मोलर मास डिस्ट्रीब्यूशन: Difference between revisions
(Created page with "{{short description|Function describing the relation between a polymer species' molar mass and number of moles}} बहुलक रसायन विज्ञान म...") |
No edit summary |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{short description|Function describing the relation between a polymer species' molar mass and number of moles}} | {{short description|Function describing the relation between a polymer species' molar mass and number of moles}} | ||
बहुलक रसायन विज्ञान में, '''मोलर मास डिस्ट्रीब्यूशन''' के मोल (इकाई) की संख्या के मध्य संबंध का वर्णन करता है ({{mvar|N<sub>i</sub>}}) और [[दाढ़ जन|मोलर जन]] ({{mvar|M<sub>i</sub>}}) उस प्रजाति के <ref>I. Katime "Química Física Macromolecular". Servicio Editorial de la Universidad del País Vasco. Bilbao</ref> रैखिक पॉलिमर में, व्यक्तिगत बहुलक श्रृंखला कभी समान [[पोलीमराइजेशन की डिग्री]] और मोलर मास होते हैं, और [[औसत]] के निकट सदैव [[वितरण (गणित)|डिस्ट्रीब्यूशन (गणित)]] होता है। बहुलक के मोलर जन डिस्ट्रीब्यूशन को [[बहुलक विभाजन]] द्वारा संशोधित किया जा सकता है। | |||
== | == मोलर मास औसत की परिभाषाएँ == | ||
प्रारंभिक सांख्यिकीय पद्धति के आधार पर विभिन्न औसत मूल्यों को परिभाषित किया जा सकता है। व्यवहार में, चार औसत का उपयोग किया जाता है, मोल अंश, भार अंश और दो अन्य कार्यों के साथ लिए गए [[भारित माध्य]] का प्रतिनिधित्व करते हैं जो मापी गई मात्रा से संबंधित हो सकते हैं: | |||
* संख्या औसत | * संख्या औसत मोलर मास ({{math|''M''{{sub|n}}}}), को शिथिल रूप से संख्या औसत आणविक भार (NAMW) के रूप में भी जाना जाता है। | ||
* | *औसत मोलर मास ({{math|''M''{{sub|w}}}}), जहाँ {{mvar|w}} भार के लिए उपयोग किया जाता है; सामान्यतः भार को औसत आणविक भार (WAMW) के रूप में भी जाना जाता है। | ||
* | * z-औसत मोलर मास ({{math|''M''{{sub|z}}}}), जहाँ {{math|z}} सेंट्रीफ्यूगेशन के लिए उपयोग किया जाता है ({{ety|de|Zentrifuge}}). | ||
* चिपचिपापन औसत | * चिपचिपापन औसत मोलर जन ({{math|''M''{{sub|v}}}}) है- | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
Line 16: | Line 16: | ||
M_\mathrm{z} &= \frac{\sum M_i^3 N_i} {\sum M_i^2 N_i} && M_\mathrm{v} = \left[\frac{\sum M_i^{1+a} N_i} {\sum M_i N_i}\right]^\frac{1} {a} | M_\mathrm{z} &= \frac{\sum M_i^3 N_i} {\sum M_i^2 N_i} && M_\mathrm{v} = \left[\frac{\sum M_i^{1+a} N_i} {\sum M_i N_i}\right]^\frac{1} {a} | ||
\end{align}</math> | \end{align}</math> | ||
