अर्द्ध ठोस धातु ढलाई: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 70: Line 70:


{{Authority control}}
{{Authority control}}
[[Category: ढलाई (निर्माण)]] [[Category: धातु]]
 


[[pt:Fundição injetada]]
[[pt:Fundição injetada]]


 
[[Category:Collapse templates]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 13/03/2023]]
[[Category:Created On 13/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:ढलाई (निर्माण)]]
[[Category:धातु]]

Latest revision as of 11:37, 13 April 2023

अर्द्ध ठोस धातु संचकन (एसएसएम) डाई कास्टिंग (रूपदा संचकन) का लगभग शुद्ध आकार का परिवर्तन है।[1] इस प्रक्रिया का उपयोग वर्तमान मे गैर-लौह धातुओं जैसे एल्यूमीनियम, तांबा[2] और मैग्नीशियम के साथ किया जाता है। लेकिन उच्च तापमान मिश्र धातुओं के साथ भी कार्य कर सकता है जिसके लिए वर्तमान में उपयुक्त साँचे वाली सामग्री उपलब्ध नहीं है। प्रक्रिया संचकन और फोर्जन (गढ़ाई) लाभों को जोड़ती है। इस प्रक्रिया का नाम द्रव गुण थिक्सोट्रोपी (तनु तरल) के नाम पर रखा गया है, जो कि ऐसी घटना है जो इस प्रक्रिया को कार्य करने की स्वीकृति देती है। प्रत्यक्ष शब्दों में, प्रवाह तनु तरल पदार्थ अपरूपित किए जाने पर पिघलते हैं, लेकिन स्थिर होने पर श्यानता हो जाती है।[3] इस प्रकार की प्रक्रिया की संभावना को पहली बार 1970 के दशक के प्रारंभ में पहचाना गया था।[3] थिक्सोकास्टिंग, प्रवाह संचकन, थिक्सोमोल्डिंग की तीन अलग-अलग प्रक्रियाएं हैं। दबाव प्रेरित गलित-सक्रियकृत तप्‍त और अतप्त क्रियाविधि का उपयोग करके थिक्सोकास्टिंग के लिए एल्यूमीनियम मिश्र धातु निर्मित करने के लिए एक विशेष प्रक्रिया को संदर्भित करता है।

अर्द्ध ठोस धातु संचकन एक ऐसे तापमान पर किया जाता है जो धातु को उसके तरल और ठोस (रसायन विज्ञान) तापमान के बीच रखता है। आदर्श रूप से, धातु 30 से 65% ठोस होनी चाहिए। अर्ध-ठोस मिश्रण में प्रयोग करने योग्य होने के लिए कम श्यानता होनी चाहिए, और इस कम श्यानता तक पहुंचने के लिए सामग्री को तरल प्रावस्था से घिरे प्राथमिक गोलाकार धातु की आवश्यकता होती है।[2] संभव तापमान सीमा सामग्री पर निर्भर करती है और एल्यूमीनियम मिश्र धातुओं के लिए 50 डिग्री सेल्सियस तक हो सकती है, लेकिन अविस्तृत गलनांक की सीमा के लिए तांबा मिश्र धातु केवल एक डिग्री का दसवां भाग हो सकता है।[4]

अर्ध-ठोस संचकन सामान्य रूप से उच्च-स्तरीय अनुप्रयोगों के लिए उपयोग की जाती है। एल्यूमीनियम मिश्र धातुओं के लिए, विशिष्ट भागों में संरचनात्मक चिकित्सा और वैमानिक भागों, दबाव युक्त भागों, प्रतिरक्षक भागों, इंजन आरोपण, वायु नलिका संवेदक दोहन, इंजन अवरोध और तेल पंप निस्यादक आधान सम्मिलित हैं।[5]


प्रक्रियाएं

अर्द्ध ठोस धातु संचकन बनाने के लिए कई अलग-अलग तकनीकें हैं। एल्यूमीनियम मिश्र धातुओं के लिए अधिक सामान्य प्रक्रियाएं थिक्सोकास्टिंग और प्रवाह संचकन हैं।

मैग्नीशियम मिश्र धातुओं के साथ, सबसे सामान्य प्रक्रिया संचकन है।[6]


