निवेश प्रतिबाधा: Difference between revisions
m (31 revisions imported from alpha:इनपुट_उपस्थिति) |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
[[विद्युत नेटवर्क]] का ''' | [[विद्युत नेटवर्क]] का '''निवेश प्रतिबाधा''' (इनपुट इम्पीडेन्स) विद्युत स्रोत नेटवर्क के ''बाहरी'' लोड में वर्तमान (उपस्थिति), स्थिर ([[विद्युत प्रतिरोध और चालन|प्रतिरोध]]) और गतिशील (प्रतिक्रिया) दोनों, के विरोध का माप है। इनपुट [[प्रवेश]] (उपस्थिति का व्युत्क्रम) वर्तमान लोड नेटवर्क की प्रवृत्ति को खींचने के लिए उपाय है। स्रोत नेटवर्क उस नेटवर्क का हिस्सा है जो शक्ति संचारित करता है, और लोड नेटवर्क उस नेटवर्क का हिस्सा है जो विद्युत की खपत करता है। | ||
[[Image:Source and load circuit Z (2).svg|thumb|200px|खुले हलकों के केंद्रीय सेट के बाईं ओर का परिपथ स्रोत परिपथ को मॉडल करता है, जबकि परिपथ कनेक्टेड परिपथ को सही मॉडल करता है। ''Z''<sub>S</sub> लोड द्वारा देखा गया आउटपुट उपस्थिति है, और Z<sub>L</sub> स्रोत द्वारा देखा गया | [[Image:Source and load circuit Z (2).svg|thumb|200px|खुले हलकों के केंद्रीय सेट के बाईं ओर का परिपथ स्रोत परिपथ को मॉडल करता है, जबकि परिपथ कनेक्टेड परिपथ को सही मॉडल करता है। ''Z''<sub>S</sub> लोड द्वारा देखा गया आउटपुट उपस्थिति है, और Z<sub>L</sub> स्रोत द्वारा देखा गया निवेश प्रतिबाधा है।]] | ||
== | == निवेश प्रतिबाधा == | ||
यदि लोड नेटवर्क को लोड नेटवर्क (समान परिपथ) के | यदि लोड नेटवर्क को लोड नेटवर्क (समान परिपथ) के निवेश प्रतिबाधा के बराबर आउटपुट उपस्थिति वाले डिवाइस द्वारा प्रतिस्थापित किया गया था, तो स्रोत-लोड नेटवर्क की विशेषताएं कनेक्शन बिंदु के परिप्रेक्ष्य से समान होंगी। इसलिए, इनपुट टर्मिनलों के माध्यम से वोल्टेज और करंट चुने गए लोड नेटवर्क के समान होगा। | ||
इसलिए, लोड का | इसलिए, लोड का निवेश प्रतिबाधा और स्रोत का आउटपुट उपस्थिति यह निर्धारित करता है कि स्रोत वर्तमान और वोल्टेज कैसे बदलता है। | ||
विद्युत नेटवर्क के थेवेनिन के समान परिपथ के उपस्थिति को निर्धारित करने के लिए | विद्युत नेटवर्क के थेवेनिन के समान परिपथ के उपस्थिति को निर्धारित करने के लिए निवेश प्रतिबाधा की अवधारणा का उपयोग करता है। | ||
== गणना == | == गणना == | ||
यदि किसी को परिपथ के लोड पर | यदि किसी को परिपथ के लोड पर निवेश प्रतिबाधा और संकेत स्रोत के साथ श्रृंखला में आउटपुट उपस्थिति रखकर इनपुट टर्मिनलों के समान गुणों के साथ परिपथ बनाना होता है, तो ओम के नियम का उपयोग ट्रांसफर फ़ंक्शन की गणना के लिए किया जा सकता है। | ||
=== विद्युत दक्षता === | === विद्युत दक्षता === | ||
इनपुट और आउटपुट उपस्थिति के मूल्यों का उपयोग | इनपुट और आउटपुट उपस्थिति के मूल्यों का उपयोग प्रायः नेटवर्क की विद्युत दक्षता का मूल्यांकन करने के लिए उन्हें कई चरणों में तोड़कर और स्वतंत्र रूप से प्रत्येक चरण के बीच वार्तालाप की दक्षता का मूल्यांकन करने के लिए किया जाता है। विद्युत के नुकसान को कम करने के लिए, नेटवर्क के निवेश प्रतिबाधा की तुलना में संकेत का आउटपुट उपस्थिति नगण्य होना चाहिए, क्योंकि लाभ कुल उपस्थिति (निवेश प्रतिबाधा + आउटपुट उपस्थिति) के निवेश प्रतिबाधा के अनुपात के बराबर है। इस मामले में, | ||
