प्रतिरेखीय प्रतिचित्र: Difference between revisions

From Vigyanwiki
 
(One intermediate revision by one other user not shown)
Line 98: Line 98:
* Horn and Johnson, ''Matrix Analysis,'' Cambridge University Press, 1985. {{isbn|0-521-38632-2}}. (antilinear maps are discussed in section 4.6).
* Horn and Johnson, ''Matrix Analysis,'' Cambridge University Press, 1985. {{isbn|0-521-38632-2}}. (antilinear maps are discussed in section 4.6).
* {{Trèves François Topological vector spaces, distributions and kernels}} <!-- {{sfn|Trèves|2006|p=}} -->
* {{Trèves François Topological vector spaces, distributions and kernels}} <!-- {{sfn|Trèves|2006|p=}} -->
[[Category: कार्य और मानचित्रण]] [[Category: लीनियर अलजेब्रा]] [[Category: कार्यों के प्रकार]]
 


{{linear-algebra-stub}}
{{linear-algebra-stub}}


 
[[Category:All stub articles]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 17/03/2023]]
[[Category:Created On 17/03/2023]]
[[Category:Vigyan Ready]]
[[Category:Linear algebra stubs]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:कार्य और मानचित्रण]]
[[Category:कार्यों के प्रकार]]
[[Category:लीनियर अलजेब्रा]]

Latest revision as of 12:10, 22 August 2023

गणित में, फलन दो समिश्र सदिश स्पेस के बीच प्रतिरैखिक या संयुग्म-रैखिक कहा जाता है यदि

सभी सदिशों और प्रत्येक सम्मिश्र संख्या के लिए होता है जहाँ, के समिश्र संयुग्मन को दर्शाता है।

प्रतिरेखीय प्रतिचित्रण, रेखीय प्रतिचित्रण का विरोध करता है, जो योगात्मक प्रतिचित्र होते हैं जो संयुग्मी एकरूपता के बदले में सजातीय मानचित्र होते हैं। यदि सदिश समष्टि वास्तविक है तो प्रतिरैखिकता, रैखिकता के समान होता है।

काल-विपर्यय और स्पिनर अवकलन के अध्ययन में क्वांटम यांत्रिकी में प्रतिरेखीय प्रतिचित्रण का प्रयोग होता है, जहां सूचकांकों के ऊपर लगाए गए बिन्दुओ द्वारा आधारभूत सदिश और ज्यामितीय वस्तुओं के घटकों पर बार को बदला जाता हैं। समिश्र संख्या आंतरिक उत्पाद रिक्त स्थान और हिल्बर्ट रिक्त स्थान के साथ कार्य करते समय अदिश प्रतिरैखिक प्रतिचित्रण मान प्रायः उत्पन्न होते हैं।

परिभाषाएँ और विशेषताएँ

फलन रैखिक या संयुग्मी रैखिक तब कहा जाता है, यदि यह योगात्मक और सजातीय संयुग्मित होता है। एक प्रतिरैखिक फलनो में सदिश स्थान पर एक अदिश-मान प्रतिरेखीय मानचित्र है।

फलन योगात्मक होता है यदि

जबकि यह संयुग्मी सजातीय कहलाता है यदि

इसके विपरीत, एक रेखीय मानचित्र एक ऐसा कार्य है जो योगात्मक और सजातीय है, जहाँ सजातीय कहा जाता है यदि

प्रतिचित्रण माप रैखिक मानचित्र के संदर्भ में समान रूप से वर्णित किया जा सकता है से रिक्त समिश्र संयुग्म सदिश के लिए ।  


उदाहरण

दोहरा प्रतिचित्रण मानचित्र

समिश्र सदिश को प्रथम स्थान दिया गया है, जिससे हम एक दोहरा प्रतिचित्रण मानचित्र बना सकते हैं जो एक प्रतिचित्रण मानचित्र है

अवयव के लिए को
कुछ निश्चित वास्तविक संख्याओं के लिए प्रयुक्त होता है। हम इसे किसी भी परिमित आयामी समिश्र सदिश स्थान तक बढ़ा सकते हैं, जहाँ यदि हम मानक आधार लिखते हैं और प्रत्येक मानक आधार तत्व के रूप में होता है
फिर विरोधी रेखीय समिश्र मानचित्र स्वरूप का
के लिए होता हैं।  


दोहरे वास्तविक रैखिक के साथ दोहरे प्रतिरैखिक का समरूपता  

सम्मिश्र सदिश स्थान का दोहरा प्रतिरैखिक[1]पृष्ठ 36 Hom (V,C)

एक विशेष उदाहरण है क्योंकि यह अंतर्निहित वास्तविक सदिश स्थान के दोहरे वास्तविकता के लिए समरूप है यह अरैखिकता मानचित्रण भेजने वाले मानचित्र द्वारा दिया गया है

को
दूसरी दिशा में, विपरीत मानचित्र है जो एक वास्तविक दोहरे सदिश को भेजता है
को
वांछित मानचित्र देता हैं।

