प्रसार रहित परिवर्तन: Difference between revisions

From Vigyanwiki
mNo edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[File:diffusionless classification.svg|350px|thumbnail|right|विसरित रहित रूपांतरण वर्गीकरण।]]
[[File:diffusionless classification.svg|350px|thumbnail|right|विसरित रहित रूपांतरण वर्गीकरण।]]एक [[प्रसार|विसरित]] रहित रूपांतरण प्रावस्था रूपांतरण है जो [[परमाणुओं]] की लंबी दूरी के विसरित के बिना, कई परमाणुओं के समरूप संचलन से होता है जिसके परिणामस्वरूप क्रिस्टल संरचना में रूपांतरण होता है। ये संचलन छोटे होते हैं, समान्यतः अंतर-परमाणु दूरी से कम होते हैं, और एक परमाणु के पड़ोसी निकट रहते हैं। बड़ी संख्या में परमाणुओं के व्यवस्थित संचलन के कारण कुछ लोगों ने इन्हें नागरिक विसरित-आधारित चरण रूपांतरणों के विपरीत [[फ्रेडरिक चार्ल्स फ्रैंक]] और [[जॉन विरिल क्रिश्चियन]] द्वारा ''सैन्य'' रूपांतरणों के रूप में संदर्भित किया गया।<ref>D.A. Porter and K.E. Easterling, Phase transformations in metals and alloys, ''Chapman & Hall'', 1992, p.172 {{ISBN|0-412-45030-5}}</ref><ref>{{cite journal | author=西山 善次 | title=マルテンサイトの格子欠陥 | journal=日本金属学会会報 | publisher=日本金属学会 | volume=6 | issue=7 | date=1967 | issn=1884-5835 | doi=10.2320/materia1962.6.497 | pages=497–506| url=https://www.jstage.jst.go.jp/article/materia1962/6/7/6_7_497/_article/-char/ja}}</ref>
{{multiple issues|
{{Refimprove|date=July 2008}}
{{Tone|Martensitic transformation|date=November 2010}}
}}
 
एक [[प्रसार|विसरित]] रहित रूपांतरण प्रावस्था रूपांतरण है जो [[परमाणुओं]] की लंबी दूरी के विसरित के बिन, कई परमाणुओं के समरूप संचलन से होता है जिसके परिणामस्वरूप क्रिस्टल संरचना में रूपांतरण होता है। ये संचलन छोटे होते हैं, समान्यतः अंतर-परमाणु दूरी से कम होते हैं, और एक परमाणु के पड़ोसी निकट रहते हैं। बड़ी संख्या में परमाणुओं के व्यवस्थित संचलन के कारण कुछ लोगों ने इन्हें नागरिक विसरित-आधारित चरण रूपांतरणों के विपरीत [[फ्रेडरिक चार्ल्स फ्रैंक]] और [[जॉन विरिल क्रिश्चियन]] द्वारा ''सैन्य'' रूपांतरणों के रूप में संदर्भित किया गया।<ref>D.A. Porter and K.E. Easterling, Phase transformations in metals and alloys, ''Chapman & Hall'', 1992, p.172 {{ISBN|0-412-45030-5}}</ref><ref>{{cite journal | author=西山 善次 | title=マルテンサイトの格子欠陥 | journal=日本金属学会会報 | publisher=日本金属学会 | volume=6 | issue=7 | date=1967 | issn=1884-5835 | doi=10.2320/materia1962.6.497 | pages=497–506| url=https://www.jstage.jst.go.jp/article/materia1962/6/7/6_7_497/_article/-char/ja}}</ref>


इस प्रकार का सबसे साधारण रूपांतरण [[एडॉल्फ मार्टेंस]] रूपांतरण है, जबकि कदाचित्य यह सबसे अधिक अध्ययन किया जाता है, जो गैर-विसरित रूपांतरणों का केवल एक उपसमुच्चय है। इस्पात में मार्टेंसिटिक रूपांतरण चरण रूपांतरण की इस श्रेणी के सबसे आर्थिक रूप से महत्वपूर्ण उदाहरण का प्रतिनिधित्व करता है, लेकिन विकल्पों की बढ़ती संख्या, जैसे आकार स्मृति मिश्र, अधिक महत्वपूर्ण होते जा रहे हैं।
इस प्रकार का सबसे साधारण रूपांतरण [[एडॉल्फ मार्टेंस]] रूपांतरण है, जबकि कदाचित्य यह सबसे अधिक अध्ययन किया जाता है, जो गैर-विसरित रूपांतरणों का केवल एक उपसमुच्चय है। इस्पात में मार्टेंसिटिक रूपांतरण चरण रूपांतरण की इस श्रेणी के सबसे आर्थिक रूप से महत्वपूर्ण उदाहरण का प्रतिनिधित्व करता है, लेकिन विकल्पों की बढ़ती संख्या, जैसे आकार स्मृति मिश्र, अधिक महत्वपूर्ण होते जा रहे हैं।