:<math> Z_{in} \gg Z_{out} </math> (या <math> Z_{L} \gg Z_{S} </math>) | :<math> Z_{in} \gg Z_{out} </math> (या <math> Z_{L} \gg Z_{S} </math>) | ||
:''संचालित चरण (लोड) का | :''संचालित चरण (लोड) का निवेश प्रतिबाधा ड्राइव चरण (स्रोत) के आउटपुट उपस्थिति से बहुत बड़ा है।'' | ||
==== ऊर्जा घटक ==== | ==== ऊर्जा घटक ==== | ||
विद्युत ले जाने वाले एसी परिपथ में, उपस्थिति के प्रतिक्रियाशील घटक के कारण सुचालक में ऊर्जा का नुकसान महत्वपूर्ण हो सकता है। ये नुकसान चरण असंतुलन नामक घटना में खुद को प्रकट करते हैं, जहां वर्तमान वोल्टेज के साथ चरण से बाहर (पीछे या आगे) होता है। इसलिए, वर्तमान और वोल्टेज का उत्पाद उससे कम है जो वर्तमान और वोल्टेज चरण में थे। डीसी स्रोतों के साथ, प्रतिक्रियाशील परिपथ का कोई प्रभाव नहीं पड़ता है, इसलिए ऊर्जा घटक सुधार आवश्यक नहीं है। | विद्युत ले जाने वाले एसी परिपथ में, उपस्थिति के प्रतिक्रियाशील घटक के कारण सुचालक में ऊर्जा का नुकसान महत्वपूर्ण हो सकता है। ये नुकसान चरण असंतुलन नामक घटना में खुद को प्रकट करते हैं, जहां वर्तमान वोल्टेज के साथ चरण से बाहर (पीछे या आगे) होता है। इसलिए, वर्तमान और वोल्टेज का उत्पाद उससे कम है जो वर्तमान और वोल्टेज चरण में थे। डीसी स्रोतों के साथ, प्रतिक्रियाशील परिपथ का कोई प्रभाव नहीं पड़ता है, इसलिए ऊर्जा घटक सुधार आवश्यक नहीं है। | ||
परिपथ के लिए आदर्श स्रोत, आउटपुट उपस्थिति और | परिपथ के लिए आदर्श स्रोत, आउटपुट उपस्थिति और निवेश प्रतिबाधा के साथ मॉडलिंग करने के लिए, स्रोत पर आउटपुट प्रतिक्रिया के नकारात्मक होने के लिए परिपथ के इनपुट प्रतिक्रिया को आकार दिया जा सकता है। इस परिदृश्य में, निवेश प्रतिबाधा का प्रतिक्रियाशील घटक स्रोत पर आउटपुट उपस्थिति के प्रतिक्रियाशील घटक को रद्द कर देता है। परिणामी समान परिपथ पूरी तरह से प्रतिरोधी प्रकृति का है, और स्रोत या लोड में चरण असंतुलन के कारण कोई नुकसान नहीं होता है। | ||
:<math>\begin{align} | :<math>\begin{align} | ||
Z_{in} & = X - j\operatorname{Im}(Z_{out}) \\ | Z_{in} & = X - j\operatorname{Im}(Z_{out}) \\ | ||
Line 45: | Line 45: | ||
=== [[ संकेत आगे बढ़ाना | संकेत संसाधन]] === | === [[ संकेत आगे बढ़ाना | संकेत संसाधन]] === | ||
आधुनिक संकेत प्रोसेसिंग में, उपकरणों, जैसे [[एम्पलीफायरों|प्रवर्धक]], को उस इनपुट से जुड़े स्रोत डिवाइस के [[आउटपुट प्रतिबाधा|आउटपुट उपस्थिति]] की तुलना में परिमाण के कई क्रमों के | आधुनिक संकेत प्रोसेसिंग में, उपकरणों, जैसे [[एम्पलीफायरों|प्रवर्धक]], को उस इनपुट से जुड़े स्रोत डिवाइस के [[आउटपुट प्रतिबाधा|आउटपुट उपस्थिति]] की तुलना में परिमाण के कई क्रमों के निवेश प्रतिबाधा के लिए डिज़ाइन किया गया है। इसे [[प्रतिबाधा ब्रिजिंग|उपस्थिति सेतुबंधन]] कहा जाता है। इन परिपथ में निवेश प्रतिबाधा (हानि) के कारण होने वाले नुकसान को कम किया जाएगा, और प्रवर्धक के इनपुट पर वोल्टेज के करीब होगा जैसे कि प्रवर्धक परिपथ जुड़ा नहीं था। जब एक उपकरण जिसका निवेश प्रतिबाधा संकेत के महत्वपूर्ण क्षरण का उपयोग किया जाता है, प्रायः उच्च निवेश प्रतिबाधा और कम आउटपुट उपस्थिति वाले उपकरण का उपयोग इसके प्रभावों को कम करने के लिए किया जाता है। इन प्रभावों के लिए प्रायः [[बफर एम्पलीफायर|वोल्टेज अनुयायी]] या उपस्थिति-मिलान ट्रांसफार्मर का उपयोग किया जाता है। | ||
