विभाजन फलन (सांख्यिकीय यांत्रिकी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Use American English|date = February 2019}}
{{Use American English|date = February 2019}}
{{Short description|Function in thermodynamics and statistical physics}}
{{Short description|Function in thermodynamics and statistical physics}}भौतिकी में, विभाजन फलन [[थर्मोडायनामिक संतुलन|ऊष्मागतिकी संतुलन]] में प्रणाली के सांख्यिकी गुणों का वर्णन करता है। विभाजन फलन ऊष्मागतिक अवस्था जैसे तापमान और आयतन चर के फलन हैं। कुल ऊर्जा, मुक्त ऊर्जा, एन्ट्रॉपी और दबाव जैसे प्रणाली के अधिकांश समग्र ऊष्मागतिकी चर, विभाजन फलन या इसके व्युत्पत्ति के संदर्भ में व्यक्त किए जा सकते हैं। विभाजन फलन आयाम रहित है।
{{statistical mechanics}}


भौतिकी में, विभाजन फलन [[थर्मोडायनामिक संतुलन|ऊष्मागतिकी संतुलन]] में प्रणाली के सांख्यिकी गुणों का वर्णन करता है। विभाजन फलन ऊष्मागतिक अवस्था जैसे तापमान और आयतन चर के फलन हैं ।कुल ऊर्जा, मुक्त ऊर्जा, एन्ट्रॉपी और दबाव जैसे प्रणाली के अधिकांश समग्र  ऊष्मागतिकी चर, विभाजन फलन या इसके व्युत्पत्ति के संदर्भ में व्यक्त किए जा सकते हैं। विभाजन फलन आयाम रहित है।
प्रत्येक विभाजन फलन का निर्माण एक विशेष [[सांख्यिकीय पहनावा|सांख्यिकीय]] आवरण का प्रतिनिधित्व करने के लिए किया जाता है जो बदले में, एक विशेष ऊष्मागतिकी मुक्त ऊर्जा के समान है। सबसे साधारण सांख्यिकीय समूहों ने इन्हे विभाजन फलनों का नाम दिया है। विहित विभाजन फलन एक विहित समेकन पर लागू होता है, जिसमें प्रणाली को निश्चित तापमान, मात्रा और [[कणों की संख्या]] पर [[पर्यावरण (सिस्टम)|पर्यावरण प्रणाली]] के साथ [[गर्मी|ताप]] का आदान-प्रदान करने की अनुमति दी जाती है। उच्च विहित विभाजन फलन एक उच्च [[विहित पहनावा|विहित आवरण]] पर लागू होता है, जिसमें प्रणाली निश्चित तापमान, मात्रा और [[रासायनिक क्षमता]] पर पर्यावरण के साथ ताप और कणों दोनों का आदान-प्रदान कर सकता है। अन्य प्रकार के विभाजन फलनों को विभिन्न परिस्थितियों के लिए परिभाषित किया जा सकता है; सामान्यीकरण के लिए विभाजन [[समारोह (गणित)|फलन]] देखें। विभाजन फलन के कई भौतिक अर्थ हैं, जैसा कि अर्थ और महत्व में चर्चा की गई है।
 
प्रत्येक विभाजन फलन का निर्माण एक विशेष [[सांख्यिकीय पहनावा|सांख्यिकीय]] आवरण का प्रतिनिधित्व करने के लिए किया जाता है जो बदले में, एक विशेष ऊष्मागतिकी मुक्त ऊर्जा के समान है। सबसे साधारण सांख्यिकीय समूहों ने इन्हे विभाजन फलनों का नाम दिया है। विहित विभाजन फलन एक विहित समेकन पर लागू होता है, जिसमें प्रणाली को निश्चित तापमान, मात्रा और [[कणों की संख्या]] पर [[पर्यावरण (सिस्टम)|पर्यावरण प्रणाली]] के साथ [[गर्मी|ताप]] का आदान-प्रदान करने की अनुमति दी जाती है। उच्च विहित विभाजन फलन एक उच्च [[विहित पहनावा|विहित आवरण]] पर लागू होता है, जिसमें प्रणाली निश्चित तापमान, मात्रा और [[रासायनिक क्षमता]] पर पर्यावरण के साथ ताप और कणों दोनों का आदान-प्रदान कर सकता है। अन्य प्रकार के विभाजन फलनों को विभिन्न परिस्थितियों के लिए परिभाषित किया जा सकता है; सामान्यीकरण के लिए विभाजन [[समारोह (गणित)|फलन]] देखें। विभाजन फलन के कई भौतिक अर्थ हैं, जैसा कि अर्थ और महत्व में चर्चा की गई है।


== विहित विभाजन फलन  ==
== विहित विभाजन फलन  ==


=== परिभाषा ===
=== परिभाषा ===
प्रारंभ में, आइए मान लें कि ऊष्मागतिकी रूप से बड़ी प्रणाली पर्यावरण के साथ [[थर्मल संपर्क]] में है, तापमान टी के साथ, और प्रणाली की मात्रा और घटक कणों की संख्या दोनों निश्चित हैं। इस तरह की प्रणाली के संग्रह में एक आवरण समिलित होता है जिसे एक विहित आवरण कहा जाता है। विहित विभाजन फलन के लिए उपयुक्त [[गणितीय अभिव्यक्ति]] प्रणाली की स्वतंत्रता की डिग्री पर निर्भर करती है, चाहे संदर्भ [[शास्त्रीय यांत्रिकी|पारम्परिक यांत्रिकी]] या [[क्वांटम यांत्रिकी]] हो, और चाहे स्थितिों का स्पेक्ट्रम असतत  संभाव्यता वितरण या हो
प्रारंभ में, आइए मान लें कि ऊष्मागतिकी रूप से बड़ी प्रणाली पर्यावरण के साथ [[थर्मल संपर्क]] में है, तापमान टी के साथ, और प्रणाली की मात्रा और घटक कणों की संख्या दोनों निश्चित हैं। इस तरह की प्रणाली के संग्रह में एक आवरण समिलित होता है जिसे एक विहित आवरण कहा जाता है। विहित विभाजन फलन के लिए उपयुक्त [[गणितीय अभिव्यक्ति]] प्रणाली की स्वतंत्रता की डिग्री पर निर्भर करती है, चाहे संदर्भ [[शास्त्रीय यांत्रिकी|पारम्परिक यांत्रिकी]] या [[क्वांटम यांत्रिकी]] हो, और चाहे स्थितिों का स्पेक्ट्रम असतत  संभाव्यता वितरण हो


