डाइलेक्ट्रिक इलास्टोमर्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(7 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Use dmy dates|date=July 2013}}
[[Image:dielectric elastomers.gif|thumb|right|300px|परावैद्युत इलास्टोमेर प्रवर्तक का कार्य सिद्धांत। एक इलास्टोमेरिक फिल्म को दोनों तरफ इलेक्ट्रोड के साथ लेपित किया जाता है। इलेक्ट्रोड एक परिपथ से जुड़े होते हैं। वोल्टेज लगाने से <math>U</math> स्थिरविद्युत दबाव <math>p_{el}</math> कार्य करता है। यांत्रिक संपीड़न के कारण इलास्टोमेर फिल्म मोटाई की दिशा में सिकुड़ती है और फिल्म विमान दिशाओं में फैलती है। शॉर्ट-परिपथ होने पर इलास्टोमेर फिल्म अपनी मूल स्थिति में वापस आ जाती है।]]परावैद्युत इलास्टोमर्स (डीईएस) [[स्मार्ट सामग्री]] प्रणालियां हैं जो बड़े [[तनाव (सामग्री विज्ञान)|दबाव (सामग्री विज्ञान)]] का उत्पादन करती हैं। वे [[इलेक्ट्रोएक्टिव पॉलिमर|विद्युतीय बहुलक]] (ईएपी) के समूह से संबंधित हैं। डीई प्रवर्तक (डीईए) विद्युत ऊर्जा को यांत्रिक कार्यों में परिवर्तित करते हैं। वे हल्के होते हैं और उच्च लोचदार ऊर्जा घनत्व रखते हैं। 1990 के दशक के उत्तरार्ध से उनकी जांच की जा रही है। कई प्रोटोटाइप एप्लिकेशन उपस्थित हैं। हर साल अमेरिका और यूरोप में सम्मेलन आयोजित किए जाते हैं<ref>{{cite web|url=http://spie.org/app/program/index.cfm?fuseaction=conferencedetail&export_id=x12536&ID=x12233&redir=x12233.xml&conference_id=1040757&event_id=997497 |title=इलेक्ट्रोएक्टिव पॉलीमर एक्ट्यूएटर्स एंड डिवाइसेस (EAPAD) XV के लिए सम्मेलन विवरण|publisher=Spie.org |date=2013-03-14 |access-date=2013-12-01}}{{Registration required|date=December 2013}}</ref> ।<ref>[http://www.euroeap.eu/conference European conference]</ref>


[[Image:dielectric elastomers.gif|thumb|right|300px|डाइलेक्ट्रिक इलास्टोमेर एक्ट्यूएटर्स का कार्य सिद्धांत। एक इलास्टोमेरिक फिल्म को दोनों तरफ इलेक्ट्रोड के साथ लेपित किया जाता है। इलेक्ट्रोड एक सर्किट से जुड़े होते हैं। वोल्टेज लगाने से <math>U</math> इलेक्ट्रोस्टैटिक दबाव <math>p_{el}</math> कार्य करता है। यांत्रिक संपीड़न के कारण इलास्टोमेर फिल्म मोटाई की दिशा में सिकुड़ती है और फिल्म विमान दिशाओं में फैलती है। शॉर्ट-सर्किट होने पर इलास्टोमेर फिल्म अपनी मूल स्थिति में वापस आ जाती है।]]डाइलेक्ट्रिक इलास्टोमर्स (डीईएस) [[स्मार्ट सामग्री]] प्रणालियां हैं जो बड़े [[तनाव (सामग्री विज्ञान)]] का उत्पादन करती हैं। वे [[इलेक्ट्रोएक्टिव पॉलिमर|विद्युतीय बहुलक]] (ईएपी) के समूह से संबंधित हैं। डीई प्रवर्तक (डीईए) विद्युत ऊर्जा को यांत्रिक कार्यों में परिवर्तित करते हैं। वे हल्के होते हैं और उच्च लोचदार ऊर्जा घनत्व रखते हैं। 1990 के दशक के उत्तरार्ध से उनकी जांच की जा रही है। कई प्रोटोटाइप एप्लिकेशन मौजूद हैं। हर साल अमेरिका और यूरोप में सम्मेलन आयोजित किए जाते हैं<ref>{{cite web|url=http://spie.org/app/program/index.cfm?fuseaction=conferencedetail&export_id=x12536&ID=x12233&redir=x12233.xml&conference_id=1040757&event_id=997497 |title=इलेक्ट्रोएक्टिव पॉलीमर एक्ट्यूएटर्स एंड डिवाइसेस (EAPAD) XV के लिए सम्मेलन विवरण|publisher=Spie.org |date=2013-03-14 |access-date=2013-12-01}}{{Registration required|date=December 2013}}</ref> ।<ref>[http://www.euroeap.eu/conference European conference]</ref>
'''''समतुल्य विद्युत'''''  
 
'''''समतुल्य विद्युत यांत्रिक दबाव <math>p_{eq}</math> इलेक्ट्रोस्टैटिक दबाव'''''
== कार्य सिद्धांत ==
== कार्य सिद्धांत ==


एक डीईए एक आज्ञाकारी [[संधारित्र]] है (छवि देखें), जहां एक निष्क्रिय [[elastomer|प्रत्यास्थलक]] फिल्म दो आज्ञाकारी [[इलेक्ट्रोड]] के बीच दबी होती है। जब एक [[वोल्टेज]] <math>U</math> लागू किया जाता है, [[इलेक्ट्रोस्टैटिक|विद्युतीय]] दबाव <math>p_{el}</math> कूलlम्ब के नियम से उत्पन्न इलेक्ट्रोड के बीच कार्य करता है। इलेक्ट्रोड प्रत्यास्थलक फिल्म को निचोड़ते हैं। समतुल्य विद्युत यांत्रिक दबाव <math>p_{eq}</math> इलेक्ट्रोस्टैटिक दबाव <math>p_{el}</math> का दोगुना है और इसके द्वारा दिया गया है:
एक डीईए एक आज्ञाकारी [[संधारित्र]] है (छवि देखें), जहां एक निष्क्रिय [[elastomer|प्रत्यास्थलक]] फिल्म दो आज्ञाकारी [[इलेक्ट्रोड]] के बीच दबी होती है। जब एक [[वोल्टेज]] <math>U</math> प्रयुक्त किया जाता है, [[इलेक्ट्रोस्टैटिक|विद्युतीय]] दबाव <math>p_{el}</math> कूलlम्ब के नियम से उत्पन्न इलेक्ट्रोड के बीच कार्य करता है। इलेक्ट्रोड प्रत्यास्थलक फिल्म को निचोड़ते हैं। समतुल्य विद्युत यांत्रिक दबाव <math>p_{eq}</math> स्थिरविद्युत दबाव <math>p_{el}</math> का दोगुना है और इसके द्वारा दिया गया है:


{{center|1=<math>p_{eq}=\varepsilon_0\varepsilon_r\frac{U^2}{z^2}</math>}}
{{center|1=<math>p_{eq}=\varepsilon_0\varepsilon_r\frac{U^2}{z^2}</math>}}


कहाँ <math>\varepsilon_0</math> [[वैक्यूम परमिटिटिविटी|निर्यात प्रतिवेदकता]] है, <math>\varepsilon_r</math> बहुलक का डाइलेक्ट्रिक स्थिरांक है और <math>z</math> प्रत्यास्थलक फिल्म की मोटाई है। सामान्यतयः, डीईए के उपभेद 10-35% के क्रम में होते हैं, अधिकतम मान 300% तक पहुंचते हैं (एक्रिलिक इलास्टोमेर वीएचबी 4910, व्यावसायिक रूप से [[ चाचा | 3एम]] से उपलब्ध है, जो एक उच्च लोचदार ऊर्जा घनत्व और एक उच्च विद्युत टूटने की शक्ति का भी समर्थन करता है।)
कहाँ <math>\varepsilon_0</math> [[वैक्यूम परमिटिटिविटी|निर्यात प्रतिवेदकता]] है, <math>\varepsilon_r</math> बहुलक का परावैद्युत स्थिरांक है और <math>z</math> प्रत्यास्थलक फिल्म की मोटाई है। सामान्यतः, डीईए के उपभेद 10-35% के क्रम में होते हैं, अधिकतम मान 300% तक पहुंचते हैं (एक्रिलिक इलास्टोमेर वीएचबी 4910, व्यावसायिक रूप से [[ चाचा |3एम]] से उपलब्ध है, जो एक उच्च लोचदार ऊर्जा घनत्व और एक उच्च विद्युत टूटने की शक्ति का भी समर्थन करता है।)