थिक्सोकास्टिंग

थिक्सोकास्टिंग एक गैर-द्रुमाकृतिक सूक्ष्म संरचना के साथ पूर्वनिर्मित बिलेट का उपयोग करता है जो सामान्य रूप से बार को संचयन किए जाने पर द्रवीभूत हुई धातु को प्रबल क्रियाशीलता से बनाया जाता है। प्रेरण तापन का उपयोग सामान्य रूप से अर्ध-ठोस तापमान सीमा में बिलेट को पुनः गर्म करने के लिए किया जाता है, और डाई संचकन मशीनों का उपयोग अर्ध-ठोस सामग्री को कठोर इस्पात सांचा में अन्तःक्षेप करने के लिए किया जाता है। उत्तरी अमेरिका, यूरोप और एशिया में व्यावसायिक रूप से थिक्सोकास्टिंग का प्रदर्शन किया जा रहा है। थिक्सोकास्टिंग में उत्पाद की स्थिरता के कारण अत्यधिक उच्च गुणवत्ता वाले घटकों का उत्पादन करने की क्षमता है, जो कि फोर्जिंग या चल स्टॉक बनाने के लिए नियोजित समान आदर्श सतत प्रसंस्करण स्थितियों के अंतर्गत निर्मित पूर्वनिर्मित बिलेट ( लकड़ी का कुंदा) का उपयोग करने के परिणामस्वरूप होता है।[7] मुख्य हानि यह है कि यह विशेष बिलेट्स के कारण महत्वपूर्ण है जिसका उपयोग किया जाना चाहिए, हालांकि आंतरिक चुंबकीय द्रवगतिकीय निरंतर संचकन क्षमताओं वाली सुविधाएं 100% आंतरिक प्रत्यावर्तन को पुनर्चक्रण कर सकती हैं। अन्य कमियों में सीमित संख्या में मिश्र धातुएं सम्मिलित हैं, और आंतरिक चुंबकीय द्रवगतिकीय संचकन क्षमता के बिना सुविधाओं के लिए स्क्रैप (क्षेप्य) का प्रत्यक्ष रूप से पुन: उपयोग नहीं किया जा सकता है।[8]


प्रवाह संचकन

थिक्सोकास्टिंग के विपरीत, जो एक बिलेट को पुनः गर्म करता है, प्रवाह संचकन एक विशिष्ट डाई संचकन भट्टी में उत्पादित द्रवीभूत हुई धातु से अर्ध-ठोस घोल विकसित करता है।[7] यह थिक्सोकास्टिंग की तुलना में एक बड़ा लाभ है क्योंकि इसके परिणामस्वरूप कम क़ीमती प्रभरण द्रव्य होता है, विशिष्ट डाई संचकन मिश्र धातुओं के रूप में, और प्रत्यक्ष पुनर्चक्रण की स्वीकृति देता है।[8] हालांकि, प्रवाह संचकन प्रक्रिया नियंत्रण समस्याओ को भी प्रस्तुत करता है जैसे गतिविधि के प्रारम्भिक प्रवाह के बाद, बहुत कम सामग्री को प्रवाह संचकन के माध्यम से संसाधित किया जाता है।

थिक्सोमोल्डिंग

मैग्नीशियम मिश्र धातुओं के लिए, थिक्सोमोल्डिंग अंत:क्षेपी संचकन के समान मशीन का उपयोग करता है। एकल प्रावस्था प्रक्रिया में, कमरे के तापमान मैग्नीशियम मिश्र धातु चिप्स को एक गर्म नलिका के पश्च सिरे में आयतनिक प्रभरक के माध्यम से सिंचित किया जाता है। मैग्नीशियम चिप्स के ऑक्सीकरण को रोकने के लिए नलिका को आर्गन वातावरण में रखा जाता है। बैरल के अंदर स्थित एक वाहित्र मैग्नीशियम चिप्स को आगे बढ़ाता है क्योंकि वे अर्ध-ठोस तापमान सीमा में गरम होते हैं। दबाव घूर्णन अर्ध-ठोस संचकन के लिए आवश्यक गोलाकार संरचना उत्पन्न करने के लिए आवश्यक अपरूपण बल प्रदान करता है। एक बार पर्याप्त घोल एकत्र हो जाने के बाद, घोल को इस्पात सांचा में अन्तःक्षेप करने के लिए दबाव डाला जाता है।[9]


दबाव प्रेरित गलित-सक्रियकृत (एसआईएमए)

दबाव प्रेरित गलित-सक्रियकृत पद्धति में सामग्री को पहले एसएमएम तापमान तक गर्म किया जाता है। जैसे-जैसे यह ठोस तापमान के निकट आता है, कण एक सूक्ष्म कण की संरचना बनाने के लिए पुन: क्रिस्टलीकृत हो जाते हैं। ठोस तापमान पारित होने के बाद अर्द्ध ठोस धातु संचकन सूक्ष्म संरचना बनाने के लिए कण की क्रिस्टल सीमा पिघल जाती हैं। इस विधि के कार्य करने के लिए सामग्री को अर्ध-कठोर अवस्था में बहिर्वेधित या शीतलता वेल्लित किया जाना चाहिए। यह विधि आकार में 37 मिलीमीटर (1.5 इंच) से छोटे बार व्यास तक सीमित है क्योंकि इसके केवल छोटे भाग ही डाले जा सकते हैं।[10]