उच्च-उपस्थिति प्रवर्धक (जैसे [[निर्वात पम्प ट्यूब]], [[ फील्ड इफ़ेक्ट ट्रांजिस्टर |फील्ड प्रभाव ट्रांजिस्टर]] प्रवर्धक और ऑप-एम्प्स) के लिए | उच्च-उपस्थिति प्रवर्धक (जैसे [[निर्वात पम्प ट्यूब]], [[ फील्ड इफ़ेक्ट ट्रांजिस्टर |फील्ड प्रभाव ट्रांजिस्टर]] प्रवर्धक और ऑप-एम्प्स) के लिए निवेश प्रतिबाधा को प्रायः धारिता के साथ समानांतर प्रतिरोध के रूप में निर्दिष्ट किया जाता है (उदाहरण के लिए, 2.2 MΩ ∥ 1[[picofarad|पिकोफैरेड]])। उच्च निवेश प्रतिबाधा के लिए डिज़ाइन किए गए पूर्व-प्रवर्धक में इनपुट पर थोड़ा अधिक प्रभावी ध्वनि वोल्टेज हो सकता है (कम प्रभावी ध्वनि वर्तमान प्रदान करते समय), और विशिष्ट कम-उपस्थिति स्रोत के लिए डिज़ाइन किए गए प्रवर्धक की तुलना में थोड़ा अधिक ध्वनि होता है, लेकिन सामान्य तौर पर ए अपेक्षाकृत कम-उपस्थिति स्रोत विन्यास ध्वनि के प्रति अधिक प्रतिरोधी होगा (विशेष रूप से मुख्य हूं)। | ||
===रेडियो फ्रीक्वेंसी पावर सिस्टम === | ===रेडियो फ्रीक्वेंसी पावर सिस्टम === | ||
Line 59: | Line 59: | ||
आरएफ प्रणाली में, लाइन और समाप्ति उपस्थिति के लिए विशिष्ट मान 50 Ω और 75 Ω हैं। | आरएफ प्रणाली में, लाइन और समाप्ति उपस्थिति के लिए विशिष्ट मान 50 Ω और 75 Ω हैं। | ||
रेडियो फ्रीक्वेंसी पावर सिस्टम के लिए पावर ट्रांसमिशन | रेडियो फ्रीक्वेंसी पावर सिस्टम के लिए पावर ट्रांसमिशन को अधिकतम करने के लिए परिपथ को [[ट्रांसमीटर]] आउटपुट से, संचरण लाइन (संतुलित जोड़ी, समाक्षीय केबल, या तरंगपथनिर्धारित्र) के माध्यम से पूरे [[शक्ति श्रृंखला|पावर श्रृंखला]] में ''जटिल संयुग्म'' होना चाहिए, [[एंटीना (रेडियो)|एंटीना]] प्रणाली, जो उपस्थिति मिलान उपकरण और विकिरण तत्व सम्मिलित है। | ||
== यह भी देखें == | == यह भी देखें == | ||
Line 72: | Line 72: | ||
*"Aortic input impedance in normal man: relationship to pressure wave forms", JP Murgo, N Westerhof, JP Giolma, SA Altobelli [http://circ.ahajournals.org/cgi/reprint/62/1/105.pdf pdf] | *"Aortic input impedance in normal man: relationship to pressure wave forms", JP Murgo, N Westerhof, JP Giolma, SA Altobelli [http://circ.ahajournals.org/cgi/reprint/62/1/105.pdf pdf] | ||
*An excellent introduction to the importance of impedance and impedance matching can be found in ''A practical introduction to electronic circuits'', M H Jones, Cambridge University Press, {{ISBN|0-521-31312-0}} | *An excellent introduction to the importance of impedance and impedance matching can be found in ''A practical introduction to electronic circuits'', M H Jones, Cambridge University Press, {{ISBN|0-521-31312-0}} | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