==== पारम्परिक असतत प्रणाली ====
==== पारम्परिक असतत प्रणाली ====


पारम्परिक और असतत एक विहित आवरण के लिए, विहित विभाजन फलन को इस रूप में परिभाषित किया गया है
पारम्परिक और असतत एक विहित आवरण के लिए,विहित विभाजन फलन को इस रूप में परिभाषित किया गया है
<math display="block"> Z = \sum_i e^{-\beta E_i}, </math>
<math display="block"> Z = \sum_i e^{-\beta E_i}, </math>
जहाँ
जहाँ
* <math> i </math>  प्रणाली  के [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)|सूक्ष्म अवस्था  (सांख्यिकीय यांत्रिकी)]] के लिए सूचकांक है;
* <math> i </math>  प्रणाली  के [[माइक्रोस्टेट (सांख्यिकीय यांत्रिकी)|सूक्ष्म अवस्था  (सांख्यिकीय यांत्रिकी)]] के लिए सूचकांक है;
* <math> e </math> is e गणितीय स्थिरांक यूलर की संख्या;
* <math> e </math> is e गणितीय स्थिरांक यूलर की संख्या;
* <math> \beta </math>  [[थर्मोडायनामिक बीटा|ऊष्मागतिकी बीटा]] है, जिसे परिभाषित किया गया है <math> \tfrac{1}{k_\text{B} T} </math> जहाँ <math>k_\text{B}</math> बोल्ट्जमैन स्थिरांक है;
* <math> \beta </math>  [[थर्मोडायनामिक बीटा|ऊष्मागतिकी बीटा]] है, जिसे <math> \tfrac{1}{k_\text{B} T} </math> के द्वारा परिभाषित किया गया है जहाँ <math>k_\text{B}</math> बोल्ट्जमैन स्थिरांक है;
* <math> E_i </math> संबंधित सूक्ष्म अवस्था में प्रणाली की कुल ऊर्जा है।
* <math> E_i </math> संबंधित सूक्ष्म अवस्था में प्रणाली की कुल ऊर्जा है।


घातीय  फलन  कारक <math> e^{-\beta E_i} </math> अन्यथा [[बोल्ट्जमान कारक]] के रूप में जाना जाता है।
घातीय  फलन  <math> e^{-\beta E_i} </math> को [[बोल्ट्जमान कारक]] के रूप में जाना जाता है।


{{math proof | title = विहित विभाजन फलन की व्युत्पत्ति (पारंपरिक, असतत)
{{math proof | title = विहित विभाजन फलन की व्युत्पत्ति (पारंपरिक, असतत)
Line 115: Line 112:
जहाँ
जहाँ
* <math> h </math> प्लैंक स्थिरांक है;
* <math> h </math> प्लैंक स्थिरांक है;
* <math> \beta </math>  ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है <math> \tfrac{1}{k_\text{B} T} </math>;
* <math> \beta </math>  ऊष्मागतिकी बीटा है, जिसे <math> \tfrac{1}{k_\text{B} T} </math> के द्वारा परिभाषित किया गया है ;
* <math> i </math> प्रणाली के कणों के लिए सूचक है;
* <math> i </math> प्रणाली के कणों के लिए सूचक है;
* <math> H </math> एक संबंधित कण का हैमिल्टनियन यांत्रिकी है;
* <math> H </math> एक संबंधित कण का हैमिल्टनियन यांत्रिकी है;
Line 122: Line 119:
* <math> \mathrm{d}^3 </math> यह इंगित करने के लिए आशुलिपि संकेतन है <math> q_i </math> और <math> p_i </math> त्रि-आयामी अंतरिक्ष में सदिश हैं।
* <math> \mathrm{d}^3 </math> यह इंगित करने के लिए आशुलिपि संकेतन है <math> q_i </math> और <math> p_i </math> त्रि-आयामी अंतरिक्ष में सदिश हैं।


भाज्य कारक N का कारण! नीचे चर्चा की गई है भाजक में अतिरिक्त स्थिर कारक प्रस्तुत किया गया था क्योंकि असतत रूप के विपरीत, ऊपर दिखाया गया निरंतर रूप आयाम रहित नहीं है।,. जैसा कि पिछले खंड में कहा गया है, इसे एक विमा रहित मात्रा में बनाने के लिए, हमें इसे h3N से विभाजित करना होगा जहाँ h को सामान्यतः प्लैंक स्थिरांक के रूप में लिया जाता है।
भाज्य कारक N का कारण नीचे चर्चा की गई है भाजक में अतिरिक्त स्थिर कारक प्रस्तुत किया गया था क्योंकि असतत रूप के विपरीत, ऊपर दिखाया गया निरंतर रूप आयाम रहित नहीं है। जैसा कि पिछले खंड में कहा गया है, इसे एक विमा रहित मात्रा में बनाने के लिए, हमें इसे h3N से विभाजित करना होगा जहाँ h को सामान्यतः प्लैंक स्थिरांक के रूप में लिया जाता है।


==== क्वांटम यांत्रिक असतत प्रणाली ====
==== क्वांटम यांत्रिक असतत प्रणाली ====
Line 137: Line 134:
==== क्वांटम यांत्रिक सतत प्रणाली ====
==== क्वांटम यांत्रिक सतत प्रणाली ====


क्वांटम यांत्रिक और निरंतर एक विहित आवर के लिए, विहित विभाजन फलन को इस रूप में परिभाषित किया गया है
क्वांटम यांत्रिक और निरंतर एक विहित आवर के लिए, विहित विभाजन फलन को इस रूप में परिभाषित किया गया है
<math display="block"> Z = \frac{1}{h} \int \langle q, p | e^{-\beta \hat{H}} | q, p \rangle \, \mathrm{d} q \, \mathrm{d} p, </math>
<math display="block"> Z = \frac{1}{h} \int \langle q, p | e^{-\beta \hat{H}} | q, p \rangle \, \mathrm{d} q \, \mathrm{d} p, </math>
जहाँ:
जहाँ:
Line 146: Line 143:
* <math> p </math>  विहित निर्देशांक है।
* <math> p </math>  विहित निर्देशांक है।