=== आयोनिक ===
=== आयोनिक ===


इलेक्ट्रोड को नरम [[हाइड्रोजेल]] के साथ बदलने से आयनिक परिवहन इलेक्ट्रॉन परिवहन को बदलने की अनुमति देता है। 1.5 V से नीचे इलेक्ट्रोलिसिस की शुरुआत के बावजूद जलीय आयनिक हाइड्रोजेल कई किलोवोल्ट की क्षमता प्रदान कर सकते हैं।<ref name=sci1307>{{Cite journal | doi = 10.1126/science.1240228| title = खिंचाव योग्य, पारदर्शी, आयनिक कंडक्टर| journal = Science| volume = 341| issue = 6149| pages = 984–7| year = 2013| last1 = Keplinger | first1 = C.| last2 = Sun | first2 = J. -Y. | last3 = Foo | first3 = C. C.| last4 = Rothemund | first4 = P.| last5 = Whitesides | first5 = G. M.| last6 = Suo | first6 = Z. | pmid=23990555| bibcode = 2013Sci...341..984K| citeseerx = 10.1.1.650.1361| s2cid = 8386686}}</ref><ref name=sci1308>{{Cite journal | last1 = Rogers | first1 = J. A. | title = सॉफ्ट एक्चुएटर्स में स्पष्ट उन्नति| doi = 10.1126/science.1243314 | journal = Science | volume = 341 | issue = 6149 | pages = 968–969 | year = 2013 | pmid =  23990550| bibcode = 2013Sci...341..968R | citeseerx = 10.1.1.391.6604 | s2cid = 206551287 }}</ref>
इलेक्ट्रोड को नरम [[हाइड्रोजेल]] के साथ बदलने से आयनिक परिवहन इलेक्ट्रॉन परिवहन को बदलने की अनुमति देता है। 1.5 V से नीचे इलेक्ट्रोलिसिस की प्रारंभ के अतिरिक्त जलीय आयनिक हाइड्रोजेल कई किलोवोल्ट की क्षमता प्रदान कर सकते हैं।<ref name=sci1307>{{Cite journal | doi = 10.1126/science.1240228| title = खिंचाव योग्य, पारदर्शी, आयनिक कंडक्टर| journal = Science| volume = 341| issue = 6149| pages = 984–7| year = 2013| last1 = Keplinger | first1 = C.| last2 = Sun | first2 = J. -Y. | last3 = Foo | first3 = C. C.| last4 = Rothemund | first4 = P.| last5 = Whitesides | first5 = G. M.| last6 = Suo | first6 = Z. | pmid=23990555| bibcode = 2013Sci...341..984K| citeseerx = 10.1.1.650.1361| s2cid = 8386686}}</ref><ref name=sci1308>{{Cite journal | last1 = Rogers | first1 = J. A. | title = सॉफ्ट एक्चुएटर्स में स्पष्ट उन्नति| doi = 10.1126/science.1243314 | journal = Science | volume = 341 | issue = 6149 | pages = 968–969 | year = 2013 | pmid =  23990550| bibcode = 2013Sci...341..968R | citeseerx = 10.1.1.391.6604 | s2cid = 206551287 }}</ref>


दोहरी परत और डाइलेक्ट्रिक के बीच का अंतर डाइलेक्ट्रिक क्षमता की ओर जाता है जो दोहरी परत की तुलना में लाखों गुना अधिक हो सकता है। हाइड्रोजेल को विद्युत रासायनिक रूप से अपघटित किए बिना किलोवोल्ट श्रेणी में संभाव्यता प्राप्त की जा सकती है।<ref name="sci1307" /><ref name="sci1308" />
दोहरी परत और परावैद्युत के बीच का अंतर परावैद्युत क्षमता की ओर जाता है जो दोहरी परत की तुलना में लाखों गुना अधिक हो सकता है। हाइड्रोजेल को विद्युत रासायनिक रूप से अपघटित किए बिना किलोवोल्ट श्रेणी में संभाव्यता प्राप्त की जा सकती है।<ref name="sci1307" /><ref name="sci1308" />


विकृति अच्छी तरह से नियंत्रित, प्रतिवर्ती और उच्च आवृत्ति संचालन में सक्षम हैं। परिणामी उपकरण पूरी तरह से पारदर्शी हो सकते हैं। उच्च-आवृत्ति सक्रियण संभव है। स्विचिंग गति केवल यांत्रिक जड़ता द्वारा सीमित होती है। हाइड्रोजेल की कठोरता परावैद्युत की तुलना में हजारों गुना छोटी हो सकती है, जिससे मिलीसेकंड गति पर लगभग 100% की सीमा में यांत्रिक बाधा के बिना सक्रियता की अनुमति मिलती है। वे जैव संगत हो सकते हैं।<ref name=sci1307/><ref name=sci1308/>
विकृति अच्छी तरह से नियंत्रित, प्रतिवर्ती और उच्च आवृत्ति संचालन में सक्षम हैं। परिणामी उपकरण पूरी तरह से पारदर्शी हो सकते हैं। उच्च-आवृत्ति सक्रियण संभव है। स्विचिंग गति केवल यांत्रिक जड़ता द्वारा सीमित होती है। हाइड्रोजेल की कठोरता परावैद्युत की तुलना में हजारों गुना छोटी हो सकती है, जिससे मिलीसेकंड गति पर लगभग 100% की सीमा में यांत्रिक बाधा के बिना सक्रियता की अनुमति मिलती है। वे जैव संगत हो सकते हैं।<ref name=sci1307/><ref name=sci1308/>


शेष मुद्दों में हाइड्रोजेल का सूखना, आयनिक बिल्ड-अप, हिस्टैरिसीस और इलेक्ट्रिकल शॉर्टिंग शामिल हैं।<ref name=sci1307/><ref name=sci1308/>
शेष मुद्दों में हाइड्रोजेल का सूखना, आयनिक बिल्ड-अप, हिस्टैरिसीस और इलेक्ट्रिकल शॉर्टिंग सम्मिलित हैं।<ref name=sci1307/><ref name=sci1308/>


सिलिकॉन में संपर्क क्षमता के क्षेत्र उतार-चढ़ाव की जांच करने और पहले ठोस-अवस्था प्रवर्धक को सक्षम करने के लिए अर्धचालक उपकरण अनुसंधान में प्रारंभिक प्रयोग आयनिक चालकों पर निर्भर थे। 2000 से कम ने इलेक्ट्रोलाइट गेट इलेक्ट्रोड की उपयोगिता स्थापित की है। आयोनिक जैल उच्च-प्रदर्शन, स्ट्रेचेबल ग्राफीन ट्रांजिस्टर के तत्वों के रूप में भी काम कर सकते हैं।<ref name=sci1308/>
सिलिकॉन में संपर्क क्षमता के क्षेत्र उतार-चढ़ाव की जांच करने और पहले ठोस-अवस्था प्रवर्धक को सक्षम करने के लिए अर्धचालक उपकरण अनुसंधान में प्रारंभिक प्रयोग आयनिक चालकों पर निर्भर थे। 2000 से कम ने इलेक्ट्रोलाइट गेट इलेक्ट्रोड की उपयोगिता स्थापित की है। आयोनिक जैल उच्च-प्रदर्शन, स्ट्रेचेबल ग्राफीन ट्रांजिस्टर के तत्वों के रूप में भी काम कर सकते हैं।<ref name=sci1308/>
Line 27: Line 25:
== सामग्री ==
== सामग्री ==