गुण

दो प्रतिरेखीय मानचित्रों के संबंधों की संरचना एक रेखीय मानचित्र है। अर्धरेखीय मानचित्रों का वर्ग प्रतिरेखीय मानचित्रों के वर्ग का सामान्यीकरण करता है।

विरूद्ध दोहरी स्पेस

सदिश समष्टि पर सभी प्रतिरेखीय रूपों का सदिश स्थान को बीजगणितीय दोहरा स्पेस कहा जाता है। यदि संस्थितिक वेक्टर स्पेस है, फिर सभी का वेक्टर स्पेस निरंतर प्रतिरैखिक फंक्शंस ऑन, द्वारा चिह्नित, को निरंतर दोहरा स्पेस या बस दोहरा स्पेस कहा जाता है।[2] यदि कोई विभ्रांति उत्पन्न नहीं हो सकता है।

आदर्श स्थान है तो दोहरे स्पेस पर विहित मानदंड है। द्वारा चिह्नित समीकरण का उपयोग करके परिभाषित किया गया है:[2]

यह सूत्र निरंतर प्रति दोहरे स्थान पर विहित मानदंड के सूत्र के समान है। जिसे परिभाषित किया गया है[2]
दोहरे और प्रति दोहरे के बीच विहित मानदंड

कार्यात्मक का सम्मिश्र संयुग्मन को x ᕮ अनुक्षेत्र को में भेजकर परिभाषित किया गया है। यह संतुष्ट करता है

सभी और सभी के लिए है। यह ठीक यही कहता है कि विहित प्रतिरेखीय द्विविभाजन द्वारा परिभाषित किया गया है

संयुग्मन X' → Х जहाँ संयुग्मन (f):= f

साथ ही इसका उलटा प्रतिरैखीय सममिति हैं और इसके परिणामस्वरूप समरूप हैं।

यदि तब और यह विहित मानचित्रण समरूपता मानचित्र तक कम हो जाता है।

आंतरिक गुणन स्थान

यदि आंतरिक गुणन स्पेस तो दोनों विहित मानदंड और पर समांतर चतुर्भुज नियम को संतुष्ट करता है, जिसका अर्थ है कि ध्रुवीकरण सर्वसमिका का उपयोग परिभाषित करने के लिए किया जा सकता है विहित आतंरिक गुणन और आगे भी जिसे यह लेख अंकन द्वारा दर्शाएगा

जहां यह आंतरिक गुणन बनाता है और हिल्बर्ट स्पेस में बनता है। आंतरिक गुणन और अपने दूसरे तर्कों में प्रतिरैखिक हैं। इसके अतिरिक्त, इस आंतरिक गुणन द्वारा प्रेरित विहित मानदंड (अर्थात, द्वारा परिभाषित मानदंड) दोहरे मानदंड के अनुरूप है (अर्थात, जैसा कि इकाई बॉल पर उच्चक द्वारा ऊपर परिभाषित किया गया है); स्पष्ट रूप से, इसका अर्थ है कि निम्नलिखित प्रत्येकके लिए है:
यदि आंतरिक गुणन स्थान है तो दोहरी जगह पर आंतरिक गुणन और विरोधी दोहरी जगह द्वारा क्रमशः निरूपित किया गया और से संबंधित हैं
और


यह भी देखें

  • काउचिज कार्यात्मक समीकरण - कार्यात्मक समीकरण
  • सम्मिश्र संयुग्मन - सम्मिश्र संख्या पर मूल संक्रिया
  • सम्मिश्र संयुग्मन वेक्टर स्थान - गणित की अवधारणा
  • हिल्बर्ट स्पेस के मूल प्रमेय
  • आतंरिक गुणन स्थान - डॉट गुणन का सामान्यीकरण; हिल्बर्ट स्पेस को परिभाषित करने के लिए उओयोग किया जाता है
  • रैखिक मानचित्रण - गणितीय फलन, रैखिक बीजगणित में
  • मैट्रिक्स समानता
  • रिज़्ज़ प्रतिनिधित्व प्रमेय - हिल्बर्ट स्पेस के दोहरे के बारे में प्रमेय
  • सेस्क्विलिनियर रूप - द्विरेखीय प्रकार का सामान्यीकरण
  • विपरीत समय - भौतिकी में विपरीत समय समरूपता

उद्धरण

  1. Birkenhake, Christina (2004). जटिल एबेलियन किस्में. Herbert Lange (Second, augmented ed.). Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-662-06307-1. OCLC 851380558.
  2. 2.0 2.1 2.2 Trèves 2006, pp. 112–123.


संदर्भ

  • Budinich, P. and Trautman, A. The Spinorial Chessboard. Springer-Verlag, 1988. ISBN 0-387-19078-3. (antilinear maps are discussed in section 3.3).
  • Horn and Johnson, Matrix Analysis, Cambridge University Press, 1985. ISBN 0-521-38632-2. (antilinear maps are discussed in section 4.6).
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.