क्वार्टिक के स्पर्शरेखाएँ: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|28 lines which touch a general quartic plane curve in two places}} | {{Short description|28 lines which touch a general quartic plane curve in two places}} | ||
[[File:TrottCurveBiTangents7.svg|right|thumb|ट्रॉट वक्र और इसके सात स्पर्शरेखाएँ। अन्य मूल बिंदु से होकर 90° घूर्णन के संबंध में सममित हैं।]][[File:TrottCurveBiTangents28.svg|right|thumb|सभी 28 स्पर्श रेखाओं के साथ ट्रॉट वक्र।]]बीजगणितीय | [[File:TrottCurveBiTangents7.svg|right|thumb|ट्रॉट वक्र और इसके सात स्पर्शरेखाएँ। अन्य मूल बिंदु से होकर 90° घूर्णन के संबंध में सममित हैं।]][[File:TrottCurveBiTangents28.svg|right|thumb|सभी 28 स्पर्श रेखाओं के साथ ट्रॉट वक्र।]]बीजगणितीय समतल वक्रों के सिद्धांत में, एक सामान्य क्वार्टिक समतल वक्र में 28 द्विस्पर्श रेखाएँ होती हैं, वे रेखाएँ जो वक्र को दो स्थानों पर स्पर्श करती हैं। ये रेखाएँ समष्टि प्रक्षेपी तल में सम्मलित हैं, किन्तु क्वार्टिक वक्रों को परिभाषित करना संभव है, जिसके लिए इन सभी 28 पंक्तियों में उनके निर्देशांक के रूप में [[वास्तविक संख्या|वास्तविक संख्याएँ]] हैं और इसलिए यूक्लिडियन समतल से संबंधित हैं। | ||
{{harvs|authorlink=Julius Plücker|last=प्लकर|txt|year=1839}}<ref>See e.g. {{harvtxt|Gray|1982}}.</ref> के माध्यम से अट्ठाईस वास्तविक स्पर्शरेखाओं के साथ एक स्पष्ट क्वार्टिक पहली बार दिया गया था, जैसा कि प्लकर ने दिखाया, किसी भी क्वार्टिक के वास्तविक बिटटैंगेंट्स की संख्या 28, 16, या 9 से कम संख्या होनी चाहिए। 28 वास्तविक बिटेंटेंट के साथ एक और क्वार्टिक निश्चित धुरी लंबाई, टेंगेंट के साथ दीर्घवृत्त के केंद्रों के लोकस (गणित) के माध्यम से बनाया जा सकता है दो गैर-समानांतर रेखाओं के लिए।<ref>{{harvtxt|Blum|Guinand|1964}}.</ref>{{harvtxt|शियोडा|1995}} अट्ठाईस स्पर्शरेखाओं के साथ एक क्वार्टिक का एक अलग निर्माण दिया, जो एक घन सतह को प्रक्षेपित करके बनाया गया था; शियोडा के वक्र की सत्ताईस स्पर्श रेखाएँ वास्तविक हैं चूँकि अट्ठाईसवीं प्रक्षेपी तल में अनंत पर रेखा है। | |||
{{harvtxt| | |||
== उदाहरण == | == उदाहरण == | ||
ट्रॉट वक्र, 28 वास्तविक स्पर्शरेखाओं वाला एक अन्य वक्र, बिंदुओं का समूह है (''x'',''y'') एक [[बहुपद]] चार बहुपद समीकरण की डिग्री को संतुष्ट करता है | ट्रॉट वक्र, 28 वास्तविक स्पर्शरेखाओं वाला एक अन्य वक्र, बिंदुओं का समूह है (''x'',''y'') एक [[बहुपद]] चार बहुपद समीकरण की डिग्री को संतुष्ट करता है | ||
:<math>\displaystyle 144(x^4+y^4)-225(x^2+y^2)+350x^2y^2+81=0.</math> | :<math>\displaystyle 144(x^4+y^4)-225(x^2+y^2)+350x^2y^2+81=0.</math> | ||
ये बिंदु एक निरर्थक क्वार्टिक वक्र बनाते हैं जिसमें | ये बिंदु एक निरर्थक क्वार्टिक वक्र बनाते हैं जिसमें ज्यामितीय जीनस तीन होता है और जिसमें अट्ठाईस वास्तविक स्पर्शरेखाएँ होती हैं।<ref>{{harvtxt|Trott|1997}}.</ref> | ||
