मंदित काल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Propagation delay of EM radiation (light)}}
{{Short description|Propagation delay of EM radiation (light)}}
{{electromagnetism}}
{{electromagnetism}}
इलेक्ट्रोमैग्नेटिज्म में, मैक्सवेल के समीकरणों के अनुसार, निर्वात में [[विद्युत|'''विद्युत''']] [[विद्युतचुम्बकीय तरंगें]] प्रकाश c की गति से यात्रा करती हैं। 'मंदित समय' '''मंदित समय''' वह समय होता है जब क्षेत्र उस बिंदु से प्रचार करना प्रारंभ करता है जहां इसे एक पर्यवेक्षक को उत्सर्जित किया गया था। प्रसार विलंब के अर्थ में इस संदर्भ (और साहित्य) में "मंद" शब्द का प्रयोग किया जाता है।
विद्युत चुम्बकत्व में, मैक्सवेल के समीकरणों के अनुसार, निर्वात में [[विद्युतचुम्बकीय तरंगें]] प्रकाश c की गति से यात्रा करती हैं। 'मंदित समय' वह समय होता है जब क्षेत्र उस बिंदु से प्रचार करना प्रारंभ करता है जहां इसे प्रेक्षक को उत्सर्जित किया गया था। प्रसार विलंब के अर्थ में इस संदर्भ (और साहित्य) में "मंद" शब्द का प्रयोग किया जाता है।


== मंद और उन्नत समय ==
== मंद और उन्नत समय ==
[[File:Universal charge distribution.svg|250px|right|thumb|गणना में प्रयुक्त स्थिति सदिश r और r′।]]मंद समय ''t<sub>r</sub>'' या ''t''<big>′</big>′ की गणना ईएम क्षेत्रों के लिए एक साधारण "गति-दूरी-समय" गणना से अधिक कुछ नहीं है। '''मंद समय ''t<sub>r</sub>'' की गणना<sub>r</sub>या t<big>′</big> ईएम क्षेत्रों के लिए एक साधारण गति|गति-दूरी-समय गणना से ज्यादा कुछ नहीं है।'''
[[File:Universal charge distribution.svg|250px|right|thumb|गणना में प्रयुक्त स्थिति सदिश r और r′।]]मंद समय ''t<sub>r</sub>'' या ''t''<big>′</big>′ की गणना ईएम क्षेत्रों के लिए साधारण "गति-दूरी-समय" गणना से अधिक कुछ नहीं है।


यदि ईएम क्षेत्र [[स्थिति वेक्टर|स्थिति सदिश]] '''r'''<big>′</big> (स्रोत आवेश वितरण के अन्दर) पर विकीर्ण होता है, और स्थिति '''r'''<nowiki/>' पर एक प्रेक्षक समय ''t'' पर ईएम क्षेत्र को मापता है, तो क्षेत्र के आवेश वितरण से प्रेक्षक तक यात्रा करने में लगने वाला समय |'''r''' − '''r'''<big>′</big>|/''c'' है, इसलिए इस देरी को प्रेक्षक के समय ''t'' से घटाकर वह समय देता है जब क्षेत्र वास्तव में  मंद समय, ''t′'' का प्रचार करना प्रारंभ करता है।<ref>Electromagnetism (2nd Edition), I.S. Grant, W.R. Phillips, Manchester Physics, John Wiley & Sons, 2008, {{ISBN|978-0471-927129}}</ref><ref>Introduction to Electrodynamics (3rd Edition), D.J. Griffiths, Pearson Education, Dorling Kindersley, 2007, {{ISBN|81-7758-293-3}}</ref>
यदि ईएम क्षेत्र [[स्थिति वेक्टर|स्थिति सदिश]] '''r'''<big>′</big> (स्रोत आवेश वितरण के अन्दर) पर विकीर्ण होता है, और स्थिति '''r'''<nowiki/>' पर प्रेक्षक समय ''t'' पर ईएम क्षेत्र को मापता है, तो क्षेत्र के आवेश वितरण से प्रेक्षक तक यात्रा करने में लगने वाला समय |'''r''' − '''r'''<big>′</big>|/''c'' है, इसलिए इस देरी को प्रेक्षक के समय ''t'' से घटाकर वह समय देता है जब क्षेत्र वास्तव में  मंद समय, ''t′'' का प्रचार करना प्रारंभ करता है।<ref>Electromagnetism (2nd Edition), I.S. Grant, W.R. Phillips, Manchester Physics, John Wiley & Sons, 2008, {{ISBN|978-0471-927129}}</ref><ref>Introduction to Electrodynamics (3rd Edition), D.J. Griffiths, Pearson Education, Dorling Kindersley, 2007, {{ISBN|81-7758-293-3}}</ref>
 
