आदर्श विलयन: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 113: | Line 113: | ||
[[Category:Collapse templates]] | [[Category:Collapse templates]] | ||
[[Category:Created On 21/03/2023]] | [[Category:Created On 21/03/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | [[Category:Machine Translated Page]] | ||
[[Category:Navigational boxes| ]] | [[Category:Navigational boxes| ]] | ||
Line 121: | Line 122: | ||
[[Category:Template documentation pages|Documentation/doc]] | [[Category:Template documentation pages|Documentation/doc]] | ||
[[Category:Templates Vigyan Ready]] | [[Category:Templates Vigyan Ready]] | ||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 09:23, 18 April 2023
रसायन विज्ञान में, एक आदर्श विलयन या आदर्श मिश्रण एक विलयन (रसायन विज्ञान) है जो आदर्श गैसों के मिश्रण के अनुरूप उष्मागतिक गुणों को प्रदर्शित करता है।[1] मिश्रण की ऊष्मीय धारिता शून्य है[2] जैसा कि परिभाषा के अनुसार मिलाने पर आयतन में परिवर्तन होता है; मिश्रण की ऊष्मीय धारिता शून्य के जितना करीब होती है, विलयन का व्यवहार उतना ही अधिक आदर्श बन जाता है। विलायक और विलेय के वाष्प दाब क्रमशः राउल्ट के नियम और हेनरी के नियम का पालन करते हैं,[3] और गतिविधि गुणांक (जो आदर्शता से विचलन को मापता है) प्रत्येक घटक के लिए एक के बराबर हो जाता है।[4]
एक आदर्श विलयन की अवधारणा रासायनिक ऊष्मप्रवैगिकी और इसके अनुप्रयोगों के लिए आधारभूत है, जैसे कि संपार्श्विक गुणों की व्याख्या इसका प्रमुख उदाहरण हो सकता है।
भौतिक उत्पत्ति
विलयन की आदर्शता आदर्श गैस के समान है, महत्वपूर्ण अंतर के साथ तरल पदार्थों में अंतर-आणविक संपर्क मजबूत होते हैं और उन्हें आसानी से उपेक्षित नहीं किया जा सकता क्योंकि वे आदर्श गैसों के लिए अंतर-आणविक बल उत्पन्न कर सकते हैं। इसके अतिरिक्त हम मानते हैं कि विलयन के सभी अणुओं के बीच अंतर-आणविक बल की औसत शक्ति समान होती है।
अधिक औपचारिक रूप से, A और B के अणुओं के मिश्रण के लिए, पुनः प्रतिवेशी के विपरीत (UAB) और प्रतिवेशी की तरह UAA और UBB समान औसत शक्ति का आवश्यक होना चाहिए, अर्थात, 2UAB = UAA + UBB और लंबी दूरी की साम्यावस्था शून्य (या कम से कम अप्रभेद्य) होनी चाहिए। यदि AA, AB और BB के बीच आणविक बल समान हैं, अर्थात , UAB = UAA = UBB तो विलयन स्वचालित रूप से आदर्श है।
यदि अणु रासायनिक रूप से लगभग समान हैं, जैसे, 1-ब्यूटेनॉल और 2-ब्यूटेनॉल, तो विलयन लगभग आदर्श होगा। चूँकि A और B के बीच अन्योन्यक्रिया ऊर्जाएँ लगभग बराबर हैं, इसलिए यह इस प्रकार है कि पदार्थों के मिश्रित होने पर केवल एक बहुत ही कम समग्र ऊर्जा (एन्थैल्पी) परिवर्तन होता है। एक आदर्श विलयन और एक गैर-आदर्श विलयन के बीच मुख्य अंतर यह है कि आदर्श विलयनों में, सभी अणुओं में एक ही अंतर-आणविक साम्यावस्था होती है, जबकि गैर-आदर्श विलयनों में, विलेय और विलायक के अणुओं के अणुओं के बीच अंतर-आणविक बल अलग-अलग होते हैं। एक आदर्श विलयन एक मिश्रण है जिसमें विभिन्न प्रजातियों के अणु अलग-अलग होते हैं, हालांकि, आदर्श गैस के विपरीत, आदर्श विलयन में अणु एक दूसरे पर अंतर-आणविक बल लगाते हैं। जब वे बल प्रजातियों से स्वतंत्र सभी अणुओं के लिए समान होते हैं तो एक विलयन को आदर्श कहा जाता है। Aऔर B की प्रकृति जितनी अधिक भिन्न होती है, उतनी ही दृढ़ता से आदर्शता से विचलित होने की उम्मीद की जाती है।
