतिबंध हैं:

  1. सभी के लिए, द्वारा दिए गए मानचित्र निरंतर है;
  2. सभी के लिए, द्वारा दिए गए मानचित्र निरंतर है।

कई अलग-अलग निरंतर द्विरेखीय जो निरंतर नहीं हैं, एक अतिरिक्त संपत्ति को संतुष्ट करते हैं: हाइपोकॉन्टीनिटी।[1] सभी निरंतर द्विरैखिक मानचित्र हाइपोकॉन्टिनस होते हैं।

निरंतरता के लिए पर्याप्त प्रतिबंध

व्यवहार में पाए जाने वाले अनेक द्विरेखीय मानचित्र अलग-अलग निरंतर होते हैं लेकिन सभी निरंतर नहीं होते हैं। हम यहां अलग से निरंतर द्विरैखिक के निरंतर होने के लिए पर्याप्त प्रतिबंध सूचीबद्ध करते हैं।

  • यदि X एक बेयर समष्टि है और Y मेट्रिज़ेबल है तो प्रत्येक अलग-अलग निरंतर द्विरैखिक मानचित्र निरंतर है।[1]
  • अगर फ्रेचेट समष्टि के मजबूत दोहरे हैं तो प्रत्येक अलग-अलग निरंतर द्विरेखीय मानचित्र निरंतर है।[1]
  • यदि एक द्विरेखीय मानचित्र (0, 0) पर निरंतर है तो यह हर जगह निरंतर है।[2]

मानचित्र रचना

को समष्टिीय रूप से हौसडॉर्फ समष्टि उत्तल होने दें और द्वारा परिभाषित रचना मानचित्र हो। सामान्य रूप में, द्विरेखीय मानचित्र निरंतर नहीं होता है (इससे कोई फर्क नहीं पड़ता कि रेखीय मानचित्रों के समष्टि दिए गए हैं)। हालाँकि, हमारे पास निम्नलिखित परिणाम हैं:

रैखिक मानचित्रों के सभी तीन समष्टि को निम्नलिखित सांस्थितियों में से एक दें:

  1. तीनों को परिबद्ध अभिसरण की सांस्थिति दें;
  2. तीनों को सघन अभिसरण की सांस्थिति दें;
  3. बिंदुवार अभिसरण की तीनों सांस्थिति दें।
  • यदि का समानान्तर उपसमुच्चय है तो प्रतिबंध सभी तीन सांस्थिति के लिए निरंतर है।[1]
  • अगर एक बैरेल्ड समष्टि है, तो प्रत्येक अनुक्रम के लिए में में अभिसरण करने और प्रत्येक अनुक्रम में में अभिसरण करने अनुक्रम में परिवर्तित होते है। [1]

यह भी देखें

संदर्भ

  1. 1.0 1.1 1.2 1.3 1.4 Trèves 2006, pp. 424–426.
  2. Schaefer & Wolff 1999, p. 118.


ग्रन्थसूची

  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.


बाहरी संबंध