'''यदि ईएम क्षेत्र [[स्थिति वेक्टर|स्थिति सदिश]] 'r'<big>′</big> (स्रोत आवेश वितरण के अन्दर) पर विकीर्ण होता है, और स्थिति 'r' पर एक प्रेक्षक समय t पर ईएम क्षेत्र को मापता है, तो क्षेत्र के लिए समय विलंब आवेश वितरण से प्रेक्षक तक यात्रा करने के लिए |'r' − 'r'<big>′</big>|/c है, इसलिए प्रेक्षक के समय से इस देरी को घटाकर t वह समय देता है जब क्षेत्र वास्तव में प्रचार करना प्रारंभ करता है - मंद समय, टी<बड़ा>′</बड़ा>'''


विलंबित समय <math>t' = t - \frac{|\mathbf{r}-(\mathbf{r}') |}{c}</math> है।
विलंबित समय <math>t' = t - \frac{|\mathbf{r}-(\mathbf{r}') |}{c}</math> है।
Line 17: Line 15:
यह दिखा रहा है कि स्थिति और समय स्रोत और प्रेक्षक के अनुरूप कैसे हैं।
यह दिखा रहा है कि स्थिति और समय स्रोत और प्रेक्षक के अनुरूप कैसे हैं।


एक अन्य संबंधित अवधारणा उन्नत समय ''t<sub>a</sub>'' है, जो उपरोक्त के समान गणितीय रूप लेता है, लेकिन "-" के अतिरिक्त "+" के साथ:
अन्य संबंधित अवधारणा उन्नत समय ''t<sub>a</sub>'' है, जो उपरोक्त के समान गणितीय रूप लेता है, लेकिन "-" के अतिरिक्त "+" के साथ:


:<math> t_a = t + \frac{|\mathbf r - \mathbf r'|}{ c}</math>
:<math> t_a = t + \frac{|\mathbf r - \mathbf r'|}{ c}</math>
और तथाकथित है क्योंकि यह वह समय है जब क्षेत्र वर्तमान समय ''t'' से आगे बढ़ेगा। मंद और उन्नत समय के अनुरूप [[मंद और उन्नत क्षमता|मंद और उन्नत क्षमताएँ]] हैं।<ref>McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, {{ISBN|0-07-051400-3}}</ref>
और तथाकथित है क्योंकि यह वह समय है जब क्षेत्र वर्तमान समय ''t'' से आगे बढ़ता है। मंद और उन्नत समय के अनुरूप [[मंद और उन्नत क्षमता|मंद और उन्नत क्षमताएँ]] हैं।<ref>McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, {{ISBN|0-07-051400-3}}</ref>




Line 26: Line 24:
== मंद स्थिति ==
== मंद स्थिति ==


किसी कण की वर्तमान स्थिति से उस दूरी को घटाकर मंद स्थिति प्राप्त की जा सकती है जो उसने मंद समय से वर्तमान समय में व्यतीत की है। एक जड़त्वीय कण के लिए, यह स्थिति इस समीकरण को हल करके प्राप्त की जा सकती है:
किसी कण की वर्तमान स्थिति से उस दूरी को घटाकर मंद स्थिति प्राप्त की जा सकती है जो उसने मंद समय से वर्तमान समय में व्यतीत की है। जड़त्वीय कण के लिए, यह स्थिति इस समीकरण को हल करके प्राप्त की जा सकती है:


:<math>\mathbf{r}-\mathbf{r'} = \mathbf{r}-\mathbf{r_c}+\frac{|\mathbf{r}-\mathbf{r'}|}{c}\mathbf{v}</math>,
:<math>\mathbf{r}-\mathbf{r'} = \mathbf{r}-\mathbf{r_c}+\frac{|\mathbf{r}-\mathbf{r'}|}{c}\mathbf{v}</math>,
Line 34: Line 32:
== अनुप्रयोग ==
== अनुप्रयोग ==


संभवतः आश्चर्यजनक रूप से - विद्युत चुम्बकीय क्षेत्र और आवेशों पर कार्य करने वाले बल उनके इतिहास पर निर्भर करते हैं, न कि उनके आपसी अलगाव पर निर्भर करते हैं।<ref>Classical Mechanics, T.W.B. Kibble, European Physics Series, McGraw-Hill (UK), 1973, {{ISBN|007-084018-0}}</ref> वर्तमान समय में विद्युत चुम्बकीय क्षेत्रों की गणना में मंद समय और स्रोत की स्थिति का उपयोग करके आवेश घनत्व ρ('''r'<nowiki/>''', ''t<sub>r</sub>'') और [[वर्तमान घनत्व]] '''J'''('''r'<nowiki/>''', ''t<sub>r</sub>'') के अभिन्न अंग सम्मिलित हैं। '''वर्तमान समय में विद्युत चुम्बकीय क्षेत्रों की गणना में आवेश घनत्व ρ(r', ''t) के अभिन्न अंग सम्मिलित हैं<sub>r</sub>) और  'जे' ('आर, टी<sub>r</sub>) मंद समय और स्रोत स्थिति का उपयोग करना।''''' [[ बिजली का गतिविज्ञान |विद्युतगतिकी]], [[विद्युत चुम्बकीय विकिरण]] सिद्धांत और व्हीलर-फेनमैन अवशोषक सिद्धांत में मात्रा प्रमुख है, क्योंकि आवेश वितरण का इतिहास बाद के समय में क्षेत्रों को प्रभावित करता है।
संभवतः आश्चर्यजनक रूप से - विद्युत चुम्बकीय क्षेत्र और आवेशों पर कार्य करने वाले बल उनके इतिहास पर निर्भर करते हैं, न कि उनके आपसी अलगाव पर निर्भर करते हैं।<ref>Classical Mechanics, T.W.B. Kibble, European Physics Series, McGraw-Hill (UK), 1973, {{ISBN|007-084018-0}}</ref> वर्तमान समय में विद्युत चुम्बकीय क्षेत्रों की गणना में मंद समय और स्रोत की स्थिति का उपयोग करके आवेश घनत्व ρ('''r'<nowiki/>''', ''t<sub>r</sub>'') और [[वर्तमान घनत्व]] '''J'''('''r'''', ''t<sub>r</sub>'') के अभिन्न अंग सम्मिलित हैं। [[ बिजली का गतिविज्ञान |विद्युतगतिकी]], [[विद्युत चुम्बकीय विकिरण]] सिद्धांत और व्हीलर-फेनमैन अवशोषक सिद्धांत में मात्रा प्रमुख है, क्योंकि आवेश वितरण का इतिहास बाद के समय में क्षेत्रों को प्रभावित करता है।


== यह भी देखें ==
== यह भी देखें ==
Line 47: Line 45:
{{reflist}}
{{reflist}}


{{DEFAULTSORT:Retarded Time}}[[Category: समय]] [[Category: विद्युत चुम्बकीय विकिरण]]
{{DEFAULTSORT:Retarded Time}}
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 09/03/2023|Retarded Time]]
[[Category:Created On 09/03/2023]]
[[Category:Lua-based templates|Retarded Time]]
[[Category:Machine Translated Page|Retarded Time]]
[[Category:Pages with script errors|Retarded Time]]
[[Category:Short description with empty Wikidata description|Retarded Time]]
[[Category:Templates Translated in Hindi|Retarded Time]]
[[Category:Templates Vigyan Ready|Retarded Time]]
[[Category:Templates that add a tracking category|Retarded Time]]
[[Category:Templates that generate short descriptions|Retarded Time]]
[[Category:Templates using TemplateData|Retarded Time]]
[[Category:विद्युत चुम्बकीय विकिरण|Retarded Time]]
[[Category:समय|Retarded Time]]