नियमानुसार परिभाषा
एक आदर्श विलयन की विभिन्न संबंधित परिभाषाएँ प्रस्तावित की गई हैं। सबसे सरल परिभाषा यह है कि एक आदर्श विलयन एक ऐसा विलयन है जिसके लिए प्रत्येक घटक सभी रचनाओं के लिए राउल्ट के नियम का पालन करता है। यहाँ घटक का वाष्प दाब है, विलयन के ऊपर, इसका अंश है और शुद्ध पदार्थ का वाष्प दाब एक ही तापमान पर है।[5][6]
यह परिभाषा वाष्प के दबाव पर निर्भर करती है, जो कम से कम वाष्पशील घटकों के लिए प्रत्यक्ष रूप से मापने योग्य गुणधर्म है। उष्मागतिक गुणों को तब प्रत्येक घटक के रासायनिक क्षमता μ (जो आंशिक ग्राम अणुक गुणधर्म गिब्स ऊर्जा G है) से प्राप्त किया जा सकता है। यदि वाष्प एक आदर्श गैस है,
संदर्भ दबाव रूप में लिया जा सकता है, = 1 बार, या मिश्रण के दबाव के रूप में, जो भी आसान हो, के मान को प्रतिस्थापित करने पर राउल्ट के नियम से,
रासायनिक क्षमता के लिए यह समीकरण आदर्श विलयन के लिए वैकल्पिक परिभाषा के रूप में उपयोग किया जा सकता है।
हालांकि, विलयन के ऊपर वाष्प वास्तव में आदर्श गैसों के मिश्रण के रूप में व्यवहार नहीं कर सकता है। इसलिए कुछ लेखक एक आदर्श विलयन को एक ऐसे विलयन के रूप में परिभाषित करते हैं जिसके लिए प्रत्येक घटक राउल्ट के नियम के क्षणभंगुरता अनुरूप का पालन करता है, यहाँ घटक की क्षणभंगुरता है, विलयन में और की क्षणभंगुरता शुद्ध पदार्थ के रूप में है ।[7][8] चूँकि पलायनता समीकरण द्वारा परिभाषित किया गया है
यह परिभाषा रासायनिक क्षमता और अन्य उष्मागतिक गुणों के आदर्श मूल्यों की ओर ले जाती है, भले ही विलयन के ऊपर घटक वाष्प आदर्श गैसें न हों। एक समतुल्य कथन क्षणभंगुरता के अतिरिक्त उष्मागतिक गतिविधि (रसायन विज्ञान) का उपयोग करता है।[9]
उष्मागतिक गुण
आयतन
यदि हम इस अंतिम समीकरण के संबंध में अंतर करते हैं पर स्थिर हमें मिलता है:
चूंकि हम गिब्स संभावित समीकरण से जानते हैं कि:
ग्राम अणुक की मात्रा के साथ , ये अंतिम दो समीकरण एक साथ देते हैं:
चूंकि यह सब, एक शुद्ध पदार्थ के रूप में किया जाता है, केवल सबस्क्रिप्ट जोड़कर एक आदर्श मिश्रण में मान्य होता है सभी गहन चर और परिवर्तन के लिए को , वैकल्पिक ओवरबार के साथ, आंशिक ग्राम अणुक मात्रा के लिए खड़ा है:
इस खंड के पहले समीकरण को इस अंतिम समीकरण पर लागू करने पर हम पाते हैं:
जिसका अर्थ है कि एक आदर्श मिश्रण में आंशिक ग्राम अणुक की मात्रा रचना से स्वतंत्र होती है। परिणामस्वरूप , कुल मात्रा उनके शुद्ध रूपों में घटकों के संस्करणों का योग है:
ऊष्मीय धारिता और ताप क्षमता
इसी तरह से आगे बढ़ना लेकिन व्युत्पन्न के संबंध में लेना मोलर ऊष्मीय धारिता के लिए हमें समान परिणाम प्राप्त होते हैं:
यह याद रखना हम पाते हैं:
जो बदले में इसका मतलब है और यह कि मिश्रण की ऊष्मीय धारिता उसके घटक ऊष्मीय धारिता के योग के बराबर है।
तब से और , इसी तरह
इसकी पुष्टि भी आसानी से हो जाती है
मिश्रण की एंट्रॉपी
अंत में जब से
हम पाते हैं