एक ही ऊर्जा ई साझा करने वाले कई क्वांटम स्थितिों वाले प्रणाली में<sub>s</sub>, यह कहा जाता है कि  प्रणाली के ऊर्जा स्तर पतित ऊर्जा स्तर हैं। पतित ऊर्जा स्तरों के मामले में, हम विभाजन फलन को ऊर्जा स्तरों से योगदान के संदर्भ में लिख सकते हैं इस प्रकार j द्वारा अनुक्रमित है।
एक ही ऊर्जा ई साझा करने वाले कई क्वांटम स्थितिों वाले प्रणाली में<sub>s</sub>,यह कहा जाता है कि  प्रणाली के ऊर्जा स्तर पतित ऊर्जा स्तर हैं। पतित ऊर्जा स्तरों के विषयो  में, हम विभाजन फलन को ऊर्जा स्तरों से योगदान के संदर्भ में लिख सकते हैं इस प्रकार j द्वारा अनुक्रमित है।
<math display="block"> Z = \sum_j g_j \cdot e^{-\beta E_j},</math>
<math display="block"> Z = \sum_j g_j \cdot e^{-\beta E_j},</math>
जहाँ gj अध: पतन कारक है, या क्वांटम अवस्थाओं की संख्या है जिनका समान ऊर्जा स्तर Ej = Es द्वारा परिभाषित है .उपरोक्त उपचार क्वांटम [[सांख्यिकीय यांत्रिकी]] पर लागू होता है, जहां एक परिमित आकार के बॉक्स के अंदर एक भौतिक प्रणाली में प्रायः ऊर्जा अवस्थाओ का एक असतत समुच्चय होता है, जिसे हम उपरोक्त स्थितिों के रूप में उपयोग कर सकते हैं। क्वांटम यांत्रिकी में, विभाजन फलन को क्वांटम यांत्रिकी के गणितीय सूत्रीकरण पर चिन्ह के रूप में औपचारिक रूप से लिखा जा सकता है। <math display="block">Z = \operatorname{tr} ( e^{-\beta \hat{H}} ),</math>
जहाँ gj अध: पतन कारक है, या क्वांटम अवस्थाओं की संख्या है जिनका समान ऊर्जा स्तर Ej = Es द्वारा परिभाषित है .उपरोक्त उपचार क्वांटम [[सांख्यिकीय यांत्रिकी]] पर लागू होता है, जहां एक परिमित आकार के बॉक्स के अंदर एक भौतिक प्रणाली में प्रायः ऊर्जा अवस्थाओ का एक असतत समुच्चय होता है, जिसे हम उपरोक्त स्थितिों के रूप में उपयोग कर सकते हैं। क्वांटम यांत्रिकी में, विभाजन फलन को क्वांटम यांत्रिकी के गणितीय सूत्रीकरण पर चिन्ह के रूप में औपचारिक रूप से लिखा जा सकता है। <math display="block">Z = \operatorname{tr} ( e^{-\beta \hat{H}} ),</math>
कहाँ {{math|''Ĥ''}} हैमिल्टनियन क्वांटम यांत्रिकी है। किसी संचालिका के घातांक को घातीय फलन के अभिलक्षणों का उपयोग करके परिभाषित किया जा सकता है।
कहाँ {{math|''Ĥ''}} हैमिल्टनियन क्वांटम यांत्रिकी है। किसी संचालिका के घातांक को घातीय फलन के अभिलक्षणों का उपयोग करके परिभाषित किया जा सकता है।


Line 182: Line 179:
=== ऊष्मागतिकी कुल ऊर्जा की गणना ===
=== ऊष्मागतिकी कुल ऊर्जा की गणना ===


विभाजन फलन की उपयोगिता को प्रदर्शित करने के लिए, आइए हम कुल ऊर्जा के ऊष्मागतिकी मूल्य की गणना करें। यह मात्र [[अपेक्षित मूल्य]] है, या ऊर्जा के लिए औसत समेकन है, जो कि उनकी संभावनाओं से भारित सूक्ष्म अवस्था ऊर्जा का योग है:
विभाजन फलन की उपयोगिता को प्रदर्शित करने के लिए,आइए हम कुल ऊर्जा के ऊष्मागतिकी मूल्य की गणना करें। यह मात्र [[अपेक्षित मूल्य]] है, या ऊर्जा के लिए औसत समेकन है, जो कि उनकी संभावनाओं से भारित सूक्ष्म अवस्था ऊर्जा का योग है:
<math display="block">\langle E \rangle = \sum_s E_s P_s = \frac{1}{Z} \sum_s E_s
<math display="block">\langle E \rangle = \sum_s E_s P_s = \frac{1}{Z} \sum_s E_s
e^{- \beta E_s} = - \frac{1}{Z} \frac{\partial}{\partial \beta}
e^{- \beta E_s} = - \frac{1}{Z} \frac{\partial}{\partial \beta}
Line 197: Line 194:


=== ऊष्मप्रवैगिकी चर से संबंध ===
=== ऊष्मप्रवैगिकी चर से संबंध ===
इस खंड में, हम विभाजन फलन और प्रणाली के विभिन्न ऊष्मागतिकी मापदंडों के बीच संबंधों को बताएंगे। ये परिणाम पिछले अनुभाग की विधि और विभिन्न  ऊष्मागतिकी संबंधों का उपयोग करके प्राप्त किए जा सकते हैं।
इस खंड में, हम विभाजन फलन और प्रणाली के विभिन्न ऊष्मागतिकी मापदंडों के मध्य संबंधों को बताएंगे। ये परिणाम पिछले अनुभाग की विधि और विभिन्न  ऊष्मागतिकी संबंधों का उपयोग करके प्राप्त किए जा सकते हैं।