*[http://www.sengpielaudio.com/calculator-bridging.htm Calculation of the damping factor and the damping of impedance bridging] | *[http://www.sengpielaudio.com/calculator-bridging.htm Calculation of the damping factor and the damping of impedance bridging] | ||
Line 79: | Line 77: | ||
*[http://www.kpsec.freeuk.com/imped.htm Impedance and Reactance] | *[http://www.kpsec.freeuk.com/imped.htm Impedance and Reactance] | ||
*[http://www.sengpielaudio.com/calculator-InputOutputImpedance.htm Input Impedance Measurement] | *[http://www.sengpielaudio.com/calculator-InputOutputImpedance.htm Input Impedance Measurement] | ||
[[Category:Created On 06/03/2023]] | [[Category:Created On 06/03/2023]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page]] | ||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Wikipedia articles needing clarification from January 2017]] | |||
[[Category:ऑडियो एम्पलीफायर विनिर्देशों]] | |||
[[Category:विद्युत पैरामीटर]] |
Latest revision as of 11:34, 20 October 2023
विद्युत नेटवर्क का निवेश प्रतिबाधा (इनपुट इम्पीडेन्स) विद्युत स्रोत नेटवर्क के बाहरी लोड में वर्तमान (उपस्थिति), स्थिर (प्रतिरोध) और गतिशील (प्रतिक्रिया) दोनों, के विरोध का माप है। इनपुट प्रवेश (उपस्थिति का व्युत्क्रम) वर्तमान लोड नेटवर्क की प्रवृत्ति को खींचने के लिए उपाय है। स्रोत नेटवर्क उस नेटवर्क का हिस्सा है जो शक्ति संचारित करता है, और लोड नेटवर्क उस नेटवर्क का हिस्सा है जो विद्युत की खपत करता है।
निवेश प्रतिबाधा
यदि लोड नेटवर्क को लोड नेटवर्क (समान परिपथ) के निवेश प्रतिबाधा के बराबर आउटपुट उपस्थिति वाले डिवाइस द्वारा प्रतिस्थापित किया गया था, तो स्रोत-लोड नेटवर्क की विशेषताएं कनेक्शन बिंदु के परिप्रेक्ष्य से समान होंगी। इसलिए, इनपुट टर्मिनलों के माध्यम से वोल्टेज और करंट चुने गए लोड नेटवर्क के समान होगा।
इसलिए, लोड का निवेश प्रतिबाधा और स्रोत का आउटपुट उपस्थिति यह निर्धारित करता है कि स्रोत वर्तमान और वोल्टेज कैसे बदलता है।
विद्युत नेटवर्क के थेवेनिन के समान परिपथ के उपस्थिति को निर्धारित करने के लिए निवेश प्रतिबाधा की अवधारणा का उपयोग करता है।
गणना
यदि किसी को परिपथ के लोड पर निवेश प्रतिबाधा और संकेत स्रोत के साथ श्रृंखला में आउटपुट उपस्थिति रखकर इनपुट टर्मिनलों के समान गुणों के साथ परिपथ बनाना होता है, तो ओम के नियम का उपयोग ट्रांसफर फ़ंक्शन की गणना के लिए किया जा सकता है।
विद्युत दक्षता
इनपुट और आउटपुट उपस्थिति के मूल्यों का उपयोग प्रायः नेटवर्क की विद्युत दक्षता का मूल्यांकन करने के लिए उन्हें कई चरणों में तोड़कर और स्वतंत्र रूप से प्रत्येक चरण के बीच वार्तालाप की दक्षता का मूल्यांकन करने के लिए किया जाता है। विद्युत के नुकसान को कम करने के लिए, नेटवर्क के निवेश प्रतिबाधा की तुलना में संकेत का आउटपुट उपस्थिति नगण्य होना चाहिए, क्योंकि लाभ कुल उपस्थिति (निवेश प्रतिबाधा + आउटपुट उपस्थिति) के निवेश प्रतिबाधा के अनुपात के बराबर है। इस मामले में,