जहाँ, {{mvar|a}} मार्क-हौविंक समीकरण में प्रतिपादक है जो आंतरिक चिपचिपाहट को मोलर मास से सम्बन्ध स्थापित करता है।<ref name="ReferenceA">R.J. Young and P.A. Lovell, Introduction to Polymers, 1991</ref> | |||
== | == माप == | ||
इन विभिन्न परिभाषाओं का वास्तविक भौतिक अर्थ है | इन विभिन्न परिभाषाओं का वास्तविक भौतिक अर्थ है कि भौतिक बहुलक रसायन विज्ञान में विभिन्न तकनीकें प्रायः उनमें से केवल एक को मापती हैं। उदाहरण के लिए, [[ऑस्मोमेट्री]] संख्या औसत मोलर मास और लघु-कोण [[लेज़र]] स्कैटरिंग इलेक्ट्रोमैग्नेटिक्स औसत मोलर मास को मापता है। {{math|''M''{{sub|v}}}} [[विस्कोमीटर]] से प्राप्त किया जाता है {{math|''M''{{sub|z}}}} विश्लेषणात्मक [[ अल्ट्रा अपकेंद्रित्र |अल्ट्रा अपकेंद्रित्र]] में [[अवसादन]] द्वारा चिपचिपापन औसत मोलर मास के लिए अभिव्यक्ति में मात्रा 0.5 से 0.8 तक भिन्न होती है और समाधान में विलायक बहुलक के मध्य सम्बन्ध पर निर्भर करती है। विशिष्ट डिस्ट्रीब्यूशन वक्र में, औसत मान दूसरे से निम्नानुसार संबंधित होते हैं: | ||
:<math>M_n < M_v < M_w < M_z.</math> | :<math>M_n < M_v < M_w < M_z.</math> | ||
प्रारूप के [[फैलाव]] (जिसे पॉलीडिसपर्सिटी इंडेक्स के रूप में भी जाना जाता है) को परिभाषित किया गया है {{math|''M''<sub>w</sub>}} द्वारा विभाजित {{math|''M''<sub>n</sub>}} संकेत देता है कि डिस्ट्रीब्यूशन कितना संकीर्ण है।<ref name="ReferenceA"/><ref name=IUPAC>Stepto, R. F. T.; Gilbert, R. G.; Hess, M.; Jenkins, A. D.; Jones, R. G.; Kratochvíl P. (2009). "[http://media.iupac.org/publications/pac/2009/pdf/8102x0351.pdf Dispersity in Polymer Science]" ''Pure Appl. Chem.'' '''81''' (2): 351–353. DOI:10.1351/PAC-REC-08-05-02.</ref> | |||
आधुनिक समय में उपयोग किए जाने वाले आणविक मास को मापने के लिए सबसे सरल तकनीक उच्च दबाव तरल क्रोमैटोग्राफी (एचपीएलसी) का प्रकार है जिसे आकार अपवर्जन क्रोमैटोग्राफी (एसईसी) और [[जेल पर्मिएशन क्रोमेटोग्राफी]] (जीपीसी) के विनिमेय शब्दों द्वारा जाना जाता है। इन तकनीकों में कई [[ बार (इकाई) |बार (इकाई)]] के दबाव पर [[क्रॉस से जुड़े]] गए बहुलक कणों के मैट्रिक्स के माध्यम से बहुलक समाधान को सम्मिलित करना है। बहुलक अणुओं के लिए स्थिर चरण मात्रा की सीमित पहुंच के परिणामस्वरूप उच्च-आणविक-मास प्रजातियों के लिए कम क्षालन समय होता है। कम फैलाव मानकों का उपयोग को आणविक मास के साथ प्रतिधारण समय को सहसंबंधित करने की अनुमति देता है, चूँकि वास्तविक सहसंबंध हाइड्रोडायनामिक मात्रा के साथ है। यदि मोलर मास और हाइड्रोडायनामिक आयतन के मध्य संबंध परिवर्तित करता है (अर्थात, बहुलक मानक के समान आकार नहीं है) तो मास के लिए अंशांकन त्रुटि में है। | |||