चूंकि गिब्स मुक्त ऊर्जा प्रति मोल मिश्रण है
अंत में हम तब से मिश्रण की ग्राम अणुक एन्ट्रापी की गणना कर सकते हैं
और
परिणाम
सॉल्वेंट-विलेय इंटरैक्शन विलेय-विलेय और सॉल्वेंट-सॉल्वेंट इंटरैक्शन के समान हैं, औसतन। परिणामस्वरूप , मिश्रण (विलयन) की ऊष्मीय धारिता शून्य है और मिश्रण पर गिब्स मुक्त ऊर्जा में परिवर्तन केवल मिश्रण की एन्ट्रापी द्वारा निर्धारित किया जाता है। इसलिए ग्राम अणुक गिब्स मुक्त मिश्रण की ऊर्जा है
या दो-घटक आदर्श विलयन के लिए
जहाँ m ग्राम अणुक को दर्शाता है, अर्थात प्रति मोल विलयन में गिब्स मुक्त ऊर्जा में परिवर्तन, और घटक का मोल अंश है . ध्यान दें कि मिश्रण की यह मुक्त ऊर्जा हमेशा नकारात्मक होती है (क्योंकि प्रत्येक , प्रत्येक या इसकी सीमा ऋणात्मक (अनंत) होना चाहिए), अर्थात , आदर्श विलयन किसी भी रचना में मिश्रणीय होते हैं और कोई चरण पृथक्करण नहीं होगा।
उपरोक्त समीकरण को व्यक्तिगत घटकों की रासायनिक क्षमता के संदर्भ में व्यक्त किया जा सकता है
कहाँ की रासायनिक क्षमता में परिवर्तन है मिलाने पर। यदि शुद्ध तरल की रासायनिक क्षमता निरूपित किया जाता है , फिर की रासायनिक क्षमता एक आदर्श विलयन में है
कोई घटक एक आदर्श विलयन की संपूर्ण रचना सीमा पर राउल्ट के नियम का पालन करता है:
कहाँ शुद्ध घटक का संतुलन वाष्प दबाव है और घटक का मोल अंश है मिश्रण में।
गैर-आदर्शता
आदर्शता से विचलन को मार्गुल्स कार्यों या गतिविधि गुणांकों के उपयोग से वर्णित किया जा सकता है। आदर्शता से विचलन मामूली होने पर विलयन के गुणों का वर्णन करने के लिए एकल मार्ग्यूल्स पैरामीटर पर्याप्त हो सकता है; ऐसे विलयनों को नियमित विलयन कहते हैं।
आदर्श विलयनों के विपरीत, जहां आयतन सख्ती से योज्य होते हैं और मिश्रण हमेशा पूरा होता है, एक गैर-आदर्श विलयन की मात्रा सामान्य रूप से, घटक शुद्ध तरल पदार्थ की मात्रा का सरल योग नहीं होती है और पूरे पर घुलनशीलता की गारंटी नहीं होती है। रचना रेंज। घनत्व की माप से, घटकों की उष्मागतिक गतिविधि निर्धारित की जा सकती है।
यह भी देखें
- गतिविधि गुणांक
- मिश्रण की एन्ट्रापी
- मार्गुल्स फ़ंक्शन
- नियमित उपाय
- कुंडल-गोलिका संक्रमण
- स्पष्ट ग्राम अणुक गुणधर्म
- अन्वेषणात्मक समीकरण
- वायरल गुणांक
संदर्भ
- ↑ Felder, Richard M.; Rousseau, Ronald W.; Bullard, Lisa G. (2005). रासायनिक प्रक्रियाओं के प्राथमिक सिद्धांत. Wiley. p. 293. ISBN 978-0471687573.
- ↑ A to Z of Thermodynamics Pierre Perrot ISBN 0-19-856556-9
- ↑ Felder, Richard M.; Rousseau, Ronald W.; Bullard, Lisa G. रासायनिक प्रक्रियाओं के प्राथमिक सिद्धांत. Wiley. p. 293. ISBN 978-0471687573.
- ↑ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "ideal mixture". doi:10.1351/goldbook.I02938
- ↑ T. Engel and P. Reid Physical Chemistry (Pearson 2006), p.194
- ↑ K.J. Laidler and J.H. Meiser Physical Chemistry (Benjamin-Cummings 1982), p.180
- ↑ R.S. Berry, S.A. Rice and J. Ross, Physical Chemistry (Wiley 1980) p.750
- ↑ I.M. Klotz, Chemical Thermodynamics (Benjamin 1964) p.322
- ↑ P.A. Rock, Chemical Thermodynamics: Principles and Applications (Macmillan 1969), p.261