- (या )
- संचालित चरण (लोड) का निवेश प्रतिबाधा ड्राइव चरण (स्रोत) के आउटपुट उपस्थिति से बहुत बड़ा है।
ऊर्जा घटक
विद्युत ले जाने वाले एसी परिपथ में, उपस्थिति के प्रतिक्रियाशील घटक के कारण सुचालक में ऊर्जा का नुकसान महत्वपूर्ण हो सकता है। ये नुकसान चरण असंतुलन नामक घटना में खुद को प्रकट करते हैं, जहां वर्तमान वोल्टेज के साथ चरण से बाहर (पीछे या आगे) होता है। इसलिए, वर्तमान और वोल्टेज का उत्पाद उससे कम है जो वर्तमान और वोल्टेज चरण में थे। डीसी स्रोतों के साथ, प्रतिक्रियाशील परिपथ का कोई प्रभाव नहीं पड़ता है, इसलिए ऊर्जा घटक सुधार आवश्यक नहीं है।
परिपथ के लिए आदर्श स्रोत, आउटपुट उपस्थिति और निवेश प्रतिबाधा के साथ मॉडलिंग करने के लिए, स्रोत पर आउटपुट प्रतिक्रिया के नकारात्मक होने के लिए परिपथ के इनपुट प्रतिक्रिया को आकार दिया जा सकता है। इस परिदृश्य में, निवेश प्रतिबाधा का प्रतिक्रियाशील घटक स्रोत पर आउटपुट उपस्थिति के प्रतिक्रियाशील घटक को रद्द कर देता है। परिणामी समान परिपथ पूरी तरह से प्रतिरोधी प्रकृति का है, और स्रोत या लोड में चरण असंतुलन के कारण कोई नुकसान नहीं होता है।
पावर ट्रांसफर
अधिकतम पावर ट्रांसफर की स्थिति बताती है कि किसी दिए गए स्रोत के लिए अधिकतम शक्ति तब स्थानांतरित की जाएगी जब स्रोत का प्रतिरोध लोड के प्रतिरोध के बराबर हो और प्रतिक्रिया को रद्द करके शक्ति कारक को ठीक किया जाए। जब ऐसा होता है तो परिपथ को संकेत उपस्थिति से मेल खाते जटिल संयुग्मी कहा जाता है। ध्यान दें कि यह केवल पावर ट्रांसफर को अधिकतम करता है, परिपथ की दक्षता को नहीं। जब पावर ट्रांसफर को अनुकूलित किया जाता है तो परिपथ केवल 50% दक्षता पर चलता है।
जटिल संयुग्म मिलान का सूत्र है
जब कोई प्रतिक्रियाशील घटक नहीं होता है तो यह समीकरण सरल हो जाता है के काल्पनिक भाग के रूप में शून्य है।
उपस्थिति मिलान
जब संचरण लाइन की विशेषता उपस्थिति, , लोड नेटवर्क की उपस्थिति से मिलता जुलता नहीं है, , लोड नेटवर्क कुछ स्रोत संकेत को वापस दिखाएगा। यह ट्रांसमिशन लाइन पर स्थायी तरंगें बना सकता है। प्रतिबिंबों को कम करने के लिए, ट्रांसमिशन लाइन की विशिष्ट उपस्थिति और लोड परिपथ की उपस्थिति को बराबर (या "मिलान") होना चाहिए। यदि उपस्थिति मिलता जुलता है, तो कनेक्शन को मिलान किए गए कनेक्शन के रूप में जाना जाता है, और उपस्थिति असंगत को ठीक करने की प्रक्रिया को उपस्थिति मिलान कहा जाता है। चूंकि सजातीय संचरण लाइन के लिए विशेषता उपस्थिति अकेले ज्यामिति पर आधारित है और इसलिए स्थिर है, और लोड उपस्थिति को स्वतंत्र रूप से मापा जा सकता है, मिलान की स्थिति लोड की नियुक्ति (ट्रांसमिशन लाइन से पहले या बाद में) की परवाह किए बिना रहती है।
अनुप्रयोग
संकेत संसाधन