आकार बहिष्करण क्रोमैटोग्राफी के लिए उपयोग किए जाने वाले सबसे सरल डिटेक्टरों में ऑनलाइन विधियां सम्मिलित हैं। अब तक सबसे सरल अंतर अपवर्तक सूचकांक डिटेक्टर है जो विलायक के अपवर्तक सूचकांक में परिवर्तन को मापता है। यह डिटेक्टर एकाग्रता-संवेदनशील और अधिक आणविक-मास-असंवेदनशील है, इसलिए यह एकल-डिटेक्टर जीपीसी प्रणाली के लिए आदर्श है, क्योंकि यह v के आणविक मास को पीढ़ी की अनुमति देता है। कम सामान्य किन्तु अधिक त्रुटिहीन और विश्वसनीय मल्टी-एंगल लेजर-लाइट स्कैटरिंग का उपयोग करने वाला आणविक-मास-संवेदनशील डिटेक्टर है- स्थिर प्रकाश बिखराव देखें। ये डिटेक्टर सरलता से बहुलक के आणविक मास को मापते हैं और प्रायः अंतर अपवर्तक सूचकांक डिटेक्टरों के साथ संयोजन में उपयोग किए जाते हैं। और विकल्प या तो निम्न-कोण प्रकाश प्रकीर्णन है, जो मोलर मास को निर्धारित करने के लिए एकल निम्न कोण का उपयोग करता है, या समकोण-प्रकाश लेजर प्रकीर्णन विस्कोमीटर के संयोजन में होता है, चूँकि यह पश्चात की तकनीक मोलर मास का पूर्ण माप नहीं देती है। किन्तु प्रयोग किए गए संरचनात्मक मॉडल के सापेक्ष हैं। | |||
=== संख्या औसत | बहुलक प्रारूप का मोलर जन डिस्ट्रीब्यूशन रासायनिक कैनेटीक्स और वर्क-अप प्रक्रिया जैसे कारकों पर निर्भर करता है। आदर्श [[चरण-विकास पोलीमराइज़ेशन]] 2 के फैलाव के साथ हुलक देता है। आदर्श जीवित पोलीमराइज़ेशन के परिणामस्वरूप 1 का फैलाव होता है। बहुलक को भंग करके अघुलनशील उच्च मोलर मास अंश को फ़िल्टर किया जा सकता है जिसके परिणामस्वरूप बड़ी कमी {{math|''M''{{sub|w}}}} और छोटी सी कमी {{math|''M''{{sub|n}}}}, इस प्रकार फैलाव को कम करता है। | ||
संख्या औसत | |||
=== संख्या औसत मोलर मास === | |||
संख्या औसत मोलर मास बहुलक के आणविक मास को निर्धारित करने की विधि है। पॉलिमर अणु, यहां तक कि विभिन्न आकारों (रैखिक पॉलिमर के लिए श्रृंखला की लंबाई) में आते हैं, इसलिए औसत आणविक मास औसत की विधि पर निर्भर करेगा। संख्या औसत आण्विक मास साधारण अंकगणितीय माध्य या भिन्न-भिन्न मैक्रोमोलेक्युलस के आण्विक मास का औसत है। आणविक मास को मापकर निर्धारित किया जाता है {{mvar|n}} बहुलक अणु, {{mvar|n}} जनता को विभाजित करना: | |||
<math>\bar{M}_n=\frac{\sum_i N_iM_i}{\sum_i N_i}</math> | <math>\bar{M}_n=\frac{\sum_i N_iM_i}{\sum_i N_i}</math> | ||
=== | बहुलक की संख्या औसत आणविक मास जेल पारगमन क्रोमैटोग्राफी, [[विस्कोमेट्री]] (मार्क-हौविंक समीकरण) के माध्यम से निर्धारित किया जा सकता है, वाष्प दाब ऑस्मोमेट्री, अंत-समूह निर्धारण या [[प्रोटॉन एनएमआर]] जैसे संपार्श्विक गुण होते है।<ref>''Polymer Molecular Weight Analysis by 1H NMR Spectroscopy'' Josephat U. Izunobi and Clement L. Higginbotham J. Chem. Educ., 2011, 88 (8), pp 1098–1104 {{doi|10.1021/ed100461v}}</ref> | ||