जैसा कि हम पहले ही देख चुके हैं, ऊष्मागतिकी  
जैसा कि हम पहले ही देख चुके हैं, ऊष्मागतिकी  
Line 252: Line 249:
यह ध्यान रखना महत्वपूर्ण है कि उच्च विहित आवरण में सूक्ष्म अवस्था की संख्या विहित आवरण के सापेक्ष में बहुत बड़ी हो सकती है, क्योंकि यहां न मात्र ऊर्जा में बल्कि कण संख्या में भी भिन्नता पर विचार करते हैं। पुनः  उच्च विहित विभाजन फलन की उपयोगिता यह है कि यह संभावना से संबंधित प्रणाली <math>i</math> मे स्थित है  
यह ध्यान रखना महत्वपूर्ण है कि उच्च विहित आवरण में सूक्ष्म अवस्था की संख्या विहित आवरण के सापेक्ष में बहुत बड़ी हो सकती है, क्योंकि यहां न मात्र ऊर्जा में बल्कि कण संख्या में भी भिन्नता पर विचार करते हैं। पुनः  उच्च विहित विभाजन फलन की उपयोगिता यह है कि यह संभावना से संबंधित प्रणाली <math>i</math> मे स्थित है  
:<math> p_i = \frac{1}{\mathcal Z} \exp\left(\frac{N_i\mu - E_i}{k_B T}\right).</math>
:<math> p_i = \frac{1}{\mathcal Z} \exp\left(\frac{N_i\mu - E_i}{k_B T}\right).</math>
उच्च विहित आवरण का एक महत्वपूर्ण अनुप्रयोग एक गैर-अंतःक्रियात्मक कई-निकाय क्वांटम गैस (फर्मी-डायराक सांख्यिकी के लिए फर्मी, बोस-आइंस्टीन सांख्यिकी बोसोन के लिए) के आंकड़ों को प्राप्त करने में है, यद्यपि यह उससे कहीं अधिक आम तौर पर लागू होता है। उच्च विहित आवरण   का उपयोग पारम्परिक   प्रणालियों का वर्णन करने के लिए भी किया जा सकता है, या यहां तक ​​कि क्वांटम गैसों के साथ बातचीत भी की जा सकती है।
उच्च विहित आवरण का एक महत्वपूर्ण अनुप्रयोग एक गैर-अंतःक्रियात्मक कई-निकाय क्वांटम गैस (फर्मी-डायराक सांख्यिकी के लिए फर्मी, बोस-आइंस्टीन सांख्यिकी बोसोन के लिए) के आंकड़ों को प्राप्त करने में है, यद्यपि यह उससे कहीं अधिक लागू होता है। उच्च विहित आवरण का उपयोग पारम्परिक प्रणालियों का वर्णन करने के लिए भी किया जा सकता है, या यहां तक ​​कि क्वांटम गैसों के साथ बातचीत भी की जा सकती है।


उच्च विभाजन फलन   कभी-कभी वैकल्पिक चर के संदर्भ में (समतुल्य) लिखा जाता है<ref>{{cite book | isbn = 9780120831807 | title = सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल| last1 = Baxter | first1 = Rodney J. | year = 1982 | publisher = Academic Press Inc.  }}</ref>
उच्च विभाजन फलन कभी-कभी वैकल्पिक चर के संदर्भ में समतुल्य लिखा जाता है<ref>{{cite book | isbn = 9780120831807 | title = सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल| last1 = Baxter | first1 = Rodney J. | year = 1982 | publisher = Academic Press Inc.  }}</ref>
:<math> \mathcal{Z}(z, V, T) = \sum_{N_i} z^{N_i} Z(N_i, V, T), </math>
:<math> \mathcal{Z}(z, V, T) = \sum_{N_i} z^{N_i} Z(N_i, V, T), </math>
कहाँ <math>z \equiv \exp(\mu/k_B T)</math> पूर्ण [[गतिविधि (रसायन विज्ञान)]] (या भगो-ड़ापन) के रूप में जाना जाता है और <math>Z(N_i, V, T)</math> विहित विभाजन फलन है।
जहाँ <math>z \equiv \exp(\mu/k_B T)</math> पूर्ण [[गतिविधि (रसायन विज्ञान)]] के रूप में जाना जाता है और <math>Z(N_i, V, T)</math> विहित विभाजन फलन है।


== यह भी देखें ==
== यह भी देखें ==
Line 271: Line 268:
*{{cite book |first=L. D. |last=Landau |first2=E. M. |last2=Lifshitz |title=Statistical Physics |edition=3rd |others=Part 1 |publisher=Butterworth-Heinemann |location=Oxford |year=1996 |isbn=0-08-023039-3 }}
*{{cite book |first=L. D. |last=Landau |first2=E. M. |last2=Lifshitz |title=Statistical Physics |edition=3rd |others=Part 1 |publisher=Butterworth-Heinemann |location=Oxford |year=1996 |isbn=0-08-023039-3 }}
*{{cite web |last=Vu-Quoc |first=L. |url=http://clesm.mae.ufl.edu/wiki.pub/index.php/Configuration_integral_%28statistical_mechanics%29 |title=Configuration integral (statistical mechanics) |year=2008 |archive-url=https://web.archive.org/web/20120428193950/http://clesm.mae.ufl.edu/wiki.pub/index.php/Configuration_integral_%28statistical_mechanics%29 |archive-date=April 28, 2012 |url-status=dead }}
*{{cite web |last=Vu-Quoc |first=L. |url=http://clesm.mae.ufl.edu/wiki.pub/index.php/Configuration_integral_%28statistical_mechanics%29 |title=Configuration integral (statistical mechanics) |year=2008 |archive-url=https://web.archive.org/web/20120428193950/http://clesm.mae.ufl.edu/wiki.pub/index.php/Configuration_integral_%28statistical_mechanics%29 |archive-date=April 28, 2012 |url-status=dead }}
{{Statistical mechanics topics}}
[[Category: भौतिकी के समीकरण]] [[Category: विभाजन कार्य | विभाजन कार्य ]]


[[Category: Machine Translated Page]]
[[Category:All Wikipedia articles written in American English]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 09/03/2023]]
[[Category:Created On 09/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Use American English from February 2019]]
[[Category:भौतिकी के समीकरण]]
[[Category:विभाजन कार्य| विभाजन कार्य ]]

Latest revision as of 19:29, 19 April 2023

भौतिकी में, विभाजन फलन ऊष्मागतिकी संतुलन में प्रणाली के सांख्यिकी गुणों का वर्णन करता है। विभाजन फलन ऊष्मागतिक अवस्था जैसे तापमान और आयतन चर के फलन हैं। कुल ऊर्जा, मुक्त ऊर्जा, एन्ट्रॉपी और दबाव जैसे प्रणाली के अधिकांश समग्र ऊष्मागतिकी चर, विभाजन फलन या इसके व्युत्पत्ति के संदर्भ में व्यक्त किए जा सकते हैं। विभाजन फलन आयाम रहित है।