प्लकर और ब्लम और गिनींड के उदाहरणों की प्रकार, ट्रॉट वक्र में चार अलग-अलग अंडाकार होते हैं, डिग्री चार की वक्र के लिए अधिकतम संख्या, और इसलिए एक हार्नैक का वक्र प्रमेय है|एम-वक्र। चार अंडाकारों को अंडाकारों के छह अलग-अलग जोड़े में बांटा जा सकता है; अंडाकारों की प्रत्येक जोड़ी के लिए जोड़ी में दोनों अंडाकारों को छूने वाले चार स्पर्शरेखा होते हैं, दो जो दो अंडाकारों को अलग करते हैं, और दो जो नहीं करते हैं। इसके अतिरिक्त, प्रत्येक अंडाकार | प्लकर और ब्लम और गिनींड के उदाहरणों की प्रकार, ट्रॉट वक्र में चार अलग-अलग अंडाकार होते हैं, डिग्री चार की वक्र के लिए अधिकतम संख्या, और इसलिए एक हार्नैक का वक्र प्रमेय है|एम-वक्र। चार अंडाकारों को अंडाकारों के छह अलग-अलग जोड़े में बांटा जा सकता है; अंडाकारों की प्रत्येक जोड़ी के लिए जोड़ी में दोनों अंडाकारों को छूने वाले चार स्पर्शरेखा होते हैं, दो जो दो अंडाकारों को अलग करते हैं, और दो जो नहीं करते हैं। इसके अतिरिक्त, प्रत्येक अंडाकार समतल के एक गैर-उत्तल क्षेत्र को परिबद्ध करता है और इसकी सीमा के गैर-उत्तल भाग में फैला हुआ एक स्पर्शरेखा है। | ||
== अन्य संरचनाओं से कनेक्शन == | == अन्य संरचनाओं से कनेक्शन == | ||
Line 21: | Line 20: | ||
कहाँ {{mvar|a, b, c, d, e, f}} सभी शून्य या एक और कहाँ हैं | कहाँ {{mvar|a, b, c, d, e, f}} सभी शून्य या एक और कहाँ हैं | ||
:<math>ad + be + cf = 1\ (\operatorname{mod}\ 2).</math><ref>{{harvtxt|Riemann|1876}}; {{harvtxt|Cayley|1879}}.</ref> | :<math>ad + be + cf = 1\ (\operatorname{mod}\ 2).</math><ref>{{harvtxt|Riemann|1876}}; {{harvtxt|Cayley|1879}}.</ref> | ||
के लिए 64 विकल्प हैं {{mvar|a, b, c, d, e, f}}, किन्तुइनमें से एकमात्र 28 विकल्प एक विषम राशि का उत्पादन करते हैं। कोई व्याख्या भी कर सकता है {{mvar|a, b, c}} फ़ानो | के लिए 64 विकल्प हैं {{mvar|a, b, c, d, e, f}}, किन्तुइनमें से एकमात्र 28 विकल्प एक विषम राशि का उत्पादन करते हैं। कोई व्याख्या भी कर सकता है {{mvar|a, b, c}} फ़ानो समतल के एक बिंदु के [[सजातीय निर्देशांक]] के रूप में और {{mvar|d, e, f}} एक ही परिमित प्रक्षेपी तल में एक रेखा के निर्देशांक के रूप में; यह शर्त कि योग विषम है, यह आवश्यक है कि बिंदु और रेखा एक दूसरे को स्पर्श न करें, और एक बिंदु और एक रेखा के 28 अलग-अलग जोड़े हैं जो स्पर्श नहीं करते हैं। | ||
फ़ानो | फ़ानो समतल के बिंदु और रेखाएँ जो एक गैर-घटना बिंदु-रेखा जोड़ी से अलग होती हैं, एक त्रिभुज बनाती हैं, और एक क्वार्टिक के द्विस्पर्शियों को फ़ानो समतल के 28 त्रिकोणों के साथ पत्राचार के रूप में माना जाता है।<ref name="M06">{{harvtxt|Manivel|2006}}.</ref> फ़ानो तल का [[लेवी ग्राफ|लेवी ग्राफ़]], हीवुड ग्राफ है, जिसमें फ़ानो तल के त्रिकोणों को 6-चक्रों के माध्यम से दर्शाया गया है। हेवुड ग्राफ के 28 6-चक्र बदले में कॉक्सेटर ग्राफ के 28 शीर्षों के अनुरूप हैं।<ref>{{citation|first=Italo J.|last=Dejter|title=From the Coxeter graph to the Klein graph|journal=Journal of Graph Theory|year=2011|volume=70|pages=1–9|doi=10.1002/jgt.20597|arxiv=1002.1960|s2cid=754481}}.</ref> | ||