बड़े पैमाने पर औसत | |||
कैरोथर्स के समीकरण के अनुसार, स्टेप-ग्रोथ पोलीमराइज़ेशनकी स्थिति में उच्च संख्या-औसत आणविक मास पॉलिमर केवल उच्च भिन्नात्मक मोनोमर रूपांतरण के साथ प्राप्त किया जा सकता है। | |||
=== मास औसत मोलर मास === | |||
बड़े पैमाने पर औसत मोलर मास (प्रायः शिथिल रूप से 'भार को औसत मोलर मास' कहा जाता है) बहुलक के मोलर मास का वर्णन करने की विधि है। कुछ गुण आणविक आकार पर निर्भर होते हैं, इसलिए छोटे अणु की तुलना में बड़े अणु का बड़ा योगदान होगा। औसत मोलर मास की गणना किसके द्वारा की जाती है- | |||
<math>\bar{M}_w=\frac{\sum_i N_iM_i^2}{\sum_i N_iM_i}</math> | <math>\bar{M}_w=\frac{\sum_i N_iM_i^2}{\sum_i N_iM_i}</math> | ||
जहाँ {{mvar|N{{sub|i}}}} आणविक मास के अणुओं की संख्या {{mvar|M{{sub|i}}}} है। | |||
औसत आणविक मास को स्थिर प्रकाश बिखरने, छोटे कोण न्यूट्रॉन बिखरने, [[एक्स-रे बिखरने की तकनीक|एक्स-रे की तकनीक]], और विश्लेषणात्मक अल्ट्रासेंट्रीफ्यूगेशन विश्लेषणात्मक अल्ट्रासेंट्रीफ्यूज द्वारा निर्धारित किया जा सकता है। | |||
मास औसत संख्या के अनुपात को फैलाव या बहुप्रकीर्णता सूचकांक कहा जाता है।<ref name="IUPAC" /> | |||
मास-औसत आणविक, {{math|''M''{{sub|w}}}}, भिन्नात्मक मोनोमर रूपांतरण से भी संबंधित है, {{mvar|p}}, कैरोथर्स के समीकरण के अनुसार स्टेप-ग्रोथ पोलीमराइज़ेशन (इक्विमोलर मात्रा में दो मोनोमर्स से बनने वाले रैखिक पॉलिमर के सरलतम मामले के लिए) में: | |||
:<math>\bar{X}_w=\frac{1+p}{1-p} \quad \bar{M}_w=\frac{M_o\left(1+p\right)}{1-p},</math> | :<math>\bar{X}_w=\frac{1+p}{1-p} \quad \bar{M}_w=\frac{M_o\left(1+p\right)}{1-p},</math> | ||
जहाँ {{math|''M''<sub>o</sub>}} दोहराई जाने वाली इकाई का आणविक मास है। | |||
=== | === Z-औसत मोलर मास === | ||
Z-औसत | Z-औसत मोलर मास तीसरा क्षण या शक्ति औसत मोलर मास है, जिसकी गणना किसके द्वारा की जाती है: | ||
<math>\bar{M}_z=\frac{\sum M_i^3 N_i} {\sum M_i^2 N_i}\quad</math> | <math>\bar{M}_z=\frac{\sum M_i^3 N_i} {\sum M_i^2 N_i}\quad</math> | ||
z-औसत | |||
z-औसत मोलर मास को अल्ट्रासेंट्रीफ्यूगेशन के साथ निर्धारित किया जा सकता है। बहुलक का पिघला हुआ लोच {{math|''M''{{sub|z}}}} पर निर्भर करता है।<ref>Seymore, R.B and Caraher, C.E. Polymer Chemistry: An Introduction, 1992.</ref> | |||
== यह भी देखें == | == यह भी देखें == | ||
* [[वितरण समारोह (भौतिकी)]] | * [[वितरण समारोह (भौतिकी)|डिस्ट्रीब्यूशन समारोह (भौतिकी)]] | ||