प्रत्येक विभाजन फलन का निर्माण एक विशेष सांख्यिकीय आवरण का प्रतिनिधित्व करने के लिए किया जाता है जो बदले में, एक विशेष ऊष्मागतिकी मुक्त ऊर्जा के समान है। सबसे साधारण सांख्यिकीय समूहों ने इन्हे विभाजन फलनों का नाम दिया है। विहित विभाजन फलन एक विहित समेकन पर लागू होता है, जिसमें प्रणाली को निश्चित तापमान, मात्रा और कणों की संख्या पर पर्यावरण प्रणाली के साथ ताप का आदान-प्रदान करने की अनुमति दी जाती है। उच्च विहित विभाजन फलन एक उच्च विहित आवरण पर लागू होता है, जिसमें प्रणाली निश्चित तापमान, मात्रा और रासायनिक क्षमता पर पर्यावरण के साथ ताप और कणों दोनों का आदान-प्रदान कर सकता है। अन्य प्रकार के विभाजन फलनों को विभिन्न परिस्थितियों के लिए परिभाषित किया जा सकता है; सामान्यीकरण के लिए विभाजन फलन देखें। विभाजन फलन के कई भौतिक अर्थ हैं, जैसा कि अर्थ और महत्व में चर्चा की गई है।

विहित विभाजन फलन

परिभाषा

प्रारंभ में, आइए मान लें कि ऊष्मागतिकी रूप से बड़ी प्रणाली पर्यावरण के साथ थर्मल संपर्क में है, तापमान टी के साथ, और प्रणाली की मात्रा और घटक कणों की संख्या दोनों निश्चित हैं। इस तरह की प्रणाली के संग्रह में एक आवरण समिलित होता है जिसे एक विहित आवरण कहा जाता है। विहित विभाजन फलन के लिए उपयुक्त गणितीय अभिव्यक्ति प्रणाली की स्वतंत्रता की डिग्री पर निर्भर करती है, चाहे संदर्भ पारम्परिक यांत्रिकी या क्वांटम यांत्रिकी हो, और चाहे स्थितिों का स्पेक्ट्रम असतत संभाव्यता वितरण हो

पारम्परिक असतत प्रणाली

पारम्परिक और असतत एक विहित आवरण के लिए,विहित विभाजन फलन को इस रूप में परिभाषित किया गया है

जहाँ

  • प्रणाली के सूक्ष्म अवस्था (सांख्यिकीय यांत्रिकी) के लिए सूचकांक है;
  • is e गणितीय स्थिरांक यूलर की संख्या;
  • ऊष्मागतिकी बीटा है, जिसे के द्वारा परिभाषित किया गया है जहाँ बोल्ट्जमैन स्थिरांक है;
  • संबंधित सूक्ष्म अवस्था में प्रणाली की कुल ऊर्जा है।

घातीय फलन को बोल्ट्जमान कारक के रूप में जाना जाता है।

विहित विभाजन फलन की व्युत्पत्ति (पारंपरिक, असतत)

विभाजन फलन को प्राप्त करने के लिए कई विधियाँ हैं। निम्नलिखित व्युत्पत्ति अधिक शक्तिशाली और सामान्य सूचना-सैद्धांतिक जेनेसियन अधिकतम एन्ट्रापी विधियों का अनुसरण करती है


ऊष्मप्रवैगिकी के दूसरे नियम के अनुसार, एक प्रणाली उष्मगतिकी संतुलन पर अधिकतम एन्ट्रापी के विन्यास को संदर्भित करती है। हम स्थितियों के संभाव्यता वितरण की तलाश करते हैं


{\displaystyle \rho _{i}} जो असतत गिब्स एन्ट्रॉपी को अधिकतम करता है that maximizes the discrete Gibbs entropy

दो भौतिक बाधाओं के अधीन:

  1. सभी स्थितियों की संभाव्यताए इकाई मे युग्मित होती है (संभाव्यता का दूसरा स्वयंसिद्धि):
  2. विहित समुदाय, में औसत ऊर्जा स्थिर होती है (ऊर्जा संरक्षण):

बाधाओं के साथ परिवर्तनीय गणना को लागू करना (लैग्रेंज गुणनो की विधि के अनुरूप कुछ अर्थों में), हम लैग्रेंजियन (या लैग्रेंज फलन) लिखते हैं as

भिन्न और चरम के संबंध में leads to

चूंकि यह समीकरण किसी भी भिन्नता के लिए भी सिद्ध होना चाहिए ,इसका अर्थ है कि

 yields

प्राप्त करने के लिए , संभाव्यता को पूर्व बाधा में प्रतिस्थापित किया जाता है

जहाँ एक स्थिर संख्या है जिसे विहित समुदाय विभाजन फलन के रूप में परिभाषित किया गया है:

 देता है  .
के रूप में  को पुनः लिखने पर 

प्राप्त होता है

 के रूप में  को पुनः लिखने पर

प्राप्त होता है

प्राप्त करने के लिए , हम अवकलित करते है को औसत ऊर्जा के सापेक्ष अवकलन करते हैं ऊष्मागतिकी का प्रथम नियम ,को लागू किया जाता है :

इस प्रकार विहित विभाजन फलन

मे परिवर्तित हों जाता है जहाँ ऊष्मागतिकी बीटा के रूप मे परिभाषित किया जाता है। अंत में, संभाव्यता वितरण और एन्ट्रॉपी
मे परिवर्तित हों जाता है।

पारम्परिक सतत प्रणाली

पारम्परिक यांत्रिकी में, एक कण की स्थिति और संवेग चर लगातार भिन्न हो सकते हैं, इसलिए सूक्ष्म अवस्था का समुच्चय वास्तव में अनगिनत समुच्चय है। पारम्परिक सांख्यिकीय यांत्रिकी में, असतत शब्दों के योग के रूप में विभाजन फलन को व्यक्त करना गलत है। इस विषय में हमें एक योग के अतिरिक्त एक अभिन्न का उपयोग करके विभाजन फलन का वर्णन करना चाहिए। पारम्परिक और निरंतर एक विहित आवरण के लिए, विहित विभाजन फलन को इस रूप में परिभाषित किया गया है