डीईए के लिए इलेक्ट्रोड के रूप में कार्बन पाउडर या [[ प्रंगार काला ]] से भरी ग्रीस की फिल्में शुरुआती पसंद थीं। ऐसी सामग्रियों की विश्वसनीयता कम होती है और स्थापित निर्माण तकनीकों के साथ उपलब्ध नहीं होती हैं। तरल धातु, [[ग्राफीन]] की चादरें, कार्बन नैनोट्यूब की कोटिंग, धातु नैनोकल की सतह-प्रत्यारोपित परतें और नालीदार या पैटर्न वाली धातु की फिल्मों के साथ बेहतर विशेषताओं को प्राप्त किया जा सकता है।<ref name=sci1308/><ref>{{cite journal|last1=Liu|first1=Yang|last2=Gao|first2=Meng|last3=Mei|first3=Shengfu|last4=Han|first4=Yanting|last5=Liu|first5=Jing|title=ढांकता हुआ इलास्टोमेर एक्ट्यूएटर्स के लिए इन-प्लेन सेल्फ-हीलिंग क्षमता के साथ अल्ट्रा-कंप्लायंट लिक्विड मेटल इलेक्ट्रोड|journal=Applied Physics Letters|date=2013|volume=103|issue=6|pages=064101|doi=10.1063/1.4817977|bibcode=2013ApPhL.103f4101L}}</ref>
डीईए के लिए इलेक्ट्रोड के रूप में कार्बन पाउडर या [[ प्रंगार काला |प्रंगार काला]] से भरी ग्रीस की झिल्ली प्रारंभिक पसंद थीं। ऐसी सामग्रियों की विश्वसनीयता कम होती है और स्थापित निर्माण विधियों के साथ उपलब्ध नहीं होती हैं। तरल धातु, [[ग्राफीन]] की चादरें, कार्बन नैनोट्यूब की परत, धातु नैनोकल की सतह-प्रत्यारोपित परतें और नालीदार धातु की झिल्लियों के साथ उत्तम विशेषताओं को प्राप्त किया जा सकता है।<ref name=sci1308/><ref>{{cite journal|last1=Liu|first1=Yang|last2=Gao|first2=Meng|last3=Mei|first3=Shengfu|last4=Han|first4=Yanting|last5=Liu|first5=Jing|title=ढांकता हुआ इलास्टोमेर एक्ट्यूएटर्स के लिए इन-प्लेन सेल्फ-हीलिंग क्षमता के साथ अल्ट्रा-कंप्लायंट लिक्विड मेटल इलेक्ट्रोड|journal=Applied Physics Letters|date=2013|volume=103|issue=6|pages=064101|doi=10.1063/1.4817977|bibcode=2013ApPhL.103f4101L}}</ref>
 
ये विकल्प सीमित यांत्रिक गुण, शीट प्रतिरोध, स्विचिंग समय और आसान एकीकरण प्रदान करते हैं। सिलिकोन और [[एक्रिल समूह]] इलास्टोमर्स अन्य विकल्प हैं।
ये विकल्प सीमित यांत्रिक गुण, शीट प्रतिरोध, स्विचिंग समय और आसान एकीकरण प्रदान करते हैं। सिलिकोन और [[एक्रिल समूह]] इलास्टोमर्स अन्य विकल्प हैं।


इलास्टोमेर सामग्री के लिए आवश्यकताएं हैं:
इलास्टोमेर सामग्री के लिए आवश्यकताएं हैं:


* सामग्री में कम [[कठोरता]] होनी चाहिए (विशेषकर जब बड़े तनाव की आवश्यकता हो);
* सामग्री में कम [[कठोरता]] होनी चाहिए (विशेषकर जब बड़े दबाव की आवश्यकता हो);
* डाइलेक्ट्रिक स्थिरांक अधिक होना चाहिए;
* परावैद्युत स्थिरांक अधिक होना चाहिए;
* विद्युत टूटने की शक्ति अधिक होनी चाहिए।
* विद्युत टूटने की शक्ति अधिक होनी चाहिए।


इलास्टोमेर फिल्म को यंत्रवत् पूर्व-खींचने से विद्युत टूटने की शक्ति को बढ़ाने की संभावना मिलती है। प्रीस्ट्रेचिंग के अन्य कारणों में शामिल हैं:
इलास्टोमेर फिल्म को यंत्रवत् पूर्व-खींचने से विद्युत टूटने की शक्ति को बढ़ाने की संभावना मिलती है। प्रीस्ट्रेचिंग के अन्य कारणों में सम्मिलित हैं:


* फिल्म की मोटाई कम हो जाती है, समान इलेक्ट्रोस्टैटिक दबाव प्राप्त करने के लिए कम वोल्टेज की आवश्यकता होती है;
* फिल्म की मोटाई कम हो जाती है, समान स्थिरविद्युत दबाव प्राप्त करने के लिए कम वोल्टेज की आवश्यकता होती है;
* फिल्म प्लेन दिशाओं में कंप्रेसिव स्ट्रेस से बचना।
* फिल्म प्लेन दिशाओं में कंप्रेसिव स्ट्रेस से बचना।


इलास्टोमर्स एक विस्को-हाइपरलेस्टिक व्यवहार दिखाते हैं। ऐसे एक्ट्यूएटर्स की गणना के लिए मॉडल जो बड़े उपभेदों और चिपचिपाहट का वर्णन करते हैं, की आवश्यकता होती है।
इलास्टोमर्स एक विस्को-हाइपरलेस्टिक व्यवहार दिखाते हैं। ऐसे प्रवर्तक की गणना के लिए प्रतिरूप जो बड़े उपभेदों और चिपचिपाहट का वर्णन करते हैं, की आवश्यकता होती है।


शोध में प्रयुक्त सामग्री में ग्रेफाइट पाउडर, [[सिलिकॉन]] तेल/ग्रेफाइट मिश्रण, गोल्ड इलेक्ट्रोड शामिल हैं। इलेक्ट्रोड प्रवाहकीय और आज्ञाकारी होना चाहिए। अनुपालन महत्वपूर्ण है ताकि लम्बी होने पर इलास्टोमेर यांत्रिक रूप से विवश न हो।<ref name=sci1308/>
शोध में प्रयुक्त सामग्री में ग्रेफाइट पाउडर, [[सिलिकॉन]] तेल/ग्रेफाइट मिश्रण, सोने की इलेक्ट्रोड सम्मिलित हैं। इलेक्ट्रोड प्रवाहकीय और आज्ञाकारी होना चाहिए। अनुपालन महत्वपूर्ण है जिससे लम्बी होने पर इलास्टोमेर यांत्रिक रूप से विवश न हो।<ref name=sci1308/>


नमक के पानी से बनने वाले पॉलीएक्रिलामाइड हाइड्रोजेल की फिल्मों को इलेक्ट्रोड की जगह परावैद्युत सतहों पर लेमिनेट किया जा सकता है।<ref name=sci1308/>
नमक के पानी से बनने वाले पॉलीएक्रिलामाइड हाइड्रोजेल की झिल्लियों को इलेक्ट्रोड की स्थान परावैद्युत सतहों पर लेमिनेट किया जा सकता है।<ref name=sci1308/>