== वर्गीकरण और परिभाषाएँ ==
== वर्गीकरण और परिभाषाएँ ==
जब कोई संरचनात्मक रूपांतरण परमाणुओं (या परमाणुओं के समूह) को उनके पड़ोसियों के सापेक्ष समन्वित संचलन द्वारा होता है तो रूपांतरण को विस्थापनात्मक रूपांतरण कहा जाता है। इसमें रूपांतरणों की एक विस्तृत श्रृंखला समिलित है और इसलिए आगे के वर्गीकरण विकसित किए गए हैं।<ref name="Cohen" /> जालक-विकृत उपभेदों के वर्चस्व वाले रूपांतरणों के बीच पहला अंतर खींचा जा सकता है और जहां अनुकूलता अधिक महत्व रखती हैं।
जब कोई संरचनात्मक रूपांतरण परमाणुओं (या परमाणुओं के समूह) को उनके पड़ोसियों के सापेक्ष समन्वित संचलन द्वारा होता है तो रूपांतरण को विस्थापनात्मक रूपांतरण कहा जाता है। इसमें रूपांतरणों की एक विस्तृत श्रृंखला समिलित है और इसलिए आगे के वर्गीकरण विकसित किए गए हैं।<ref name="Cohen" /> जालक-विकृत उपभेदों के वर्चस्व वाले रूपांतरणों के बीच पहला अंतर खींचा जा सकता है और जहां अनुकूलता अधिक महत्व रखती हैं।


समंगी जालक-विकृत उपभेद, जिन्हें बैन उपभेदों के रूप में भी जाना जाता है, वे उपभेद हैं जो [[ब्रावाइस जाली|ब्रावाइस जालक]] को अलग उपभेद में बदलते हैं। यह एक विकृति [[मैट्रिक्स (गणित)]] 'S' द्वारा दर्शाया जा सकता है जो एक सदिश, 'Y' को एक नए सदिश 'X' में बदल देता है:
समंगी जालक-विकृत उपभेद, जिन्हें बैन उपभेदों के रूप में भी जाना जाता है, वे उपभेद हैं जो [[ब्रावाइस जाली|ब्रावाइस जालक]] को अलग उपभेद में बदलते हैं। यह एक विकृति [[मैट्रिक्स (गणित)]] 'S' द्वारा दर्शाया जा सकता है जो एक सदिश, 'Y' को एक नए सदिश 'X' में बदल देता है:


:<math>y=Sx</math>
:<math>y=Sx</math>
यह समंगी है क्योंकि सीधी रेखाएँ नई सीधी रेखाओं में परिवर्तित हो जाती हैं। इस तरह के रूपांतरणों के उदाहरणों में एक [[घन क्रिस्टल प्रणाली|घनाकर क्रिस्टल पद्धति]] समिलित है जो तीनों अक्षों (विस्तारण) पर आकर में वृद्धि या एक एकनताक्ष क्रिस्टल पद्धति में उपरूपक (भौतिकी) समिलित है।
यह समंगी है क्योंकि सीधी रेखाएँ नई सीधी रेखाओं में परिवर्तित हो जाती हैं। इस तरह के रूपांतरणों के उदाहरणों में एक [[घन क्रिस्टल प्रणाली|घनाकर क्रिस्टल पद्धति]] समिलित है जो तीनों अक्षों (विस्तारण) पर आकर में वृद्धि या एक एकनताक्ष क्रिस्टल पद्धति में उपरूपक (भौतिकी) समिलित है।