जहाँ

  • प्लैंक स्थिरांक है;
  • ऊष्मागतिकी बीटा है, जिसे से परिभाषित किया गया है  ; प्रणाली का हैमिल्टनियन यांत्रिकी है;
  • विहित निर्देशांक है;
  • कैननिकल निर्देशांक है।

इसे एक आयाम रहित मात्रा में बनाने के लिए, हमें इसे h से विभाजित करना होगा, जो कि क्रिया की इकाइयों के साथ कुछ मात्रा मे है सामान्यतः इसे प्लैंक स्थिरांक के रूप में लिया जाता है।

पारम्परिक निरंतर प्रणाली (एकाधिक समान कण)

गैस के लिए तीन आयामों में समान पारम्परिक कण, विभाजन फलन है

जहाँ

  • प्लैंक स्थिरांक है;
  • ऊष्मागतिकी बीटा है, जिसे के द्वारा परिभाषित किया गया है ;
  • प्रणाली के कणों के लिए सूचक है;
  • एक संबंधित कण का हैमिल्टनियन यांत्रिकी है;
  • संबंधित कण के विहित निर्देशांक हैं;
  • संबंधित कण के विहित निर्देशांक हैं;
  • यह इंगित करने के लिए आशुलिपि संकेतन है और त्रि-आयामी अंतरिक्ष में सदिश हैं।

भाज्य कारक N का कारण नीचे चर्चा की गई है भाजक में अतिरिक्त स्थिर कारक प्रस्तुत किया गया था क्योंकि असतत रूप के विपरीत, ऊपर दिखाया गया निरंतर रूप आयाम रहित नहीं है। जैसा कि पिछले खंड में कहा गया है, इसे एक विमा रहित मात्रा में बनाने के लिए, हमें इसे h3N से विभाजित करना होगा जहाँ h को सामान्यतः प्लैंक स्थिरांक के रूप में लिया जाता है।

क्वांटम यांत्रिक असतत प्रणाली

क्वांटम यांत्रिक और असतत एक विहित आवरण के लिए, विहित विभाजन फलन को बोल्ट्जमैन कारक के अवशेष (रैखिक बीजगणित) के रूप में परिभाषित किया गया है:

जहाँ:

  • मैट्रिक्स काअवशेष (रैखिक बीजगणित) है;
  • ऊष्मागतिकी बीटा है, जिसे परिभाषित किया गया है ;
  • हैमिल्टनियन है।

का आयाम प्रणाली की ऊर्जा अवस्थाओ की संख्या है।

क्वांटम यांत्रिक सतत प्रणाली

क्वांटम यांत्रिक और निरंतर एक विहित आवर के लिए, विहित विभाजन फलन को इस रूप में परिभाषित किया गया है

जहाँ:

  • प्लैंक स्थिरांक है;
  • ऊष्मागतिकी बीटा है, जिसे ;परिभाषित किया गया है;
  • हैमिल्टनियन (क्वांटम यांत्रिकी) है;
  • विहित निर्देशांक है;
  • विहित निर्देशांक है।

एक ही ऊर्जा ई साझा करने वाले कई क्वांटम स्थितिों वाले प्रणाली मेंs,यह कहा जाता है कि प्रणाली के ऊर्जा स्तर पतित ऊर्जा स्तर हैं। पतित ऊर्जा स्तरों के विषयो में, हम विभाजन फलन को ऊर्जा स्तरों से योगदान के संदर्भ में लिख सकते हैं इस प्रकार j द्वारा अनुक्रमित है।

जहाँ gj अध: पतन कारक है, या क्वांटम अवस्थाओं की संख्या है जिनका समान ऊर्जा स्तर Ej = Es द्वारा परिभाषित है .उपरोक्त उपचार क्वांटम सांख्यिकीय यांत्रिकी पर लागू होता है, जहां एक परिमित आकार के बॉक्स के अंदर एक भौतिक प्रणाली में प्रायः ऊर्जा अवस्थाओ का एक असतत समुच्चय होता है, जिसे हम उपरोक्त स्थितिों के रूप में उपयोग कर सकते हैं। क्वांटम यांत्रिकी में, विभाजन फलन को क्वांटम यांत्रिकी के गणितीय सूत्रीकरण पर चिन्ह के रूप में औपचारिक रूप से लिखा जा सकता है।
कहाँ Ĥ हैमिल्टनियन क्वांटम यांत्रिकी है। किसी संचालिका के घातांक को घातीय फलन के अभिलक्षणों का उपयोग करके परिभाषित किया जा सकता है।

सुसंगत अवस्थाओं के संदर्भ में अवशेष व्यक्त किए जाने पर Z का पारम्परिक रूप पुनः प्राप्त होता है[1]और जब एक कण की स्थिति और संवेग में क्वांटम-यांत्रिक अनिश्चितता सिद्धांत नगण्य माने जाते हैं। औपचारिक रूप से, ब्रा-केट नोटेशन का उपयोग करते हुए, एक स्वतंत्रता की प्रत्येक डिग्री के लिए अवशेष के अंतर्गत पहचान सम्मिलित करता है:

जहाँ ( x, p⟩ एक सामान्यीकृत गाऊसी वेवपैकेट है जो स्थिति x और संवेग p पर केंद्रित है। इस प्रकार
Z का पारंपरिक रूप तब प्राप्त होता है जब सुसंगत अवस्थाओं के संदर्भ में ट्रेस व्यक्त किया जाता है और जब किसी कण की स्थिति और संवेग में क्वांटम-यांत्रिक अनिश्चितताओं को नगण्य माना जाता है। औपचारिक रूप से, ब्रा-केट नोटेशन का उपयोग करते हुए, प्रत्येक डिग्री के लिए एक स्वतंत्रत अवशेष के अंतर्गत पहचान सम्मिलित करता है:

संभाव्यता सिद्धांत से संबंध

सरलता के लिए, हम इस खंड में विभाजन फलन के असतत रूप का उपयोग करेंगे। हमारे परिणाम निरंतर रूप में समान रूप से लागू होंगे।