* फ्लोरी-शुल्ज | * फ्लोरी-शुल्ज डिस्ट्रीब्यूशन | ||
* [[शुल्ज़-ज़िम वितरण]] | * [[शुल्ज़-ज़िम वितरण|शुल्ज़-ज़िम डिस्ट्रीब्यूशन]] | ||
* सामूहिक | * सामूहिक डिस्ट्रीब्यूशन | ||
* अवसादन | * अवसादन | ||
Line 71: | Line 77: | ||
{{Authority control}} | {{Authority control}} | ||
[[Category:Created On 23/03/2023]] | [[Category:Created On 23/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:पॉलिमर रसायन]] |
Latest revision as of 12:37, 30 October 2023
बहुलक रसायन विज्ञान में, मोलर मास डिस्ट्रीब्यूशन के मोल (इकाई) की संख्या के मध्य संबंध का वर्णन करता है (Ni) और मोलर जन (Mi) उस प्रजाति के [1] रैखिक पॉलिमर में, व्यक्तिगत बहुलक श्रृंखला कभी समान पोलीमराइजेशन की डिग्री और मोलर मास होते हैं, और औसत के निकट सदैव डिस्ट्रीब्यूशन (गणित) होता है। बहुलक के मोलर जन डिस्ट्रीब्यूशन को बहुलक विभाजन द्वारा संशोधित किया जा सकता है।
मोलर मास औसत की परिभाषाएँ
प्रारंभिक सांख्यिकीय पद्धति के आधार पर विभिन्न औसत मूल्यों को परिभाषित किया जा सकता है। व्यवहार में, चार औसत का उपयोग किया जाता है, मोल अंश, भार अंश और दो अन्य कार्यों के साथ लिए गए भारित माध्य का प्रतिनिधित्व करते हैं जो मापी गई मात्रा से संबंधित हो सकते हैं:
- संख्या औसत मोलर मास (Mn), को शिथिल रूप से संख्या औसत आणविक भार (NAMW) के रूप में भी जाना जाता है।
- औसत मोलर मास (Mw), जहाँ w भार के लिए उपयोग किया जाता है; सामान्यतः भार को औसत आणविक भार (WAMW) के रूप में भी जाना जाता है।
- z-औसत मोलर मास (Mz), जहाँ z सेंट्रीफ्यूगेशन के लिए उपयोग किया जाता है (from German Zentrifuge).
- चिपचिपापन औसत मोलर जन (Mv) है-
माप
इन विभिन्न परिभाषाओं का वास्तविक भौतिक अर्थ है कि भौतिक बहुलक रसायन विज्ञान में विभिन्न तकनीकें प्रायः उनमें से केवल एक को मापती हैं। उदाहरण के लिए, ऑस्मोमेट्री संख्या औसत मोलर मास और लघु-कोण लेज़र स्कैटरिंग इलेक्ट्रोमैग्नेटिक्स औसत मोलर मास को मापता है। Mv विस्कोमीटर से प्राप्त किया जाता है Mz विश्लेषणात्मक अल्ट्रा अपकेंद्रित्र में अवसादन द्वारा चिपचिपापन औसत मोलर मास के लिए अभिव्यक्ति में मात्रा 0.5 से 0.8 तक भिन्न होती है और समाधान में विलायक बहुलक के मध्य सम्बन्ध पर निर्भर करती है। विशिष्ट डिस्ट्रीब्यूशन वक्र में, औसत मान दूसरे से निम्नानुसार संबंधित होते हैं:
प्रारूप के फैलाव (जिसे पॉलीडिसपर्सिटी इंडेक्स के रूप में भी जाना जाता है) को परिभाषित किया गया है Mw द्वारा विभाजित Mn संकेत देता है कि डिस्ट्रीब्यूशन कितना संकीर्ण है।[2][3]