[[File:diffusionless shuffles distortions.svg|350px|thumbnail|right]]मिश्रण, जैसा कि नाम से पता चलता है, एकक कोष्ठिका के भीतर परमाणुओं के छोटे संचलन को समिलित करता है। परिणामस्वरूप, शुद्ध मिश्रण सामान्य रूप से एकक कोष्ठिका के आकार में रूपांतरण का परिणाम नहीं होता है - केवल यह इसकी समरूपता और संरचना को बदलता है।
[[File:diffusionless shuffles distortions.svg|350px|thumbnail|right]]मिश्रण, जैसा कि नाम से पता चलता है, एकक कोष्ठिका के भीतर परमाणुओं के छोटे संचलन को समिलित करता है। परिणामस्वरूप, शुद्ध मिश्रण सामान्य रूप से एकक कोष्ठिका के आकार में रूपांतरण का परिणाम नहीं होता है - केवल यह इसकी समरूपता और संरचना को बदलता है।
Line 24: Line 18:


==आयरन-कार्बन मार्टेंसिटिक ट्रांसफॉर्मेशन==<!-- [[Martensitic transformation]] links here -->
==आयरन-कार्बन मार्टेंसिटिक ट्रांसफॉर्मेशन==<!-- [[Martensitic transformation]] links here -->
[[ ऑस्टेनाईट austenite | ऑस्टेनाईट]] और [[ मार्टेंसाईट ]] के बीच का अंतर छोटा है। जबकि ऑस्टेनाइट की एकक कोष्ठिका एक पूर्ण घन है, मार्टेंसाइट में रूपांतरण अंतरालीय कार्बन परमाणुओं द्वारा इस घन को विकृत करता है, जिसके पास विस्थापित रूपांतरण के बीच फैलने का समय नहीं होता है। एकक कोष्ठिका एक आयाम में थोड़ी लंबी और अन्य दो में छोटी हो जाती है। समरूपता के कारणों के लिए दो संरचनाओं का गणितीय विवरण बहुत भिन्न है, लेकिन रासायनिक बंधन बहुत समान है। [[सीमेन्टाईट]] के विपरीत, जिसमें सिरेमिक सामग्री के समान बंधन होता है, मार्टेंसाइट की कठोरता को रासायनिक रूप से समझाना मुश्किल होता है।
[[ ऑस्टेनाईट austenite |ऑस्टेनाईट]] और [[ मार्टेंसाईट |मार्टेंसाईट]] के बीच का अंतर छोटा है। जबकि ऑस्टेनाइट की एकक कोष्ठिका एक पूर्ण घन है, मार्टेंसाइट में रूपांतरण अंतरालीय कार्बन परमाणुओं द्वारा इस घन को विकृत करता है, जिसके पास विस्थापित रूपांतरण के बीच फैलने का समय नहीं होता है। एकक कोष्ठिका एक आयाम में थोड़ी लंबी और अन्य दो में छोटी हो जाती है। समरूपता के कारणों के लिए दो संरचनाओं का गणितीय विवरण बहुत भिन्न है, लेकिन रासायनिक बंधन बहुत समान है। [[सीमेन्टाईट]] के विपरीत, जिसमें सिरेमिक सामग्री के समान बंधन होता है, मार्टेंसाइट की कठोरता को रासायनिक रूप से समझाना मुश्किल होता है।


यह स्पष्टीकरण आयाम में क्रिस्टल के सूक्ष्म रूपांतरण पर टिका है। यहां तक ​​​​कि एक सूक्ष्मदर्शीय क्रिस्टलीय भी लाखों एकक कोष्ठिका लंबा होता है। चूँकि ये सभी इकाइयाँ एक ही दिशा का सामना करती हैं, प्रतिशत के अंश की विकृतियाँ पड़ोसी सामग्रियों के बीच एक बड़े बेमेल में बढ़ जाती हैं। [[ काम सख्त ]] में असंख्य [[क्रिस्टल दोष|क्रिस्टल दोषों]] के निर्माण से बेमेल को सुलझाया जाता है। कठोर इस्पात में प्रक्रिया के समान, ये दोष परमाणुओं को एक संगठित प्रकार से एक दूसरे के पीछे फिसलने से रोकते हैं, जिससे सामग्री कठिन हो जाती है।
यह स्पष्टीकरण आयाम में क्रिस्टल के सूक्ष्म रूपांतरण पर टिका है। यहां तक ​​​​कि एक सूक्ष्मदर्शीय क्रिस्टलीय भी लाखों एकक कोष्ठिका लंबा होता है। चूँकि ये सभी इकाइयाँ एक ही दिशा का सामना करती हैं, प्रतिशत के अंश की विकृतियाँ पड़ोसी सामग्रियों के बीच एक बड़े बेमेल में बढ़ जाती हैं। [[ काम सख्त |काम सख्त]] में असंख्य [[क्रिस्टल दोष|क्रिस्टल दोषों]] के निर्माण से बेमेल को सुलझाया जाता है। कठोर इस्पात में प्रक्रिया के समान, ये दोष परमाणुओं को एक संगठित प्रकार से एक दूसरे के पीछे फिसलने से रोकते हैं, जिससे सामग्री कठिन हो जाती है।