लाभ

अर्द्ध ठोस धातु संचकन के लाभ इस प्रकार हैं:[11]

  • जटिल भागों ने शुद्ध आकार का उत्पादन किया
  • सरंध्रता मुक्त
  • कम संकोचन
  • उत्कृष्ट यांत्रिक प्रदर्शन
  • दबाव की संघनता
  • ठोस सहनशीलता
  • पतली भित्ति
  • उष्मा संशोधन योग्य (T4/T5/T6)
  • अच्छी सतह समाप्त

उच्च अखंडता वाले भागों का उत्पादन करने के लिए उच्च समेकन दबाव का उपयोग किया जाता है, और डाई संचकन अर्ध-ठोस धातु के लिए आवश्यक तापमान सामान्य संचकन से कम होता है; परंपरागत उपकरण इस्पात सामग्री सामान्य रूप से उत्पादन अनुप्रयोगों में उपयोग की जाती है। उपयुक्त उच्च तापमान सांचा सामग्री की कमी केवल प्रायोगिक अनुप्रयोगों के लिए उच्च गलनांक धातुओं, जैसे उपकरण इस्पात और स्टेलाइट के संचकन को सीमित करती है। अन्य लाभों में स्वचालन में आसानी, स्थिरता, डाई संचकन दरों के बराबर या उससे अधिकतम उत्पादन दर, कोई वायु पाश बद्धता नहीं, कम संकोचन (संचकन) दर और एक समान सूक्ष्म संरचना सम्मिलित हैं।[3]


कमियाँ

उत्पादन सुविधाओं को प्रक्रिया स्थितियों पर उच्च स्तर के नियंत्रण की आवश्यकता होती है, लेकिन उच्च अंतिम अन्तः क्षेप दबाव और कम अन्तः क्षेप वेग के होने के बाद भी मानक डाई संचकन मशीनें उत्पादन के लिए बहुत उपयुक्त हैं। जबकि थिक्सोकास्ट खंड का विक्रय कीमती हो सकता है, कार्यप्रणाली पर चुंबकद्रवगतिक निरंतर संचकन क्षमताओं वाली सुविधाएं सभी आंतरिक सामग्री प्रत्यावर्तन को पूरी तरह से पुनर्चक्रण करने में सक्षम हैं। क्योंकि थिक्सोट्रॉपी (अर्ध-ठोस अवस्था) भौतिक या प्रवाहिकीय के अर्थ में एक मध्य अवस्था है, यह प्रक्रिया परिवेश के तापमान के प्रति अपेक्षाकृत असंवेदनशील है क्योंकि छोटे ताप के हानि के कारण आंशिक ठोस में केवल सामान्य परिवर्तन होते हैं।

यह भी देखें

संदर्भ

टिप्पणियाँ

  1. "MyNADCA में आपका स्वागत है!". diecasting.org. Retrieved 2015-08-20.
  2. 2.0 2.1 Young, p. 1.
  3. 3.0 3.1 3.2 Lowe, Anthony; Ridgway, Keith; Atkinson, Helen (September 1999), "Thixoforming", Materials World, 7 (9): 541–543.
  4. Vinarcik, Edward J. (2003), High integrity die casting processes, vol. 1, Wiley-IEEE, pp. 91–101, ISBN 978-0-471-20131-1.
  5. P. Kapranos, Proc. 10th Inter. Conf. Semi-Solid Processing of Alloys and Composites, Aachen, Germany & Liege, Belgium, 2008
  6. S. LeBeau & R Decker, "Microstructural Design of Thixomolded Magnesium Alloys", Proc. 5th Inter. Conf. Semi-Solid Processing of Alloys and Composites, Golden, Colorado, 1998
  7. 7.0 7.1 Stephen P. Midson, Semi-Solid Casting of Aluminum Alloys: An Update, Die Casting Engineer, Sept. 2008
  8. 8.0 8.1 John L., Jorstad (September 2006), "Aluminum Future Technology in Die Casting" (PDF), Die Casting Engineering: 18–25, archived (PDF) from the original on 2011-06-14.
  9. Stephen P. Midson, Robert K. Kilbert, Stephen E. Le Beau & Raymond Decker, "Guidelines for Producing Magnesium Thixomolded Semi-Solid Components used in Structural Applications", Proc. 8th Inter. Conf. Semi-Solid Processing of Alloys and Composites, Limasol, Cyprus, 2004
  10. Young, p. 2.
  11. Stephen P. Midson, NADCA Semi-Solid & Squeeze Casting Conference, Rosemont, Illinois, 1996


ग्रन्थसूची


बाहरी संबंध