आधुनिक समय में उपयोग किए जाने वाले आणविक मास को मापने के लिए सबसे सरल तकनीक उच्च दबाव तरल क्रोमैटोग्राफी (एचपीएलसी) का प्रकार है जिसे आकार अपवर्जन क्रोमैटोग्राफी (एसईसी) और जेल पर्मिएशन क्रोमेटोग्राफी (जीपीसी) के विनिमेय शब्दों द्वारा जाना जाता है। इन तकनीकों में कई बार (इकाई) के दबाव पर क्रॉस से जुड़े गए बहुलक कणों के मैट्रिक्स के माध्यम से बहुलक समाधान को सम्मिलित करना है। बहुलक अणुओं के लिए स्थिर चरण मात्रा की सीमित पहुंच के परिणामस्वरूप उच्च-आणविक-मास प्रजातियों के लिए कम क्षालन समय होता है। कम फैलाव मानकों का उपयोग को आणविक मास के साथ प्रतिधारण समय को सहसंबंधित करने की अनुमति देता है, चूँकि वास्तविक सहसंबंध हाइड्रोडायनामिक मात्रा के साथ है। यदि मोलर मास और हाइड्रोडायनामिक आयतन के मध्य संबंध परिवर्तित करता है (अर्थात, बहुलक मानक के समान आकार नहीं है) तो मास के लिए अंशांकन त्रुटि में है।
आकार बहिष्करण क्रोमैटोग्राफी के लिए उपयोग किए जाने वाले सबसे सरल डिटेक्टरों में ऑनलाइन विधियां सम्मिलित हैं। अब तक सबसे सरल अंतर अपवर्तक सूचकांक डिटेक्टर है जो विलायक के अपवर्तक सूचकांक में परिवर्तन को मापता है। यह डिटेक्टर एकाग्रता-संवेदनशील और अधिक आणविक-मास-असंवेदनशील है, इसलिए यह एकल-डिटेक्टर जीपीसी प्रणाली के लिए आदर्श है, क्योंकि यह v के आणविक मास को पीढ़ी की अनुमति देता है। कम सामान्य किन्तु अधिक त्रुटिहीन और विश्वसनीय मल्टी-एंगल लेजर-लाइट स्कैटरिंग का उपयोग करने वाला आणविक-मास-संवेदनशील डिटेक्टर है- स्थिर प्रकाश बिखराव देखें। ये डिटेक्टर सरलता से बहुलक के आणविक मास को मापते हैं और प्रायः अंतर अपवर्तक सूचकांक डिटेक्टरों के साथ संयोजन में उपयोग किए जाते हैं। और विकल्प या तो निम्न-कोण प्रकाश प्रकीर्णन है, जो मोलर मास को निर्धारित करने के लिए एकल निम्न कोण का उपयोग करता है, या समकोण-प्रकाश लेजर प्रकीर्णन विस्कोमीटर के संयोजन में होता है, चूँकि यह पश्चात की तकनीक मोलर मास का पूर्ण माप नहीं देती है। किन्तु प्रयोग किए गए संरचनात्मक मॉडल के सापेक्ष हैं।
बहुलक प्रारूप का मोलर जन डिस्ट्रीब्यूशन रासायनिक कैनेटीक्स और वर्क-अप प्रक्रिया जैसे कारकों पर निर्भर करता है। आदर्श चरण-विकास पोलीमराइज़ेशन 2 के फैलाव के साथ हुलक देता है। आदर्श जीवित पोलीमराइज़ेशन के परिणामस्वरूप 1 का फैलाव होता है। बहुलक को भंग करके अघुलनशील उच्च मोलर मास अंश को फ़िल्टर किया जा सकता है जिसके परिणामस्वरूप बड़ी कमी Mw और छोटी सी कमी Mn, इस प्रकार फैलाव को कम करता है।
संख्या औसत मोलर मास
संख्या औसत मोलर मास बहुलक के आणविक मास को निर्धारित करने की विधि है। पॉलिमर अणु, यहां तक कि विभिन्न आकारों (रैखिक पॉलिमर के लिए श्रृंखला की लंबाई) में आते हैं, इसलिए औसत आणविक मास औसत की विधि पर निर्भर करेगा। संख्या औसत आण्विक मास साधारण अंकगणितीय माध्य या भिन्न-भिन्न मैक्रोमोलेक्युलस के आण्विक मास का औसत है। आणविक मास को मापकर निर्धारित किया जाता है n बहुलक अणु, n जनता को विभाजित करना:
बहुलक की संख्या औसत आणविक मास जेल पारगमन क्रोमैटोग्राफी, विस्कोमेट्री (मार्क-हौविंक समीकरण) के माध्यम से निर्धारित किया जा सकता है, वाष्प दाब ऑस्मोमेट्री, अंत-समूह निर्धारण या प्रोटॉन एनएमआर जैसे संपार्श्विक गुण होते है।[4]
कैरोथर्स के समीकरण के अनुसार, स्टेप-ग्रोथ पोलीमराइज़ेशनकी स्थिति में उच्च संख्या-औसत आणविक मास पॉलिमर केवल उच्च भिन्नात्मक मोनोमर रूपांतरण के साथ प्राप्त किया जा सकता है।
मास औसत मोलर मास
बड़े पैमाने पर औसत मोलर मास (प्रायः शिथिल रूप से 'भार को औसत मोलर मास' कहा जाता है) बहुलक के मोलर मास का वर्णन करने की विधि है। कुछ गुण आणविक आकार पर निर्भर होते हैं, इसलिए छोटे अणु की तुलना में बड़े अणु का बड़ा योगदान होगा। औसत मोलर मास की गणना किसके द्वारा की जाती है-
जहाँ Ni आणविक मास के अणुओं की संख्या Mi है।
औसत आणविक मास को स्थिर प्रकाश बिखरने, छोटे कोण न्यूट्रॉन बिखरने, एक्स-रे की तकनीक, और विश्लेषणात्मक अल्ट्रासेंट्रीफ्यूगेशन विश्लेषणात्मक अल्ट्रासेंट्रीफ्यूज द्वारा निर्धारित किया जा सकता है।
मास औसत संख्या के अनुपात को फैलाव या बहुप्रकीर्णता सूचकांक कहा जाता है।[3]
मास-औसत आणविक, Mw, भिन्नात्मक मोनोमर रूपांतरण से भी संबंधित है, p, कैरोथर्स के समीकरण के अनुसार स्टेप-ग्रोथ पोलीमराइज़ेशन (इक्विमोलर मात्रा में दो मोनोमर्स से बनने वाले रैखिक पॉलिमर के सरलतम मामले के लिए) में:
जहाँ Mo दोहराई जाने वाली इकाई का आणविक मास है।
Z-औसत मोलर मास
Z-औसत मोलर मास तीसरा क्षण या शक्ति औसत मोलर मास है, जिसकी गणना किसके द्वारा की जाती है:
z-औसत मोलर मास को अल्ट्रासेंट्रीफ्यूगेशन के साथ निर्धारित किया जा सकता है। बहुलक का पिघला हुआ लोच Mz पर निर्भर करता है।[5]
यह भी देखें
- डिस्ट्रीब्यूशन समारोह (भौतिकी)
- फ्लोरी-शुल्ज डिस्ट्रीब्यूशन
- शुल्ज़-ज़िम डिस्ट्रीब्यूशन
- सामूहिक डिस्ट्रीब्यूशन
- अवसादन
संदर्भ
- ↑ I. Katime "Química Física Macromolecular". Servicio Editorial de la Universidad del País Vasco. Bilbao
- ↑ 2.0 2.1 R.J. Young and P.A. Lovell, Introduction to Polymers, 1991
- ↑ 3.0 3.1 Stepto, R. F. T.; Gilbert, R. G.; Hess, M.; Jenkins, A. D.; Jones, R. G.; Kratochvíl P. (2009). "Dispersity in Polymer Science" Pure Appl. Chem. 81 (2): 351–353. DOI:10.1351/PAC-REC-08-05-02.
- ↑ Polymer Molecular Weight Analysis by 1H NMR Spectroscopy Josephat U. Izunobi and Clement L. Higginbotham J. Chem. Educ., 2011, 88 (8), pp 1098–1104 doi:10.1021/ed100461v
- ↑ Seymore, R.B and Caraher, C.E. Polymer Chemistry: An Introduction, 1992.