आकार स्मृति मिश्र धातुओं में यांत्रिक गुण भी होते हैं, जिन्हें अंततः मार्टेंसाइट के सादृश्य द्वारा समझाया गया था। लौह-कार्बन पद्धति के विपरीत, निकल-टाइटेनियम पद्धति में मिश्रधातुओं को चुना जा सकता है जो "मार्टेंसिटिक" चरण को [[ ऊष्मप्रवैगिकी ]] रूप मे स्थिर बनाते हैं।
आकार स्मृति मिश्र धातुओं में यांत्रिक गुण भी होते हैं, जिन्हें अंततः मार्टेंसाइट के सादृश्य द्वारा समझाया गया था। लौह-कार्बन पद्धति के विपरीत, निकल-टाइटेनियम पद्धति में मिश्रधातुओं को चुना जा सकता है जो "मार्टेंसिटिक" चरण को [[ ऊष्मप्रवैगिकी |ऊष्मप्रवैगिकी]] रूप मे स्थिर बनाते हैं।


== छद्म मार्टेंसिटिक रूपांतरण ==
== छद्म मार्टेंसिटिक रूपांतरण ==
Line 56: Line 50:
*[http://sourceforge.net/projects/tclab/ PTC Lab for martensite crystallography]
*[http://sourceforge.net/projects/tclab/ PTC Lab for martensite crystallography]


{{DEFAULTSORT:Diffusionless Transformation}}[[Category: चरण संक्रमण]]
{{DEFAULTSORT:Diffusionless Transformation}}
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 21/03/2023|Diffusionless Transformation]]
[[Category:Created On 21/03/2023]]
[[Category:Machine Translated Page|Diffusionless Transformation]]
[[Category:Pages with script errors|Diffusionless Transformation]]
[[Category:Templates Vigyan Ready|Diffusionless Transformation]]
[[Category:चरण संक्रमण|Diffusionless Transformation]]

Latest revision as of 13:20, 9 April 2023

विसरित रहित रूपांतरण वर्गीकरण।

एक विसरित रहित रूपांतरण प्रावस्था रूपांतरण है जो परमाणुओं की लंबी दूरी के विसरित के बिना, कई परमाणुओं के समरूप संचलन से होता है जिसके परिणामस्वरूप क्रिस्टल संरचना में रूपांतरण होता है। ये संचलन छोटे होते हैं, समान्यतः अंतर-परमाणु दूरी से कम होते हैं, और एक परमाणु के पड़ोसी निकट रहते हैं। बड़ी संख्या में परमाणुओं के व्यवस्थित संचलन के कारण कुछ लोगों ने इन्हें नागरिक विसरित-आधारित चरण रूपांतरणों के विपरीत फ्रेडरिक चार्ल्स फ्रैंक और जॉन विरिल क्रिश्चियन द्वारा सैन्य रूपांतरणों के रूप में संदर्भित किया गया।[1][2]

इस प्रकार का सबसे साधारण रूपांतरण एडॉल्फ मार्टेंस रूपांतरण है, जबकि कदाचित्य यह सबसे अधिक अध्ययन किया जाता है, जो गैर-विसरित रूपांतरणों का केवल एक उपसमुच्चय है। इस्पात में मार्टेंसिटिक रूपांतरण चरण रूपांतरण की इस श्रेणी के सबसे आर्थिक रूप से महत्वपूर्ण उदाहरण का प्रतिनिधित्व करता है, लेकिन विकल्पों की बढ़ती संख्या, जैसे आकार स्मृति मिश्र, अधिक महत्वपूर्ण होते जा रहे हैं।

वर्गीकरण और परिभाषाएँ

जब कोई संरचनात्मक रूपांतरण परमाणुओं (या परमाणुओं के समूह) को उनके पड़ोसियों के सापेक्ष समन्वित संचलन द्वारा होता है तो रूपांतरण को विस्थापनात्मक रूपांतरण कहा जाता है। इसमें रूपांतरणों की एक विस्तृत श्रृंखला समिलित है और इसलिए आगे के वर्गीकरण विकसित किए गए हैं।[3] जालक-विकृत उपभेदों के वर्चस्व वाले रूपांतरणों के बीच पहला अंतर खींचा जा सकता है और जहां अनुकूलता अधिक महत्व रखती हैं।