सिलिकॉन ([[पॉलीडाइमिथाइलसिलोक्सेन]]) और [[प्राकृतिक रबर]] पर आधारित DEs अनुसंधान क्षेत्रों का वादा कर रहे हैं।<ref>{{Cite journal|last1=Madsen|first1=Frederikke B.|last2=Daugaard|first2=Anders E.|last3=Hvilsted|first3=Søren|last4=Skov|first4=Anne L.|date=2016-03-01|title=सिलिकॉन-आधारित डाइलेक्ट्रिक इलास्टोमर ट्रांसड्यूसर की वर्तमान स्थिति|pmid=26773231|journal=Macromolecular Rapid Communications|volume=37|issue=5|pages=378–413|doi=10.1002/marc.201500576|issn=1521-3927|url=https://backend.orbit.dtu.dk/ws/files/132542416/marc.201500576_1_.pdf}}</ref> [[प्रतिक्रिया समय (प्रौद्योगिकी)]] समय और दक्षता जैसे गुण 15% से कम विकृति (यांत्रिकी) के लिए वीएचबी ([[एक्रिलाट बहुलक]]) आधारित डीई की तुलना में प्राकृतिक रबर आधारित डीई का उपयोग करके बेहतर हैं।<ref>{{Cite journal|last1=Koh|first1=S. J. A.|last2=Keplinger|first2=C.|last3=Li|first3=T.|last4=Bauer|first4=S.|last5=Suo|first5=Z.|date=2011-02-01|title=Dielectric Elastomer Generators: How Much Energy Can Be Converted #x003F;|journal=IEEE/ASME Transactions on Mechatronics|volume=16|issue=1|pages=33–41|doi=10.1109/TMECH.2010.2089635|s2cid=11582916|issn=1083-4435}}</ref>
सिलिकॉन ([[पॉलीडाइमिथाइलसिलोक्सेन]]) और [[प्राकृतिक रबर]] पर आधारित डीई अनुसंधान क्षेत्रों का वादा कर रहे हैं।<ref>{{Cite journal|last1=Madsen|first1=Frederikke B.|last2=Daugaard|first2=Anders E.|last3=Hvilsted|first3=Søren|last4=Skov|first4=Anne L.|date=2016-03-01|title=सिलिकॉन-आधारित डाइलेक्ट्रिक इलास्टोमर ट्रांसड्यूसर की वर्तमान स्थिति|pmid=26773231|journal=Macromolecular Rapid Communications|volume=37|issue=5|pages=378–413|doi=10.1002/marc.201500576|issn=1521-3927|url=https://backend.orbit.dtu.dk/ws/files/132542416/marc.201500576_1_.pdf}}</ref> [[प्रतिक्रिया समय (प्रौद्योगिकी)]] समय और दक्षता जैसे गुण 15% से कम विकृति (यांत्रिकी) के लिए वीएचबी ([[एक्रिलाट बहुलक]]) आधारित डीई की तुलना में प्राकृतिक रबर आधारित डीई का उपयोग करके उत्तम हैं।<ref>{{Cite journal|last1=Koh|first1=S. J. A.|last2=Keplinger|first2=C.|last3=Li|first3=T.|last4=Bauer|first4=S.|last5=Suo|first5=Z.|date=2011-02-01|title=Dielectric Elastomer Generators: How Much Energy Can Be Converted #x003F;|journal=IEEE/ASME Transactions on Mechatronics|volume=16|issue=1|pages=33–41|doi=10.1109/TMECH.2010.2089635|s2cid=11582916|issn=1083-4435}}</ref>




== परावैद्युत इलास्टोमर्स में अस्थिरता ==


==    डाइलेक्ट्रिक इलास्टोमर्स == में अस्थिरता
परावैद्युत इलास्टोमर प्रवर्तक को निर्माण किया जाना चाहिए जिससे उनकी गति के पूरे पाठ्यक्रम में इलेक्ट्रिकल विश्लेषण की घटना से बचा जा सके। परावैद्युत विश्लेषण के अतिरिक्त, डीईए एक अन्य विफलता मोड के लिए अतिसंवेदनशील होते हैं, जिसे विद्युत यांत्रिक अस्थिरता कहा जाता है,


डाइलेक्ट्रिक इलास्टोमर एक्ट्यूएटर्स को डिजाइन किया जाना चाहिए ताकि उनके पूरे पाठ्यक्रम में इलेक्ट्रिकल ब्रेकडाउन की घटना से बचा जा सके
जो स्थिरविद्युत और यांत्रिक पुनर्स्थापन बलों के बीच गैर-रैखिक संपर्क के कारण उत्पन्न होती है। कई स्थितियों में, विद्युत यांत्रिक अस्थिरता परावैद्युत टूटने से पहले होती है। अस्थिरतापैरामीटर (महत्वपूर्ण वोल्टेज और संबंधित अधिकतम खिंचाव) कई कारकों पर निर्भर हैं, जैसे कि प्रीस्ट्रेच का स्तर, तापमान और विरूपण पर निर्भर पारगम्यता। इसके अतिरिक्त, वे प्रवर्तक को चलाने के लिए उपयोग किए जाने वाले वोल्टेज तरंग पर भी निर्भर करते हैं।
गति।    डाइलेक्ट्रिक ब्रेकडाउन के अलावा, डीईए एक अन्य विफलता मोड के लिए अतिसंवेदनशील होते हैं, जिसे इलेक्ट्रोमैकेनिकल कहा जाता है
अस्थिरता, जो इलेक्ट्रोस्टैटिक और मैकेनिकल रिस्टोरिंग बलों के बीच गैर-रैखिक संपर्क के कारण उत्पन्न होती है। कई मामलों में, विद्युत यांत्रिक अस्थिरता     डाइलेक्ट्रिक टूटने से पहले होती है। अस्थिरता
पैरामीटर (महत्वपूर्ण वोल्टेज और संबंधित अधिकतम खिंचाव) कई कारकों पर निर्भर हैं, जैसे कि प्रीस्ट्रेच का स्तर, तापमान और विरूपण पर निर्भर पारगम्यता। इसके अतिरिक्त, वे वोल्टेज पर भी निर्भर करते हैं
एक्चुएटर को चलाने के लिए प्रयुक्त वेवफॉर्म।
  <ref>{{Cite journal|url=https://asmedigitalcollection.asme.org/appliedmechanics/article/85/11/111009/444956/A-Modulated-Voltage-Waveform-for-Enhancing-the|doi = 10.1115/1.4041039|title = परावैद्युत इलास्टोमर एक्ट्यूएटर्स की यात्रा रेंज को बढ़ाने के लिए एक संशोधित वोल्टेज वेवफॉर्म|year = 2018|last1 = Arora|first1 = Nitesh|last2 = Kumar|first2 = Pramod|last3 = Joglekar|first3 = M. M.|journal = Journal of Applied Mechanics|volume = 85|issue = 11| page=111009 | bibcode=2018JAM....85k1009A | s2cid=116758334 }}</ref>
  <ref>{{Cite journal|url=https://asmedigitalcollection.asme.org/appliedmechanics/article/85/11/111009/444956/A-Modulated-Voltage-Waveform-for-Enhancing-the|doi = 10.1115/1.4041039|title = परावैद्युत इलास्टोमर एक्ट्यूएटर्स की यात्रा रेंज को बढ़ाने के लिए एक संशोधित वोल्टेज वेवफॉर्म|year = 2018|last1 = Arora|first1 = Nitesh|last2 = Kumar|first2 = Pramod|last3 = Joglekar|first3 = M. M.|journal = Journal of Applied Mechanics|volume = 85|issue = 11| page=111009 | bibcode=2018JAM....85k1009A | s2cid=116758334 }}</ref>


== कॉन्फ़िगरेशन ==
== कॉन्फ़िगरेशन ==


विन्यास में शामिल हैं:
विन्यास में सम्मिलित हैं:


* फ़्रेम/इन-प्लेन एक्ट्यूएटर्स: एक फ़्रेमयुक्त या इन-प्लेन एक्ट्यूएटर दो इलेक्ट्रोड के साथ लेपित/मुद्रित एक इलास्टोमेरिक फिल्म है। आमतौर पर फिल्म के चारों ओर एक फ्रेम या सपोर्ट स्ट्रक्चर लगाया जाता है। उदाहरण विस्तार मंडलियां और प्लानर (एकल और एकाधिक चरण) हैं।
* ढांचा/इन-प्लेन प्रवर्तक: एक फ़्रेमयुक्त या इन-प्लेन एक्ट्यूएटर दो इलेक्ट्रोड के साथ लेपित/मुद्रित एक इलास्टोमेरिक फिल्म है। सामान्यतः फिल्म के चारों ओर एक ढांचा या समर्थन संरचना लगाया जाता है। उदाहरण विस्तार मंडलियां और प्लानर (एकल और एकाधिक चरण) हैं।
* बेलनाकार/रोल एक्चुएटर्स: कोटेड इलास्टोमेर फिल्मों को एक अक्ष के चारों ओर घुमाया जाता है। सक्रियण से, अक्षीय दिशा में एक बल और एक बढ़ाव दिखाई देता है। एक्ट्यूएटर्स को कम्प्रेशन स्प्रिंग के चारों ओर या कोर के बिना रोल किया जा सकता है। अनुप्रयोगों में [[कृत्रिम]] मांसपेशियां (प्रोस्थेटिक्स), मिनी- और [[ microrobot ]]्स और वाल्व शामिल हैं।
* बेलनाकार/रोल प्रवर्तक: परतदार इलास्टोमेर झिल्लियों को एक अक्ष के चारों ओर घुमाया जाता है। सक्रियण से, अक्षीय दिशा में एक बल और एक बढ़ाव दिखाई देता है। प्रवर्तक को कम्प्रेशन स्प्रिंग के चारों ओर या कोर के बिना रोल किया जा सकता है। अनुप्रयोगों में [[कृत्रिम]] मांसपेशियां (प्रोस्थेटिक्स), छोटा- और [[ microrobot |माइक्रोरोबोट्स]] और वाल्व सम्मिलित हैं।
* डायाफ्राम एक्ट्यूएटर्स: एक डायाफ्राम एक्ट्यूएटर को एक प्लेनर निर्माण के रूप में बनाया जाता है, जो तब विमान गति से बाहर निकलने के लिए z- अक्ष में पक्षपाती होता है।
* झिल्ली प्रवर्तक: एक झिल्ली प्रवर्तक को एक समतल निर्माण के रूप में बनाया जाता है, जो तब विमान गति से बाहर निकलने के लिए z- अक्ष में पक्षपाती होता है।
* शेल-जैसे एक्चुएटर्स: प्लेनर इलास्टोमेर फिल्मों को इलेक्ट्रोड सेगमेंट के रूप में विशिष्ट स्थानों पर लेपित किया जाता है। एक अच्छी तरह से निर्देशित सक्रियता के साथ, झाग जटिल त्रि-आयामी आकार ग्रहण करते हैं। उदाहरणों का उपयोग वाहनों को हवा या पानी के माध्यम से चलाने के लिए किया जा सकता है, उदा। ब्लिंप के लिए।
* शैल की तरह प्रवर्तक: समतल इलास्टोमेर झिल्लियों को इलेक्ट्रोड खंड के रूप में विशिष्ट स्थानों पर लेपित किया जाता है। एक अच्छी तरह से निर्देशित सक्रियता के साथ, झाग जटिल त्रि-आयामी आकार ग्रहण करते हैं। उदाहरणों का उपयोग वाहनों को हवा या पानी के माध्यम से चलाने के लिए किया जा सकता है, उदा। ब्लिंप के लिए।
* स्टैक एक्ट्यूएटर्स: स्टैकिंग प्लानर एक्ट्यूएटर्स विरूपण बढ़ा सकते हैं। एक्चुएटर जो सक्रियण के तहत छोटा होता है, अच्छे उम्मीदवार होते हैं।
* समतल प्रवर्तक: अनेक समतल प्रवर्तक विरूपण बढ़ा सकते हैं। प्रवर्तक जो सक्रियण के अनुसार छोटा होता है, अच्छे उम्मीदवार होते हैं।
* मोटाई मोड एक्ट्यूएटर्स: बल और स्ट्रोक जेड-दिशा (विमान के बाहर) में चलता है। मोटाई मोड एक्ट्यूएटर्स आमतौर पर एक सपाट फिल्म होती है जो विस्थापन को बढ़ाने के लिए परतों को ढेर कर सकती है।
* मोटाई रूप प्रवर्तक: बल और स्ट्रोक जेड-दिशा (विमान के बाहर) में चलता है। मोटाई रूप प्रवर्तक सामान्यतः एक सपाट फिल्म होती है जो विस्थापन को बढ़ाने के लिए परतों को ढेर कर सकती है।
*बेंडिंग एक्चुएटर्स: डाइइलेक्ट्रिक इलास्टोमर (डीई) आधारित एक्चुएटर के इन-प्लेन एक्चुएशन को आउट-ऑफ-प्लेन एक्चुएशन में परिवर्तित किया जाता है जैसे कि यूनिमॉर्फ कॉन्फ़िगरेशन का उपयोग करके झुकना या तह करना जहां डीई शीट की एक या कई परतें एक परत के ऊपर खड़ी होती हैं निष्क्रिय सब्सट्रेट।<ref name="ReferenceA">{{cite journal | doi = 10.1088/0964-1726/23/9/094003 | volume=23 | issue=9 | title=ओरिगामी संरचनाओं को क्रियान्वित करने के संभावित साधन के रूप में ढांकता हुआ इलास्टोमेर एक्ट्यूएटर्स के प्रदर्शन और गुणों की जांच करना| journal=Smart Materials and Structures | pages=094003| year=2014 | last1=Ahmed | first1=S. | last2=Ounaies | first2=Z.|author2-link=Zoubeida Ounaies | last3=Frecker | first3=M.|author3-link=Mary Frecker | bibcode=2014SMaS...23i4003A | s2cid=109258827 }}</ref>
*मोडदार प्रवर्तक: डाइइलेक्ट्रिक इलास्टोमर (डीई) आधारित प्रवर्तक के इन-प्लेन एक्चुएशन को आउट-ऑफ-प्लेन एक्चुएशन में परिवर्तित किया जाता है जैसे कि यूनिमॉर्फ कॉन्फ़िगरेशन का उपयोग करके झुकना या तह करना जहां डीई शीट की एक या कई परतें एक परत के ऊपर खड़ी होती हैं निष्क्रिय सब्सट्रेट।<ref name="ReferenceA">{{cite journal | doi = 10.1088/0964-1726/23/9/094003 | volume=23 | issue=9 | title=ओरिगामी संरचनाओं को क्रियान्वित करने के संभावित साधन के रूप में ढांकता हुआ इलास्टोमेर एक्ट्यूएटर्स के प्रदर्शन और गुणों की जांच करना| journal=Smart Materials and Structures | pages=094003| year=2014 | last1=Ahmed | first1=S. | last2=Ounaies | first2=Z.|author2-link=Zoubeida Ounaies | last3=Frecker | first3=M.|author3-link=Mary Frecker | bibcode=2014SMaS...23i4003A | s2cid=109258827 }}</ref>
* बैलून एक्ट्यूएटर्स: प्लेन इलास्टोमर एक एयर चैंबर से जुड़ा होता है और हवा की एक निरंतर मात्रा के साथ फुलाया जाता है, फिर इलस्टोमर की कठोरता को विद्युत भार लगाकर अलग किया जा सकता है; इसलिए इलास्टोमेरिक गुब्बारे के वोल्टेज-नियंत्रित उभार के परिणामस्वरूप। <ref>{{Cite journal |doi = 10.1098/rspa.2017.0900|pmc = 5897764|title = DC dynamic pull-in instability of a dielectric elastomer balloon: An energy-based approach|journal = Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences|volume = 474|issue = 2211|pages = 20170900|year = 2018|last1 = Sharma|first1 = Atul Kumar|last2 = Arora|first2 = Nitesh|last3 = Joglekar|first3 = M. M.|pmid = 29662346|bibcode = 2018RSPSA.47470900S}}</ref>
* बैलून एक्ट्यूएटर्स: प्लेन इलास्टोमेर एक एयर चैंबर से जुड़ा होता है और हवा की एक निरंतर मात्रा के साथ फुलाया जाता है, फिर इलास्टोमेर की कठोरता को विद्युत भार लगाकर अलग किया जा सकता है, जिसके परिणामस्वरूप इलास्टोमेरिक बैलून का वोल्टेज-नियंत्रित उभार होता है।<ref>{{Cite journal |doi = 10.1098/rspa.2017.0900|pmc = 5897764|title = DC dynamic pull-in instability of a dielectric elastomer balloon: An energy-based approach|journal = Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences|volume = 474|issue = 2211|pages = 20170900|year = 2018|last1 = Sharma|first1 = Atul Kumar|last2 = Arora|first2 = Nitesh|last3 = Joglekar|first3 = M. M.|pmid = 29662346|bibcode = 2018RSPSA.47470900S}}</ref>