प्रणाली S पर विचार करें जो ताप कुण्ड B. में सन्निहित है। दोनों प्रणालियों की कुल ऊर्जा E. होने दें। pi को इस संभावना से निरूपित करने दें कि प्रणाली S एक विशेष सूक्ष्म अवस्था में है। i ऊर्जा Ei. के साथ सांख्यिकीय यांत्रिकी के मौलिक अभिधारणा के अनुसार संभाव्यता कुल बंद प्रणाली (S, B) के सूक्ष्म अवस्था की संख्या के व्युत्क्रमानुपाती होगी जिसमें S सूक्ष्म अवस्था i ऊर्जा Ei के साथ समतुल्य रूप से, pi ऊर्जा EEi के साथ ताप कुंड B के सूक्ष्म अवस्था की संख्या के समानुपाती होगा:

यह मानते हुए कि ऊष्मा कुंड की आंतरिक ऊर्जा S (EEi) की ऊर्जा से बहुत अधिक हैi, हम टेलर विस्तार कर सकते हैं E में पहले आदेश के लिए यहां ऊष्मागतिकी संबंध का उपयोग करें , जहां , कुंड की एन्ट्रॉपी और तापमान क्रमशः
इस प्रकार हैं
चूंकि किसी सूक्ष्मअवस्था में प्रणाली को खोजने की कुल संभावना (pi) सभी 1 के बराबर होना चाहिए, हम जानते हैं कि आनुपातिकता का स्थिरांक सामान्यीकरण स्थिरांक होना चाहिए, और इसलिए, हम विभाजन फलन को इस स्थिरांक के रूप में परिभाषित कर सकते हैं:


ऊष्मागतिकी कुल ऊर्जा की गणना

विभाजन फलन की उपयोगिता को प्रदर्शित करने के लिए,आइए हम कुल ऊर्जा के ऊष्मागतिकी मूल्य की गणना करें। यह मात्र अपेक्षित मूल्य है, या ऊर्जा के लिए औसत समेकन है, जो कि उनकी संभावनाओं से भारित सूक्ष्म अवस्था ऊर्जा का योग है:

या, समकक्ष है:
संयोग से, किसी को ध्यान देना चाहिए कि यदि सूक्ष्म अवस्था ऊर्जा एक पैरामीटर λ पर निर्भर करती है
तो A का अपेक्षित मान है
यह हमें कई सूक्ष्म मात्राओं के अपेक्षित मूल्यों की गणना के लिए एक विधि प्रदान करता है। हम कृत्रिम रूप से सूक्ष्म अवस्था ऊर्जा या, क्वांटम यांत्रिकी की भाषा में, हैमिल्टनियन के लिए मात्रा मे जोड़ते हैं,तथा नए विभाजन फलन और अपेक्षित मान की गणना करते हैं, और फिर अंतिम अभिव्यक्ति में λ को शून्य पर स्थित करते हैं। यह क्वांटम क्षेत्र सिद्धांत के पथ अभिन्न सूत्रीकरण में उपयोग की जाने वाली स्रोत क्षेत्र विधि के अनुरूप है।

ऊष्मप्रवैगिकी चर से संबंध

इस खंड में, हम विभाजन फलन और प्रणाली के विभिन्न ऊष्मागतिकी मापदंडों के मध्य संबंधों को बताएंगे। ये परिणाम पिछले अनुभाग की विधि और विभिन्न ऊष्मागतिकी संबंधों का उपयोग करके प्राप्त किए जा सकते हैं।

जैसा कि हम पहले ही देख चुके हैं, ऊष्मागतिकी

ऊर्जा में विचरण (या ऊर्जा में उतार-चढ़ाव)
ताप क्षमता है
सामान्यतः व्यापक चर X और गहन चर Y पर विचार करें जहाँ X और Y संयुग्मी चरों की एक जोड़ी बनाते हैं। समुच्चय में जहाँ Y निश्चित है तो X का औसत मान होगा:
संकेत चर X और Y की विशिष्ट परिभाषाओं पर निर्भर करेगा। एक उदाहरण X = आयतन और Y = दबाव होगा। इसके अतिरिक्त, X में विचरण होगा
एंट्रॉपी के विशेष विषयो में, एंट्रॉपी द्वारा दिया जाता है
जहां ए हेल्महोल्ट्ज़ मुक्त ऊर्जा है जिसे परिभाषित किया गया है A = UTS, कहाँ U = ⟨E कुल ऊर्जा है और S एन्ट्रापी है, इसलिए
इसके अतिरिक्त, ताप क्षमता के रूप में व्यक्त किया जा सकता है


सब प्रणाली का विभाजन फलन

मान लीजिए कि एक प्रणाली को नगण्य अंतःक्रियात्मक ऊर्जा के साथ N उप-प्रणालियों में उप-विभाजित किया गया है, अर्थात, हम मान सकते हैं कि कण अनिवार्य रूप से गैर-अंतःक्रियात्मक हैं। यदि उप-प्रणालियों के विभाजन फलन ζ1, ζ2, ..., ζN, तब संपूर्ण प्रणाली का विभाजन फलन अलग-अलग विभाजन फलनों का उत्पाद है।

यदि उप-प्रणालियों में समान भौतिक गुण हैं, तो उनके विभाजन फलन समान,ζ1 = ζ2 = ... = ζ किस विषय में हैं।
यद्यपि, इस नियम का एक प्रसिद्ध अपवाद है। यदि उप-प्रणालियाँ वास्तव में समान कण हैं, तो क्वांटम यांत्रिक अर्थ में कि उन्हें सिद्धांत रूप में भी भेद करना असंभव है, कुल विभाजन फलन को N से विभाजित किया जाना चाहिए।
यह सुनिश्चित करने के लिए हम सूक्ष्म अवस्था की संख्या की अधिक गणना न करें। यद्यपि यह एक विलक्षण आवश्यकता की तरह लग सकता है, वास्तव में ऐसी प्रणालियों के लिए ऊष्मागतिकी सीमा के अस्तित्व को बनाए रखना आवश्यक है। इसे गिब्स विरोधाभास के रूप में जाना जाता है।