समंगी जालक-विकृत उपभेद, जिन्हें बैन उपभेदों के रूप में भी जाना जाता है, वे उपभेद हैं जो ब्रावाइस जालक को अलग उपभेद में बदलते हैं। यह एक विकृति मैट्रिक्स (गणित) 'S' द्वारा दर्शाया जा सकता है जो एक सदिश, 'Y' को एक नए सदिश 'X' में बदल देता है:

यह समंगी है क्योंकि सीधी रेखाएँ नई सीधी रेखाओं में परिवर्तित हो जाती हैं। इस तरह के रूपांतरणों के उदाहरणों में एक घनाकर क्रिस्टल पद्धति समिलित है जो तीनों अक्षों (विस्तारण) पर आकर में वृद्धि या एक एकनताक्ष क्रिस्टल पद्धति में उपरूपक (भौतिकी) समिलित है।

Diffusionless shuffles distortions.svg

मिश्रण, जैसा कि नाम से पता चलता है, एकक कोष्ठिका के भीतर परमाणुओं के छोटे संचलन को समिलित करता है। परिणामस्वरूप, शुद्ध मिश्रण सामान्य रूप से एकक कोष्ठिका के आकार में रूपांतरण का परिणाम नहीं होता है - केवल यह इसकी समरूपता और संरचना को बदलता है।

चरण रूपांतरण सामान्य रूप से रूपांतरित और मूल सामग्री के बीच एक अंतरापृष्ठ के निर्माण में परिणत होते हैं। इस नए अंतरापृष्ठ को उत्पन्न करने के लिए आवश्यक ऊर्जा इसके गुणों पर निर्भर करेगी - अनिवार्य रूप से ये दो संरचनाएं एक साथ कितनी अच्छी तरह उचित बैठती हैं। एक अतिरिक्त ऊर्जा शब्द तब आता है जब रूपांतरण में एक आकार रूपांतरण समिलित होता है, यदि नया चरण आसपास की सामग्री से बाधित होता है, तो यह लोच (भौतिकी) या प्लास्टिक विरूपण और एक विकृति ऊर्जा को जन्म दे सकता है। इन अंतरापृष्ठीय और विकृति ऊर्जा प्रतिबंधों का अनुपात रूपांतरण के गतिकी विज्ञान और नए चरण की रूपरेखा पर उल्लेखनीय प्रभाव डालता है। इस प्रकार, संरूपीय रूपांतरण, जहां विकृतियां छोटी होती हैं, अंतरापृष्ठीय ऊर्जाओं का प्रभुत्व होता है और इसे जालक-विकृत रूपांतरणों से उपयोगी रूप से अलग किया जा सकता है जहां विकृति ऊर्जा अधिक प्रभाव डालती है।

विरूपण के मिश्रण और अपरूपणी घटकों पर विचार करके जालक-विकृत विस्थापन का उपवर्गीकरण किया जा सकता है। अपरूपणी घटक के प्रभुत्व वाले रूपांतरणों में, नए चरण में एक रेखा खोजना संभव है जो मूल चरण से अविभाजित है, जबकि फैलाव प्रमुख होने पर सभी रेखाएं विकृत हो जाती हैं। जालक में परमाणुओं सहज कंपन की तुलना में समिलित विकृति ऊर्जा के परिमाण के अनुसार अपरूपणी-वर्चस्व वाले रूपांतरणों को आगे वर्गीकृत किया जा सकता है और इसलिए रूपांतरण की गतिकी और परिणामी आकृति विज्ञान पर विकृति ऊर्जा का उल्लेखनीय प्रभाव पढ़ता है या नही। यदि विकृति ऊर्जा एक महत्वपूर्ण कारक है तो रूपांतरणों को मार्टेंसिक कहा जाता है और यदि यह रूपांतरण नहीं होता है तो इसे अर्ध-मार्टेंसिटिक कहा जाता है।