== अनुप्रयोग ==
== अनुप्रयोग ==


डाइलेक्ट्रिक इलास्टोमर्स कई विद्युत चुम्बकीय एक्ट्यूएटर्स, न्यूमेटिक्स और पीजो एक्ट्यूएटर्स को बदलने की क्षमता के साथ कई संभावित अनुप्रयोगों की पेशकश करते हैं। संभावित अनुप्रयोगों की सूची में शामिल हैं:
परावैद्युत इलास्टोमर्स कई विद्युत चुम्बकीय प्रवर्तक, न्यूमेटिक्स और पीजो प्रवर्तक को बदलने की क्षमता के साथ कई संभावित अनुप्रयोगों को प्रस्तुत करते हैं। संभावित अनुप्रयोगों की सूची में सम्मिलित हैं:


{{columns-list|colwidth=22em|
{{columns-list|colwidth=22em|1=* हैप्टिक राय
 
* पंप्स
* Haptic Feedback
* वाल्व
* Pumps
* रोबोटिक्स
* Valves
* सक्रिय ओरिगेमी-प्रेरित संरचना <रेफरी नाम = "संदर्भ ए"> {{जर्नल उद्धृत करें डीओआई = 10.1088/0964-1726/23/9/094003 | आयतन=23 | अंक = 9 | शीर्षक=ऑरिगैमी संरचनाओं को क्रियान्वित करने के संभावित साधन के रूप में डाइइलेक्ट्रिक इलास्टोमर एक्चुएटर्स के प्रदर्शन और गुणों की जांच करना | journal=स्मार्ट सामग्री और संरचनाएं | पृष्ठ=094003| वर्ष=2014 | last1=अहमद | पहला1=एस. | last2=ऊनीज | first2=Z.|author2-link=Zoubeida Ounaies | last3 = फ्रीकर | first3=M.|author3-link=मैरी फ्रीकर | bibcode=2014SMaS...23i4003A | s2cid=109258827 }}</ref>
* Robotics
* प्रोस्थेटिक्स
* Active origami-inspired structure<ref name="ReferenceA">{{cite journal | doi = 10.1088/0964-1726/23/9/094003 | volume=23 | issue=9 | title=Investigating the performance and properties of dielectric elastomer actuators as a potential means to actuate origami structures | journal=Smart Materials and Structures | pages=094003| year=2014 | last1=Ahmed | first1=S. | last2=Ounaies | first2=Z.|author2-link=Zoubeida Ounaies | last3=Frecker | first3=M.|author3-link=Mary Frecker | bibcode=2014SMaS...23i4003A | s2cid=109258827 }}</ref>
* विद्युत उत्पादन
* Prosthetics
* संरचनाओं का सक्रिय कंपन नियंत्रण
* Power Generation
*ऑप्टिकल पोजिशनर्स जैसे ऑटो-फोकस, जूम, इमेज स्टेबिलाइजेशन के लिए
* Active Vibration Control of Structures
* बल और दबाव का संवेदन
* Optical Positioners such for auto-focus, zoom, image stabilization
* सक्रिय ब्रेल डिस्प्ले
* Sensing of force and pressure
* वक्ता
* Active Braille Displays
* प्रकाशिकी और एयरोस्पेस के लिए विकृत सतहें
* Speakers
* ऊर्जा संचयन
* Deformable surfaces for optics and aerospace
* शोर-रद्द करने वाली खिड़कियाँ<रेफरी नाम=sci1308/>
* Energy Harvesting
* डिस्प्ले-माउंटेड टैक्टाइल इंटरफेस<रेफरी नाम=sci1308/>
* Noise-canceling windows<ref name=sci1308/>
* अनुकूली प्रकाशिकी<रेफरी नाम=sci1308/>}}
* Display-mounted tactile interfaces<ref name=sci1308/>
* Adaptive optics<ref name=sci1308/>
 
}}


==संदर्भ==
==संदर्भ==
Line 120: Line 111:
* [http://www.emk.tu-darmstadt.de/en/mems/research/electroactive-polymers Dielectric Elastomer Stack Actuators (DESA)] at [[Technische Universität Darmstadt]]
* [http://www.emk.tu-darmstadt.de/en/mems/research/electroactive-polymers Dielectric Elastomer Stack Actuators (DESA)] at [[Technische Universität Darmstadt]]
* [http://www.polywec.org PolyWEC EU Project: New mechanisms and concepts for exploiting electroactive Polymers for Wave Energy Conversion]
* [http://www.polywec.org PolyWEC EU Project: New mechanisms and concepts for exploiting electroactive Polymers for Wave Energy Conversion]
[[Category: स्मार्ट सामग्री]] [[Category: प्रवाहकीय पॉलिमर]]
 


[[nl:Smart material]]
[[nl:Smart material]]


 
[[Category:CS1 errors]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 23/03/2023]]
[[Category:Created On 23/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Multi-column templates]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with login required references or sources]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:प्रवाहकीय पॉलिमर]]
[[Category:स्मार्ट सामग्री]]

Latest revision as of 12:59, 7 April 2023

परावैद्युत इलास्टोमेर प्रवर्तक का कार्य सिद्धांत। एक इलास्टोमेरिक फिल्म को दोनों तरफ इलेक्ट्रोड के साथ लेपित किया जाता है। इलेक्ट्रोड एक परिपथ से जुड़े होते हैं। वोल्टेज लगाने से स्थिरविद्युत दबाव कार्य करता है। यांत्रिक संपीड़न के कारण इलास्टोमेर फिल्म मोटाई की दिशा में सिकुड़ती है और फिल्म विमान दिशाओं में फैलती है। शॉर्ट-परिपथ होने पर इलास्टोमेर फिल्म अपनी मूल स्थिति में वापस आ जाती है।

परावैद्युत इलास्टोमर्स (डीईएस) स्मार्ट सामग्री प्रणालियां हैं जो बड़े दबाव (सामग्री विज्ञान) का उत्पादन करती हैं। वे विद्युतीय बहुलक (ईएपी) के समूह से संबंधित हैं। डीई प्रवर्तक (डीईए) विद्युत ऊर्जा को यांत्रिक कार्यों में परिवर्तित करते हैं। वे हल्के होते हैं और उच्च लोचदार ऊर्जा घनत्व रखते हैं। 1990 के दशक के उत्तरार्ध से उनकी जांच की जा रही है। कई प्रोटोटाइप एप्लिकेशन उपस्थित हैं। हर साल अमेरिका और यूरोप में सम्मेलन आयोजित किए जाते हैं[1][2]

समतुल्य विद्युत

कार्य सिद्धांत

एक डीईए एक आज्ञाकारी संधारित्र है (छवि देखें), जहां एक निष्क्रिय प्रत्यास्थलक फिल्म दो आज्ञाकारी इलेक्ट्रोड के बीच दबी होती है। जब एक वोल्टेज प्रयुक्त किया जाता है, विद्युतीय दबाव कूलlम्ब के नियम से उत्पन्न इलेक्ट्रोड के बीच कार्य करता है। इलेक्ट्रोड प्रत्यास्थलक फिल्म को निचोड़ते हैं। समतुल्य विद्युत यांत्रिक दबाव स्थिरविद्युत दबाव का दोगुना है और इसके द्वारा दिया गया है:

कहाँ निर्यात प्रतिवेदकता है, बहुलक का परावैद्युत स्थिरांक है और प्रत्यास्थलक फिल्म की मोटाई है। सामान्यतः, डीईए के उपभेद 10-35% के क्रम में होते हैं, अधिकतम मान 300% तक पहुंचते हैं (एक्रिलिक इलास्टोमेर वीएचबी 4910, व्यावसायिक रूप से 3एम से उपलब्ध है, जो एक उच्च लोचदार ऊर्जा घनत्व और एक उच्च विद्युत टूटने की शक्ति का भी समर्थन करता है।)