आधुनिक संकेत प्रोसेसिंग में, उपकरणों, जैसे प्रवर्धक, को उस इनपुट से जुड़े स्रोत डिवाइस के आउटपुट उपस्थिति की तुलना में परिमाण के कई क्रमों के निवेश प्रतिबाधा के लिए डिज़ाइन किया गया है। इसे उपस्थिति सेतुबंधन कहा जाता है। इन परिपथ में निवेश प्रतिबाधा (हानि) के कारण होने वाले नुकसान को कम किया जाएगा, और प्रवर्धक के इनपुट पर वोल्टेज के करीब होगा जैसे कि प्रवर्धक परिपथ जुड़ा नहीं था। जब एक उपकरण जिसका निवेश प्रतिबाधा संकेत के महत्वपूर्ण क्षरण का उपयोग किया जाता है, प्रायः उच्च निवेश प्रतिबाधा और कम आउटपुट उपस्थिति वाले उपकरण का उपयोग इसके प्रभावों को कम करने के लिए किया जाता है। इन प्रभावों के लिए प्रायः वोल्टेज अनुयायी या उपस्थिति-मिलान ट्रांसफार्मर का उपयोग किया जाता है।
उच्च-उपस्थिति प्रवर्धक (जैसे निर्वात पम्प ट्यूब, फील्ड प्रभाव ट्रांजिस्टर प्रवर्धक और ऑप-एम्प्स) के लिए निवेश प्रतिबाधा को प्रायः धारिता के साथ समानांतर प्रतिरोध के रूप में निर्दिष्ट किया जाता है (उदाहरण के लिए, 2.2 MΩ ∥ 1पिकोफैरेड)। उच्च निवेश प्रतिबाधा के लिए डिज़ाइन किए गए पूर्व-प्रवर्धक में इनपुट पर थोड़ा अधिक प्रभावी ध्वनि वोल्टेज हो सकता है (कम प्रभावी ध्वनि वर्तमान प्रदान करते समय), और विशिष्ट कम-उपस्थिति स्रोत के लिए डिज़ाइन किए गए प्रवर्धक की तुलना में थोड़ा अधिक ध्वनि होता है, लेकिन सामान्य तौर पर ए अपेक्षाकृत कम-उपस्थिति स्रोत विन्यास ध्वनि के प्रति अधिक प्रतिरोधी होगा (विशेष रूप से मुख्य हूं)।
रेडियो फ्रीक्वेंसी पावर सिस्टम
संचरण लाइन के अंत में उपस्थिति असंगत के कारण संकेत प्रतिबिंब विरूपण और चालन परिपथ को संभावित नुकसान पहुंचा सकता है।
एनालॉग वीडियो परिपथ में, उपस्थिति असंतुलन "प्रतिछाया" का कारण बन सकता है, जहां मुख्य छवि की समय-विलंबित प्रतिध्वनि कमजोर और विस्थापित छवि (प्रायः मुख्य छवि के दाईं ओर) के रूप में दिखाई देती है। उच्च गति डिजिटल प्रणाली में, जैसे एचडी वीडियो, प्रतिबिंब के परिणामस्वरूप हस्तक्षेप और संभावित रूप से दूषित संकेत होता है।
असंतुलन द्वारा बनाई गई स्थायी तरंगें सामान्य वोल्टेज से अधिक के आवधिक क्षेत्र हैं। यदि यह वोल्टेज लाइन की इन्सुलेट सामग्री की विद्युत के धाराप्रवाह को रोकनेवाला टूटने की ताकत से अधिक हो जाता है तो इलेक्ट्रिक चाप उत्पन्न होगा। यह बदले में उच्च वोल्टेज की प्रतिक्रियाशील पल्स का कारण बन सकता है जो ट्रांसमीटर के अंतिम आउटपुट चरण को नष्ट कर सकता है।
आरएफ प्रणाली में, लाइन और समाप्ति उपस्थिति के लिए विशिष्ट मान 50 Ω और 75 Ω हैं।
रेडियो फ्रीक्वेंसी पावर सिस्टम के लिए पावर ट्रांसमिशन को अधिकतम करने के लिए परिपथ को ट्रांसमीटर आउटपुट से, संचरण लाइन (संतुलित जोड़ी, समाक्षीय केबल, या तरंगपथनिर्धारित्र) के माध्यम से पूरे पावर श्रृंखला में जटिल संयुग्म होना चाहिए, एंटीना प्रणाली, जो उपस्थिति मिलान उपकरण और विकिरण तत्व सम्मिलित है।
यह भी देखें
- आउटपुट उपस्थिति
- अवमंदन गुणांक
- वोल्टेज विभाजक
- डमी लोड
संदर्भ
- The Art of Electronics, Winfield Hill, Paul Horowitz, Cambridge University Press, ISBN 0-521-37095-7
- "Aortic input impedance in normal man: relationship to pressure wave forms", JP Murgo, N Westerhof, JP Giolma, SA Altobelli pdf
- An excellent introduction to the importance of impedance and impedance matching can be found in A practical introduction to electronic circuits, M H Jones, Cambridge University Press, ISBN 0-521-31312-0