आयरन-कार्बन मार्टेंसिटिक ट्रांसफॉर्मेशन

ऑस्टेनाईट और मार्टेंसाईट के बीच का अंतर छोटा है। जबकि ऑस्टेनाइट की एकक कोष्ठिका एक पूर्ण घन है, मार्टेंसाइट में रूपांतरण अंतरालीय कार्बन परमाणुओं द्वारा इस घन को विकृत करता है, जिसके पास विस्थापित रूपांतरण के बीच फैलने का समय नहीं होता है। एकक कोष्ठिका एक आयाम में थोड़ी लंबी और अन्य दो में छोटी हो जाती है। समरूपता के कारणों के लिए दो संरचनाओं का गणितीय विवरण बहुत भिन्न है, लेकिन रासायनिक बंधन बहुत समान है। सीमेन्टाईट के विपरीत, जिसमें सिरेमिक सामग्री के समान बंधन होता है, मार्टेंसाइट की कठोरता को रासायनिक रूप से समझाना मुश्किल होता है।

यह स्पष्टीकरण आयाम में क्रिस्टल के सूक्ष्म रूपांतरण पर टिका है। यहां तक ​​​​कि एक सूक्ष्मदर्शीय क्रिस्टलीय भी लाखों एकक कोष्ठिका लंबा होता है। चूँकि ये सभी इकाइयाँ एक ही दिशा का सामना करती हैं, प्रतिशत के अंश की विकृतियाँ पड़ोसी सामग्रियों के बीच एक बड़े बेमेल में बढ़ जाती हैं। काम सख्त में असंख्य क्रिस्टल दोषों के निर्माण से बेमेल को सुलझाया जाता है। कठोर इस्पात में प्रक्रिया के समान, ये दोष परमाणुओं को एक संगठित प्रकार से एक दूसरे के पीछे फिसलने से रोकते हैं, जिससे सामग्री कठिन हो जाती है।

आकार स्मृति मिश्र धातुओं में यांत्रिक गुण भी होते हैं, जिन्हें अंततः मार्टेंसाइट के सादृश्य द्वारा समझाया गया था। लौह-कार्बन पद्धति के विपरीत, निकल-टाइटेनियम पद्धति में मिश्रधातुओं को चुना जा सकता है जो "मार्टेंसिटिक" चरण को ऊष्मप्रवैगिकी रूप मे स्थिर बनाते हैं।

छद्म मार्टेंसिटिक रूपांतरण

विस्थापनात्मक रूपांतरण और विसरित रूपांतरण के अतिरिक्त, एक नए प्रकार के चरण रूपांतरण में एक उच्च विकृति वाले एक्स-रे विवर्तन पद्धति का उपयोग करके एक विस्थापित उप-जालक संक्रमण और परमाणु विसरित समिलित होते है।[4] नए रूपांतरण तंत्र को छद्म मार्टेंसिटिक रूपांतरण नाम दिया गया है।[5]


संदर्भ

टिप्पणियाँ

  1. D.A. Porter and K.E. Easterling, Phase transformations in metals and alloys, Chapman & Hall, 1992, p.172 ISBN 0-412-45030-5
  2. 西山 善次 (1967). "マルテンサイトの格子欠陥". 日本金属学会会報. 日本金属学会. 6 (7): 497–506. doi:10.2320/materia1962.6.497. ISSN 1884-5835.
  3. Cohen, Morris; Olson, G. B.; Clapp, P. C. (1979). On the Classification of Displacive Phase Transformations (PDF). International Conference on Martensitic Transformations. pp. 1–11.
  4. Chen, Jiuhua; Weidner, Donald J.; Parise, John B.; Vaughan, Michael T.; Raterron, Paul (2001-04-30). "उच्च दबाव और तापमान पर सीटू सिंक्रोट्रॉन एक्स-रे विवर्तन द्वारा फेयलाइट में ओलिवाइन-स्पिनल संक्रमण के दौरान कटियन पुनर्व्यवस्था का अवलोकन". Physical Review Letters. American Physical Society (APS). 86 (18): 4072–4075. Bibcode:2001PhRvL..86.4072C. doi:10.1103/physrevlett.86.4072. ISSN 0031-9007. PMID 11328098.
  5. Kristin Leutwyler New phase transition Scientific American, May 2, 2001.


ग्रन्थसूची

  • Christian, J.W., Theory of Transformations in Metals and Alloys, Pergamon Press (1975)
  • Khachaturyan, A.G., Theory of Structural Transformations in Solids, Dover Publications, NY (1983)
  • Green, D.J.; Hannink, R.; Swain, M.V. (1989). Transformation Toughening of Ceramics. Boca Raton: CRC Press. ISBN 0-8493-6594-5.


बाहरी संबंध