Latest revision as of 10:07, 12 April 2023

विद्युत चुम्बकत्व में, मैक्सवेल के समीकरणों के अनुसार, निर्वात में विद्युतचुम्बकीय तरंगें प्रकाश c की गति से यात्रा करती हैं। 'मंदित समय' वह समय होता है जब क्षेत्र उस बिंदु से प्रचार करना प्रारंभ करता है जहां इसे प्रेक्षक को उत्सर्जित किया गया था। प्रसार विलंब के अर्थ में इस संदर्भ (और साहित्य) में "मंद" शब्द का प्रयोग किया जाता है।

मंद और उन्नत समय

गणना में प्रयुक्त स्थिति सदिश r और r′।

मंद समय tr या t′ की गणना ईएम क्षेत्रों के लिए साधारण "गति-दूरी-समय" गणना से अधिक कुछ नहीं है।

यदि ईएम क्षेत्र स्थिति सदिश r (स्रोत आवेश वितरण के अन्दर) पर विकीर्ण होता है, और स्थिति r' पर प्रेक्षक समय t पर ईएम क्षेत्र को मापता है, तो क्षेत्र के आवेश वितरण से प्रेक्षक तक यात्रा करने में लगने वाला समय |rr|/c है, इसलिए इस देरी को प्रेक्षक के समय t से घटाकर वह समय देता है जब क्षेत्र वास्तव में मंद समय, t′ का प्रचार करना प्रारंभ करता है।[1][2]

विलंबित समय है।

जिसे पुनर्व्यवस्थित किया जा सकता है:

यह दिखा रहा है कि स्थिति और समय स्रोत और प्रेक्षक के अनुरूप कैसे हैं।

अन्य संबंधित अवधारणा उन्नत समय ta है, जो उपरोक्त के समान गणितीय रूप लेता है, लेकिन "-" के अतिरिक्त "+" के साथ:

और तथाकथित है क्योंकि यह वह समय है जब क्षेत्र वर्तमान समय t से आगे बढ़ता है। मंद और उन्नत समय के अनुरूप मंद और उन्नत क्षमताएँ हैं।[3]


मंद स्थिति

किसी कण की वर्तमान स्थिति से उस दूरी को घटाकर मंद स्थिति प्राप्त की जा सकती है जो उसने मंद समय से वर्तमान समय में व्यतीत की है। जड़त्वीय कण के लिए, यह स्थिति इस समीकरण को हल करके प्राप्त की जा सकती है:

,

जहां rc स्रोत आवेश वितरण की वर्तमान स्थिति और 'v' इसका वेग है।

अनुप्रयोग

संभवतः आश्चर्यजनक रूप से - विद्युत चुम्बकीय क्षेत्र और आवेशों पर कार्य करने वाले बल उनके इतिहास पर निर्भर करते हैं, न कि उनके आपसी अलगाव पर निर्भर करते हैं।[4] वर्तमान समय में विद्युत चुम्बकीय क्षेत्रों की गणना में मंद समय और स्रोत की स्थिति का उपयोग करके आवेश घनत्व ρ(r', tr) और वर्तमान घनत्व J(r', tr) के अभिन्न अंग सम्मिलित हैं। विद्युतगतिकी, विद्युत चुम्बकीय विकिरण सिद्धांत और व्हीलर-फेनमैन अवशोषक सिद्धांत में मात्रा प्रमुख है, क्योंकि आवेश वितरण का इतिहास बाद के समय में क्षेत्रों को प्रभावित करता है।

यह भी देखें

संदर्भ

  1. Electromagnetism (2nd Edition), I.S. Grant, W.R. Phillips, Manchester Physics, John Wiley & Sons, 2008, ISBN 978-0471-927129
  2. Introduction to Electrodynamics (3rd Edition), D.J. Griffiths, Pearson Education, Dorling Kindersley, 2007, ISBN 81-7758-293-3
  3. McGraw Hill Encyclopaedia of Physics (2nd Edition), C.B. Parker, 1994, ISBN 0-07-051400-3
  4. Classical Mechanics, T.W.B. Kibble, European Physics Series, McGraw-Hill (UK), 1973, ISBN 007-084018-0