क्यूबिक पर 27 लाइनें और | डिग्री -2 टुकड़े की सतह पर 56 लाइनों के जोड़े के अनुरूप हैं,<ref name="M06" />और 28 विषम थीटा विशेषताओं को भी क्वार्टिक के 28 स्पर्शरेखा पर मैप किया गया है। | ||
क्यूबिक पर 27 लाइनें और क्वार्टिक पर 28 बिटेंटेंट, साथ में जीनस 4 के कैनोनिक सेक्स्टिक समीकरण के 120 त्रिस्पर्शी समतलों के साथ, व्लादिमीर अर्नोल्ड के अर्थ में एक एडीई वर्गीकरण "ट्रिनिटी" बनाते हैं, विशेष रूप से मैकके पत्राचार का एक रूप,<ref name="arntrin">{{citation |last=le Bruyn |first=Lieven |title=Arnold's trinities |url=http://www.neverendingbooks.org/index.php/arnolds-trinities.html |date=17 June 2008 |url-status=dead |archiveurl=https://web.archive.org/web/20110411132940/http://www.neverendingbooks.org/index.php/arnolds-trinities.html |archivedate=2011-04-11 }}</ref><ref>Arnold 1997, p. 13 – Arnold, Vladimir, 1997, Toronto Lectures, ''[http://www.pdmi.ras.ru/~arnsem/Arnold/arn-papers.html Lecture 2: Symplectization, Complexification and Mathematical Trinities],'' June 1997 (last updated August, 1998). [http://www.pdmi.ras.ru/~arnsem/Arnold/a2src.zip TeX], [http://www.pdmi.ras.ru/~arnsem/Arnold/arnlect2.ps.gz PostScript], [http://www.neverendingbooks.org/DATA/ArnoldTrinities.pdf PDF]</ref><ref>{{Harv|McKay|Sebbar|2007|loc=p. 11}}</ref> और सहित कई और वस्तुओं से संबंधित हो सकता है जिसमें ई <sub>7</sub> और ई<sub>8</sub> सम्मलित हैं,जैसा कि एडीई वर्गीकरण ट्रिनिटीज में चर्चा की गई है। | |||
==टिप्पणियाँ== | ==टिप्पणियाँ== | ||
Line 113: | Line 113: | ||
| volume = 6 | | volume = 6 | ||
| year = 1997}}. | | year = 1997}}. | ||
[[Category:Created On 08/02/2023]] | [[Category:Created On 08/02/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Short description with empty Wikidata description]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:बीजगणितीय वक्र]] | |||
[[Category:वास्तविक बीजगणितीय ज्यामिति]] |
Latest revision as of 15:46, 20 October 2023
बीजगणितीय समतल वक्रों के सिद्धांत में, एक सामान्य क्वार्टिक समतल वक्र में 28 द्विस्पर्श रेखाएँ होती हैं, वे रेखाएँ जो वक्र को दो स्थानों पर स्पर्श करती हैं। ये रेखाएँ समष्टि प्रक्षेपी तल में सम्मलित हैं, किन्तु क्वार्टिक वक्रों को परिभाषित करना संभव है, जिसके लिए इन सभी 28 पंक्तियों में उनके निर्देशांक के रूप में वास्तविक संख्याएँ हैं और इसलिए यूक्लिडियन समतल से संबंधित हैं।
प्लकर (1839)[1] के माध्यम से अट्ठाईस वास्तविक स्पर्शरेखाओं के साथ एक स्पष्ट क्वार्टिक पहली बार दिया गया था, जैसा कि प्लकर ने दिखाया, किसी भी क्वार्टिक के वास्तविक बिटटैंगेंट्स की संख्या 28, 16, या 9 से कम संख्या होनी चाहिए। 28 वास्तविक बिटेंटेंट के साथ एक और क्वार्टिक निश्चित धुरी लंबाई, टेंगेंट के साथ दीर्घवृत्त के केंद्रों के लोकस (गणित) के माध्यम से बनाया जा सकता है दो गैर-समानांतर रेखाओं के लिए।[2]शियोडा (1995) अट्ठाईस स्पर्शरेखाओं के साथ एक क्वार्टिक का एक अलग निर्माण दिया, जो एक घन सतह को प्रक्षेपित करके बनाया गया था; शियोडा के वक्र की सत्ताईस स्पर्श रेखाएँ वास्तविक हैं चूँकि अट्ठाईसवीं प्रक्षेपी तल में अनंत पर रेखा है।