अर्थ और महत्व

यह स्पष्ट नहीं हो सकता है कि विभाजन फलन, जैसा कि हमने इसे ऊपर परिभाषित किया है, एक महत्वपूर्ण मात्रा है। सबसे पहले, विचार करें कि इसमें क्या जाता है। विभाजन फलन तापमान T और सूक्ष्म अवस्था ऊर्जा E1, E2, E3, आदि का एक फलन है सूक्ष्म अवस्था ऊर्जा अन्य ऊष्मागतिकी चर द्वारा निर्धारित की जाती है, अन्य आंतरिक चक्र चर, जैसे कणों की संख्या और मात्रा, साथ ही सूक्ष्म मात्रा घटक जैसे कणों द्वारा द्रव्यमान निर्धारित किया जाता है। एक प्रणाली के सूक्ष्म घटकों के एक प्रारूप के साथ, कोई सूक्ष्म अवस्था ऊर्जा की गणना कर सकता है, और इस प्रकार विभाजन फलन कर सकता है, जो हमें प्रणाली के अन्य सभी ऊष्मागतिकी गुणों की गणना करने की अनुमति देगा।

विभाजन फलन ऊष्मागतिकी गुणों से संबंधित हो सकता है क्योंकि इसका एक बहुत ही महत्वपूर्ण सांख्यिकीय अर्थ है। प्रायिकता Ps कि प्रणाली सूक्ष्म अवस्था S पर अधिकार कर लेता है।

इस प्रकार, जैसा कि ऊपर दिखाया गया है, विभाजन फलन सामान्यीकरण स्थिरांक की भूमिका निभाता है ध्यान दें कि यह S पर निर्भर नहीं करता है, और यह सुनिश्चित करता है कि संभावनाएं एक तक पहुंचती हैं।

Z को "विभाजन फलन" कहने का कारण है की यह कूटबद्ध करता है कि अलग-अलग सूक्ष्म अवस्था के बीच उनकी व्यक्तिगत ऊर्जा के आधार पर संभावनाओं को कैसे विभाजित किया जाता है। अलग-अलग समेकन के लिए अन्य विभाजन फलन अन्य मैक्रोस्टेट चर के आधार पर संभावनाओं को विभाजित करते हैं। एक उदाहरण के रूप में: इज़ोटेर्मल-आइसोबैरिक आवरण के लिए विभाजन फलन बोल्ट्जमैन वितरण सामान्यीकृत बोल्ट्जमैन वितरण, कण संख्या, दबाव और तापमान के आधार पर संभावनाओं को विभाजित करता है। और ऊर्जा को उस आवरण, गिब्स मुफ़्त क्षमता की विशिष्ट क्षमता से बदल दिया जाता है। Z अक्षर जर्मन भाषा के शब्द ज़स्तन्दसुम्मे के "सम ओवर स्टेट्स" से है। विभाजन फलन की उपयोगिता इस तथ्य से उत्पन्न होती है कि किसी प्रणाली की सूक्ष्मदर्शीय ऊष्मागतिकीय की मात्रा उसके सूक्ष्म विवरण से उसके विभाजन फलन के व्युत्पन्न के माध्यम से संबंधित हो सकती है। विभाजन फलन उपलब्धि भी ऊर्जा क्षेत्र से β क्षेत्र के लिए स्थिति फलन के घनत्व के लाप्लास परिवर्तन करने के बराबर है, और विभाजन फलन के व्युत्क्रम लाप्लास परिवर्तन ऊर्जा के स्थिति घनत्व फलन को पुनः प्राप्त करता है।

उच्च विहित विभाजन फलन

हम एक उच्च विहित विभाजन फलन को एक उच्च विहित आवरण के लिए परिभाषित कर सकते हैं, जो एक स्थिर-आयतन प्रणाली के आँकड़ों का वर्णन करता है जो एक जलाशय के साथ ताप और कणों दोनों का आदान-प्रदान कर सकता है। जलाशय में एक स्थिर तापमान T और एक रासायनिक क्षमता μ होती है।

उच्च विहित विभाजन फलन, द्वारा दर्शाया गया , सूक्ष्म अवस्था सांख्यिकीय यांत्रिकी पर निम्नलिखित योग है

---

यहां, प्रत्येक सूक्ष्म अवस्था द्वारा चिह्नित किया गया है और कुल कण संख्या और कुल ऊर्जा . है यह विभाजन फलन उच्च क्षमता से निकटता से संबंधित है,

इसे उपरोक्त विहित विभाजन फलन से अलग किया जा सकता है, जो हेल्महोल्ट्ज़ मुक्त ऊर्जा के अतिरिक्त संबंधित है।

यह ध्यान रखना महत्वपूर्ण है कि उच्च विहित आवरण में सूक्ष्म अवस्था की संख्या विहित आवरण के सापेक्ष में बहुत बड़ी हो सकती है, क्योंकि यहां न मात्र ऊर्जा में बल्कि कण संख्या में भी भिन्नता पर विचार करते हैं। पुनः उच्च विहित विभाजन फलन की उपयोगिता यह है कि यह संभावना से संबंधित प्रणाली मे स्थित है

उच्च विहित आवरण का एक महत्वपूर्ण अनुप्रयोग एक गैर-अंतःक्रियात्मक कई-निकाय क्वांटम गैस (फर्मी-डायराक सांख्यिकी के लिए फर्मी, बोस-आइंस्टीन सांख्यिकी बोसोन के लिए) के आंकड़ों को प्राप्त करने में है, यद्यपि यह उससे कहीं अधिक लागू होता है। उच्च विहित आवरण का उपयोग पारम्परिक प्रणालियों का वर्णन करने के लिए भी किया जा सकता है, या यहां तक ​​कि क्वांटम गैसों के साथ बातचीत भी की जा सकती है।

उच्च विभाजन फलन कभी-कभी वैकल्पिक चर के संदर्भ में समतुल्य लिखा जाता है[2]

जहाँ पूर्ण गतिविधि (रसायन विज्ञान) के रूप में जाना जाता है और विहित विभाजन फलन है।

यह भी देखें

  • विभाजन फलन (गणित)
  • विभाजन फलन (क्वांटम क्षेत्र सिद्धांत)
  • वायरल प्रमेय
  • विडोम सम्मिलन विधि

संदर्भ

  1. Klauder, John R.; Skagerstam, Bo-Sture (1985). Coherent States: Applications in Physics and Mathematical Physics. World Scientific. pp. 71–73. ISBN 978-9971-966-52-2.
  2. Baxter, Rodney J. (1982). सांख्यिकीय यांत्रिकी में सटीक रूप से हल किए गए मॉडल. Academic Press Inc. ISBN 9780120831807.