आयोनिक

इलेक्ट्रोड को नरम हाइड्रोजेल के साथ बदलने से आयनिक परिवहन इलेक्ट्रॉन परिवहन को बदलने की अनुमति देता है। 1.5 V से नीचे इलेक्ट्रोलिसिस की प्रारंभ के अतिरिक्त जलीय आयनिक हाइड्रोजेल कई किलोवोल्ट की क्षमता प्रदान कर सकते हैं।[3][4]

दोहरी परत और परावैद्युत के बीच का अंतर परावैद्युत क्षमता की ओर जाता है जो दोहरी परत की तुलना में लाखों गुना अधिक हो सकता है। हाइड्रोजेल को विद्युत रासायनिक रूप से अपघटित किए बिना किलोवोल्ट श्रेणी में संभाव्यता प्राप्त की जा सकती है।[3][4]

विकृति अच्छी तरह से नियंत्रित, प्रतिवर्ती और उच्च आवृत्ति संचालन में सक्षम हैं। परिणामी उपकरण पूरी तरह से पारदर्शी हो सकते हैं। उच्च-आवृत्ति सक्रियण संभव है। स्विचिंग गति केवल यांत्रिक जड़ता द्वारा सीमित होती है। हाइड्रोजेल की कठोरता परावैद्युत की तुलना में हजारों गुना छोटी हो सकती है, जिससे मिलीसेकंड गति पर लगभग 100% की सीमा में यांत्रिक बाधा के बिना सक्रियता की अनुमति मिलती है। वे जैव संगत हो सकते हैं।[3][4]

शेष मुद्दों में हाइड्रोजेल का सूखना, आयनिक बिल्ड-अप, हिस्टैरिसीस और इलेक्ट्रिकल शॉर्टिंग सम्मिलित हैं।[3][4]

सिलिकॉन में संपर्क क्षमता के क्षेत्र उतार-चढ़ाव की जांच करने और पहले ठोस-अवस्था प्रवर्धक को सक्षम करने के लिए अर्धचालक उपकरण अनुसंधान में प्रारंभिक प्रयोग आयनिक चालकों पर निर्भर थे। 2000 से कम ने इलेक्ट्रोलाइट गेट इलेक्ट्रोड की उपयोगिता स्थापित की है। आयोनिक जैल उच्च-प्रदर्शन, स्ट्रेचेबल ग्राफीन ट्रांजिस्टर के तत्वों के रूप में भी काम कर सकते हैं।[4]


सामग्री

डीईए के लिए इलेक्ट्रोड के रूप में कार्बन पाउडर या प्रंगार काला से भरी ग्रीस की झिल्ली प्रारंभिक पसंद थीं। ऐसी सामग्रियों की विश्वसनीयता कम होती है और स्थापित निर्माण विधियों के साथ उपलब्ध नहीं होती हैं। तरल धातु, ग्राफीन की चादरें, कार्बन नैनोट्यूब की परत, धातु नैनोकल की सतह-प्रत्यारोपित परतें और नालीदार धातु की झिल्लियों के साथ उत्तम विशेषताओं को प्राप्त किया जा सकता है।[4][5]

ये विकल्प सीमित यांत्रिक गुण, शीट प्रतिरोध, स्विचिंग समय और आसान एकीकरण प्रदान करते हैं। सिलिकोन और एक्रिल समूह इलास्टोमर्स अन्य विकल्प हैं।

इलास्टोमेर सामग्री के लिए आवश्यकताएं हैं:

  • सामग्री में कम कठोरता होनी चाहिए (विशेषकर जब बड़े दबाव की आवश्यकता हो);
  • परावैद्युत स्थिरांक अधिक होना चाहिए;
  • विद्युत टूटने की शक्ति अधिक होनी चाहिए।

इलास्टोमेर फिल्म को यंत्रवत् पूर्व-खींचने से विद्युत टूटने की शक्ति को बढ़ाने की संभावना मिलती है। प्रीस्ट्रेचिंग के अन्य कारणों में सम्मिलित हैं:

  • फिल्म की मोटाई कम हो जाती है, समान स्थिरविद्युत दबाव प्राप्त करने के लिए कम वोल्टेज की आवश्यकता होती है;
  • फिल्म प्लेन दिशाओं में कंप्रेसिव स्ट्रेस से बचना।

इलास्टोमर्स एक विस्को-हाइपरलेस्टिक व्यवहार दिखाते हैं। ऐसे प्रवर्तक की गणना के लिए प्रतिरूप जो बड़े उपभेदों और चिपचिपाहट का वर्णन करते हैं, की आवश्यकता होती है।

शोध में प्रयुक्त सामग्री में ग्रेफाइट पाउडर, सिलिकॉन तेल/ग्रेफाइट मिश्रण, सोने की इलेक्ट्रोड सम्मिलित हैं। इलेक्ट्रोड प्रवाहकीय और आज्ञाकारी होना चाहिए। अनुपालन महत्वपूर्ण है जिससे लम्बी होने पर इलास्टोमेर यांत्रिक रूप से विवश न हो।[4]

नमक के पानी से बनने वाले पॉलीएक्रिलामाइड हाइड्रोजेल की झिल्लियों को इलेक्ट्रोड की स्थान परावैद्युत सतहों पर लेमिनेट किया जा सकता है।[4]

सिलिकॉन (पॉलीडाइमिथाइलसिलोक्सेन) और प्राकृतिक रबर पर आधारित डीई अनुसंधान क्षेत्रों का वादा कर रहे हैं।[6] प्रतिक्रिया समय (प्रौद्योगिकी) समय और दक्षता जैसे गुण 15% से कम विकृति (यांत्रिकी) के लिए वीएचबी (एक्रिलाट बहुलक) आधारित डीई की तुलना में प्राकृतिक रबर आधारित डीई का उपयोग करके उत्तम हैं।[7]


परावैद्युत इलास्टोमर्स में अस्थिरता

परावैद्युत इलास्टोमर प्रवर्तक को निर्माण किया जाना चाहिए जिससे उनकी गति के पूरे पाठ्यक्रम में इलेक्ट्रिकल विश्लेषण की घटना से बचा जा सके। परावैद्युत विश्लेषण के अतिरिक्त, डीईए एक अन्य विफलता मोड के लिए अतिसंवेदनशील होते हैं, जिसे विद्युत यांत्रिक अस्थिरता कहा जाता है,

जो स्थिरविद्युत और यांत्रिक पुनर्स्थापन बलों के बीच गैर-रैखिक संपर्क के कारण उत्पन्न होती है। कई स्थितियों में, विद्युत यांत्रिक अस्थिरता परावैद्युत टूटने से पहले होती है। अस्थिरतापैरामीटर (महत्वपूर्ण वोल्टेज और संबंधित अधिकतम खिंचाव) कई कारकों पर निर्भर हैं, जैसे कि प्रीस्ट्रेच का स्तर, तापमान और विरूपण पर निर्भर पारगम्यता। इसके अतिरिक्त, वे प्रवर्तक को चलाने के लिए उपयोग किए जाने वाले वोल्टेज तरंग पर भी निर्भर करते हैं।

[8]

कॉन्फ़िगरेशन

विन्यास में सम्मिलित हैं:

  • ढांचा/इन-प्लेन प्रवर्तक: एक फ़्रेमयुक्त या इन-प्लेन एक्ट्यूएटर दो इलेक्ट्रोड के साथ लेपित/मुद्रित एक इलास्टोमेरिक फिल्म है। सामान्यतः फिल्म के चारों ओर एक ढांचा या समर्थन संरचना लगाया जाता है। उदाहरण विस्तार मंडलियां और प्लानर (एकल और एकाधिक चरण) हैं।
  • बेलनाकार/रोल प्रवर्तक: परतदार इलास्टोमेर झिल्लियों को एक अक्ष के चारों ओर घुमाया जाता है। सक्रियण से, अक्षीय दिशा में एक बल और एक बढ़ाव दिखाई देता है। प्रवर्तक को कम्प्रेशन स्प्रिंग के चारों ओर या कोर के बिना रोल किया जा सकता है। अनुप्रयोगों में कृत्रिम मांसपेशियां (प्रोस्थेटिक्स), छोटा- और माइक्रोरोबोट्स और वाल्व सम्मिलित हैं।
  • झिल्ली प्रवर्तक: एक झिल्ली प्रवर्तक को एक समतल निर्माण के रूप में बनाया जाता है, जो तब विमान गति से बाहर निकलने के लिए z- अक्ष में पक्षपाती होता है।
  • शैल की तरह प्रवर्तक: समतल इलास्टोमेर झिल्लियों को इलेक्ट्रोड खंड के रूप में विशिष्ट स्थानों पर लेपित किया जाता है। एक अच्छी तरह से निर्देशित सक्रियता के साथ, झाग जटिल त्रि-आयामी आकार ग्रहण करते हैं। उदाहरणों का उपयोग वाहनों को हवा या पानी के माध्यम से चलाने के लिए किया जा सकता है, उदा। ब्लिंप के लिए।
  • समतल प्रवर्तक: अनेक समतल प्रवर्तक विरूपण बढ़ा सकते हैं। प्रवर्तक जो सक्रियण के अनुसार छोटा होता है, अच्छे उम्मीदवार होते हैं।
  • मोटाई रूप प्रवर्तक: बल और स्ट्रोक जेड-दिशा (विमान के बाहर) में चलता है। मोटाई रूप प्रवर्तक सामान्यतः एक सपाट फिल्म होती है जो विस्थापन को बढ़ाने के लिए परतों को ढेर कर सकती है।
  • मोडदार प्रवर्तक: डाइइलेक्ट्रिक इलास्टोमर (डीई) आधारित प्रवर्तक के इन-प्लेन एक्चुएशन को आउट-ऑफ-प्लेन एक्चुएशन में परिवर्तित किया जाता है जैसे कि यूनिमॉर्फ कॉन्फ़िगरेशन का उपयोग करके झुकना या तह करना जहां डीई शीट की एक या कई परतें एक परत के ऊपर खड़ी होती हैं निष्क्रिय सब्सट्रेट।[9]
  • बैलून एक्ट्यूएटर्स: प्लेन इलास्टोमेर एक एयर चैंबर से जुड़ा होता है और हवा की एक निरंतर मात्रा के साथ फुलाया जाता है, फिर इलास्टोमेर की कठोरता को विद्युत भार लगाकर अलग किया जा सकता है, जिसके परिणामस्वरूप इलास्टोमेरिक बैलून का वोल्टेज-नियंत्रित उभार होता है।[10]


अनुप्रयोग

परावैद्युत इलास्टोमर्स कई विद्युत चुम्बकीय प्रवर्तक, न्यूमेटिक्स और पीजो प्रवर्तक को बदलने की क्षमता के साथ कई संभावित अनुप्रयोगों को प्रस्तुत करते हैं। संभावित अनुप्रयोगों की सूची में सम्मिलित हैं:

  • हैप्टिक राय
  • पंप्स
  • वाल्व
  • रोबोटिक्स
  • सक्रिय ओरिगेमी-प्रेरित संरचना <रेफरी नाम = "संदर्भ ए"> Template:जर्नल उद्धृत करें डीओआई = 10.1088/0964-1726/23/9/094003</ref>
  • प्रोस्थेटिक्स
  • विद्युत उत्पादन
  • संरचनाओं का सक्रिय कंपन नियंत्रण
  • ऑप्टिकल पोजिशनर्स जैसे ऑटो-फोकस, जूम, इमेज स्टेबिलाइजेशन के लिए
  • बल और दबाव का संवेदन
  • सक्रिय ब्रेल डिस्प्ले
  • वक्ता
  • प्रकाशिकी और एयरोस्पेस के लिए विकृत सतहें
  • ऊर्जा संचयन
  • शोर-रद्द करने वाली खिड़कियाँ<रेफरी नाम=sci1308/>
  • डिस्प्ले-माउंटेड टैक्टाइल इंटरफेस<रेफरी नाम=sci1308/>
  • अनुकूली प्रकाशिकी<रेफरी नाम=sci1308/>

संदर्भ

  1. "इलेक्ट्रोएक्टिव पॉलीमर एक्ट्यूएटर्स एंड डिवाइसेस (EAPAD) XV के लिए सम्मेलन विवरण". Spie.org. 2013-03-14. Retrieved 2013-12-01.(registration required)
  2. European conference
  3. 3.0 3.1 3.2 3.3 Keplinger, C.; Sun, J. -Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. (2013). "खिंचाव योग्य, पारदर्शी, आयनिक कंडक्टर". Science. 341 (6149): 984–7. Bibcode:2013Sci...341..984K. CiteSeerX 10.1.1.650.1361. doi:10.1126/science.1240228. PMID 23990555. S2CID 8386686.
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Rogers, J. A. (2013). "सॉफ्ट एक्चुएटर्स में स्पष्ट उन्नति". Science. 341 (6149): 968–969. Bibcode:2013Sci...341..968R. CiteSeerX 10.1.1.391.6604. doi:10.1126/science.1243314. PMID 23990550. S2CID 206551287.
  5. Liu, Yang; Gao, Meng; Mei, Shengfu; Han, Yanting; Liu, Jing (2013). "ढांकता हुआ इलास्टोमेर एक्ट्यूएटर्स के लिए इन-प्लेन सेल्फ-हीलिंग क्षमता के साथ अल्ट्रा-कंप्लायंट लिक्विड मेटल इलेक्ट्रोड". Applied Physics Letters. 103 (6): 064101. Bibcode:2013ApPhL.103f4101L. doi:10.1063/1.4817977.
  6. Madsen, Frederikke B.; Daugaard, Anders E.; Hvilsted, Søren; Skov, Anne L. (2016-03-01). "सिलिकॉन-आधारित डाइलेक्ट्रिक इलास्टोमर ट्रांसड्यूसर की वर्तमान स्थिति" (PDF). Macromolecular Rapid Communications. 37 (5): 378–413. doi:10.1002/marc.201500576. ISSN 1521-3927. PMID 26773231.
  7. Koh, S. J. A.; Keplinger, C.; Li, T.; Bauer, S.; Suo, Z. (2011-02-01). "Dielectric Elastomer Generators: How Much Energy Can Be Converted #x003F;". IEEE/ASME Transactions on Mechatronics. 16 (1): 33–41. doi:10.1109/TMECH.2010.2089635. ISSN 1083-4435. S2CID 11582916.
  8. Arora, Nitesh; Kumar, Pramod; Joglekar, M. M. (2018). "परावैद्युत इलास्टोमर एक्ट्यूएटर्स की यात्रा रेंज को बढ़ाने के लिए एक संशोधित वोल्टेज वेवफॉर्म". Journal of Applied Mechanics. 85 (11): 111009. Bibcode:2018JAM....85k1009A. doi:10.1115/1.4041039. S2CID 116758334.
  9. Ahmed, S.; Ounaies, Z.; Frecker, M. (2014). "ओरिगामी संरचनाओं को क्रियान्वित करने के संभावित साधन के रूप में ढांकता हुआ इलास्टोमेर एक्ट्यूएटर्स के प्रदर्शन और गुणों की जांच करना". Smart Materials and Structures. 23 (9): 094003. Bibcode:2014SMaS...23i4003A. doi:10.1088/0964-1726/23/9/094003. S2CID 109258827.
  10. Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M. M. (2018). "DC dynamic pull-in instability of a dielectric elastomer balloon: An energy-based approach". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 474 (2211): 20170900. Bibcode:2018RSPSA.47470900S. doi:10.1098/rspa.2017.0900. PMC 5897764. PMID 29662346.


अग्रिम पठन


बाहरी संबंध