उदाहरण
ट्रॉट वक्र, 28 वास्तविक स्पर्शरेखाओं वाला एक अन्य वक्र, बिंदुओं का समूह है (x,y) एक बहुपद चार बहुपद समीकरण की डिग्री को संतुष्ट करता है
ये बिंदु एक निरर्थक क्वार्टिक वक्र बनाते हैं जिसमें ज्यामितीय जीनस तीन होता है और जिसमें अट्ठाईस वास्तविक स्पर्शरेखाएँ होती हैं।[3] प्लकर और ब्लम और गिनींड के उदाहरणों की प्रकार, ट्रॉट वक्र में चार अलग-अलग अंडाकार होते हैं, डिग्री चार की वक्र के लिए अधिकतम संख्या, और इसलिए एक हार्नैक का वक्र प्रमेय है|एम-वक्र। चार अंडाकारों को अंडाकारों के छह अलग-अलग जोड़े में बांटा जा सकता है; अंडाकारों की प्रत्येक जोड़ी के लिए जोड़ी में दोनों अंडाकारों को छूने वाले चार स्पर्शरेखा होते हैं, दो जो दो अंडाकारों को अलग करते हैं, और दो जो नहीं करते हैं। इसके अतिरिक्त, प्रत्येक अंडाकार समतल के एक गैर-उत्तल क्षेत्र को परिबद्ध करता है और इसकी सीमा के गैर-उत्तल भाग में फैला हुआ एक स्पर्शरेखा है।
अन्य संरचनाओं से कनेक्शन
क्वार्टिक वक्र के दोहरे वक्र में 28 वास्तविक साधारण दोहरे बिंदु होते हैं, जो मूल वक्र के 28 स्पर्शरेखाओं से दोहरे होते हैं।
क्वार्टिक के 28 स्पर्शरेखाओं को फॉर्म के प्रतीकों के अनुरूप भी रखा जा सकता है
कहाँ a, b, c, d, e, f सभी शून्य या एक और कहाँ हैं
के लिए 64 विकल्प हैं a, b, c, d, e, f, किन्तुइनमें से एकमात्र 28 विकल्प एक विषम राशि का उत्पादन करते हैं। कोई व्याख्या भी कर सकता है a, b, c फ़ानो समतल के एक बिंदु के सजातीय निर्देशांक के रूप में और d, e, f एक ही परिमित प्रक्षेपी तल में एक रेखा के निर्देशांक के रूप में; यह शर्त कि योग विषम है, यह आवश्यक है कि बिंदु और रेखा एक दूसरे को स्पर्श न करें, और एक बिंदु और एक रेखा के 28 अलग-अलग जोड़े हैं जो स्पर्श नहीं करते हैं।
फ़ानो समतल के बिंदु और रेखाएँ जो एक गैर-घटना बिंदु-रेखा जोड़ी से अलग होती हैं, एक त्रिभुज बनाती हैं, और एक क्वार्टिक के द्विस्पर्शियों को फ़ानो समतल के 28 त्रिकोणों के साथ पत्राचार के रूप में माना जाता है।[5] फ़ानो तल का लेवी ग्राफ़, हीवुड ग्राफ है, जिसमें फ़ानो तल के त्रिकोणों को 6-चक्रों के माध्यम से दर्शाया गया है। हेवुड ग्राफ के 28 6-चक्र बदले में कॉक्सेटर ग्राफ के 28 शीर्षों के अनुरूप हैं।[6]
डिग्री -2 टुकड़े की सतह पर 56 लाइनों के जोड़े के अनुरूप हैं,[5]और 28 विषम थीटा विशेषताओं को भी क्वार्टिक के 28 स्पर्शरेखा पर मैप किया गया है।
क्यूबिक पर 27 लाइनें और क्वार्टिक पर 28 बिटेंटेंट, साथ में जीनस 4 के कैनोनिक सेक्स्टिक समीकरण के 120 त्रिस्पर्शी समतलों के साथ, व्लादिमीर अर्नोल्ड के अर्थ में एक एडीई वर्गीकरण "ट्रिनिटी" बनाते हैं, विशेष रूप से मैकके पत्राचार का एक रूप,[7][8][9] और सहित कई और वस्तुओं से संबंधित हो सकता है जिसमें ई 7 और ई8 सम्मलित हैं,जैसा कि एडीई वर्गीकरण ट्रिनिटीज में चर्चा की गई है।
टिप्पणियाँ
- ↑ See e.g. Gray (1982).
- ↑ Blum & Guinand (1964).
- ↑ Trott (1997).
- ↑ Riemann (1876); Cayley (1879).
- ↑ 5.0 5.1 Manivel (2006).
- ↑ Dejter, Italo J. (2011), "From the Coxeter graph to the Klein graph", Journal of Graph Theory, 70: 1–9, arXiv:1002.1960, doi:10.1002/jgt.20597, S2CID 754481.
- ↑ le Bruyn, Lieven (17 June 2008), Arnold's trinities, archived from the original on 2011-04-11
- ↑ Arnold 1997, p. 13 – Arnold, Vladimir, 1997, Toronto Lectures, Lecture 2: Symplectization, Complexification and Mathematical Trinities, June 1997 (last updated August, 1998). TeX, PostScript, PDF
- ↑ (McKay & Sebbar 2007, p. 11)
संदर्भ
- Blum, R.; Guinand, A. P. (1964). "A quartic with 28 real bitangents". Canadian Mathematical Bulletin. 7 (3): 399–404. doi:10.4153/cmb-1964-038-6.
- Cayley, Arthur (1879), "On the bitangents of a quartic", Salmon's Higher Plane Curves, pp. 387–389. In The collected mathematical papers of Arthur Cayley, Andrew Russell Forsyth, ed., The University Press, 1896, vol. 11, pp. 221–223.
- Gray, Jeremy (1982), "From the history of a simple group", The Mathematical Intelligencer, 4 (2): 59–67, doi:10.1007/BF03023483, MR 0672918, S2CID 14602496. Reprinted in Levy, Silvio, ed. (1999), The Eightfold Way, MSRI Publications, vol. 35, Cambridge University Press, pp. 115–131, ISBN 0-521-66066-1, MR 1722415.
- Manivel, L. (2006), "Configurations of lines and models of Lie algebras", Journal of Algebra, 304 (1): 457–486, arXiv:math/0507118, doi:10.1016/j.jalgebra.2006.04.029, S2CID 17374533.
- McKay, John; Sebbar, Abdellah (2007). "Replicable Functions: An Introduction". Frontiers in Number Theory, Physics, and Geometry II: 373–386. doi:10.1007/978-3-540-30308-4_10.
- Plücker, J. (1839), Theorie der algebraischen Curven: gegrundet auf eine neue Behandlungsweise der analytischen Geometrie, Berlin: Adolph Marcus.
- Riemann, G. F. B. (1876), "Zur Theorie der Abel'schen Funktionen für den Fall p = 3", Ges. Werke, Leipzig, pp. 456–472
{{citation}}
: CS1 maint: location missing publisher (link). As cited by Cayley. - Shioda, Tetsuji (1995), "Weierstrass transformations and cubic surfaces" (PDF), Commentarii Mathematici Universitatis Sancti Pauli, 44 (1): 109–128, MR 1336422
- Trott, Michael (1997), "Applying GroebnerBasis to Three Problems in Geometry", Mathematica in Education and Research, 6 (1): 15–28.