प्रकाश संदीप्ति: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(16 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Light emission from substances after they absorb photons}}
{{Short description|Light emission from substances after they absorb photons}}
{{Use American English|date = April 2019}}
{{Use American English|date = April 2019}}
[[File:Fluorescence rainbow.JPG|thumb|यूवी प्रकाश के तहत प्रतिदीप्ति समाधान। लंबे समय तक विद्युत चुम्बकीय तरंग दैर्ध्य के तहत अवशोषित फोटोन तेजी से फिर से उत्सर्जित होते हैं।]]प्रकाश संदीप्ति (PL के रूप में संक्षिप्त) फोटॉन (विद्युत चुम्बकीय विकिरण) के अवशोषण के बाद किसी भी प्रकार के पदार्थ से प्रकाश उत्सर्जन होता है।<ref>{{cite journal |last1=Tebyetekerwa |first1=Mike |last2=Zhang |first2=Jian |last3=Xu |first3=Zhen |last4=Truong |first4=Thien N. |last5=Yin |first5=Zongyou |last6=Lu |first6=Yuerui |last7=Ramakrishna |first7=Seeram |last8=Macdonald |first8=Daniel |last9=Nguyen |first9=Hieu T. |title=दो आयामी संक्रमण-धातु डाइक्लोजेनाइड्स में स्थिर-राज्य फोटोल्यूमिनेसेंस स्पेक्ट्रोस्कोपी के तंत्र और अनुप्रयोग|journal=ACS Nano |date=24 November 2020 |volume=14 |issue=11 |pages=14579–14604 |doi=10.1021/acsnano.0c08668 |pmid=33155803 |s2cid=226269683 }}</ref> यह [[ चमक ]] (प्रकाश उत्सर्जन) के कई रूपों में से एक है और [[Index.php?title=फोटोएक्सीटेशन|फोटोएक्सीटेशन]] (यानी फोटॉन जो एक परमाणु में उच्च ऊर्जा स्तर पर इलेक्ट्रॉनों (अतिसूक्ष्म परमाणु) को उत्तेजित करते हैं) द्वारा शुरू किया जाता है, इसलिए पूर्वयोजन फोटो-।<ref>[[IUPAC]], [[Compendium of Chemical Terminology]], 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "[http://goldbook.iupac.org/P04588.html photochemistry]".</ref> उत्तेजना के बाद, विभिन्न विश्राम प्रक्रियाएं आमतौर पर होती हैं जिनमें अन्य फोटॉन फिर से विकीर्ण होते हैं। अवशोषण और उत्सर्जन के बीच समय अवधि भिन्न हो सकती है: अकार्बनिक अर्धचालकों में मुक्त- वाहक प्लाज्मा से जुड़े उत्सर्जन के लिए लघु फेमटोसेकंड-प्रणाली से लेकर<ref name="HayesDeveaud2002">Hayes, G.R.; Deveaud, B. (2002). "Is Luminescence from Quantum Wells Due to Excitons?". ''Physica Status Solidi A'' '''190''' (3): 637–640. [https://dx.doi.org/10.1002%2F1521-396X%28200204%29190%3A3%3C637%3A%3AAID-PSSA637%3E3.0.CO%3B2-7 doi:10.1002/1521-396X(200204)190:3<637::AID-PSSA637>3.0.CO;2-7]</ref> आणविक प्रणालियों में [[स्फुरदीप्ति]] प्रक्रियाओं के लिए मिलीसेकंड(क्षण का लाखवां भाग) तक; और विशेष परिस्थितियों में उत्सर्जन में देरी मिनटों या घंटों तक भी हो सकती है।
[[File:Fluorescence rainbow.JPG|thumb|यूवी प्रकाश के अनुसार प्रतिदीप्ति समाधान। लंबे समय तक विद्युत चुम्बकीय तरंग दैर्ध्य के अनुसार अवशोषित फोटोन तेजी से फिर से उत्सर्जित होते हैं।]]प्रकाश संदीप्ति (PL के रूप में संक्षिप्त) फोटॉन (विद्युत चुम्बकीय विकिरण) के अवशोषण के बाद किसी भी प्रकार के पदार्थ से प्रकाश उत्सर्जन होता है।<ref>{{cite journal |last1=Tebyetekerwa |first1=Mike |last2=Zhang |first2=Jian |last3=Xu |first3=Zhen |last4=Truong |first4=Thien N. |last5=Yin |first5=Zongyou |last6=Lu |first6=Yuerui |last7=Ramakrishna |first7=Seeram |last8=Macdonald |first8=Daniel |last9=Nguyen |first9=Hieu T. |title=दो आयामी संक्रमण-धातु डाइक्लोजेनाइड्स में स्थिर-राज्य फोटोल्यूमिनेसेंस स्पेक्ट्रोस्कोपी के तंत्र और अनुप्रयोग|journal=ACS Nano |date=24 November 2020 |volume=14 |issue=11 |pages=14579–14604 |doi=10.1021/acsnano.0c08668 |pmid=33155803 |s2cid=226269683 }}</ref> यह [[ चमक ]] (प्रकाश उत्सर्जन) के कई रूपों में से एक है और [[Index.php?title=फोटोएक्सीटेशन|फोटोएक्सीटेशन]] (यानी फोटॉन जो एक परमाणु में उच्च ऊर्जा स्तर पर इलेक्ट्रॉनों (अतिसूक्ष्म परमाणु) को उत्तेजित करते हैं) द्वारा आरंभ किया जाता है, इसलिए पूर्वयोजन फोटो-।<ref>[[IUPAC]], [[Compendium of Chemical Terminology]], 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "[http://goldbook.iupac.org/P04588.html photochemistry]".</ref> ऊर्जन के बाद, विभिन्न विश्राम प्रक्रियाएं सामान्य होती हैं जिनमें अन्य फोटॉन फिर से विकीर्ण होते हैं। अवशोषण और उत्सर्जन के बीच समय अवधि भिन्न हो सकती है। अकार्बनिक अर्धचालकों में मुक्त- वाहक प्लाज्मा से जुड़े उत्सर्जन के लिए लघु फेमटोसेकंड-प्रणाली से लेकर<ref name="HayesDeveaud2002">Hayes, G.R.; Deveaud, B. (2002). "Is Luminescence from Quantum Wells Due to Excitons?". ''Physica Status Solidi A'' '''190''' (3): 637–640. [https://dx.doi.org/10.1002%2F1521-396X%28200204%29190%3A3%3C637%3A%3AAID-PSSA637%3E3.0.CO%3B2-7 doi:10.1002/1521-396X(200204)190:3<637::AID-PSSA637>3.0.CO;2-7]</ref> आणविक प्रणालियों में [[स्फुरदीप्ति]] प्रक्रियाओं के लिए मिलीसेकंड(क्षण का लाखवां भाग) तक; और विशेष परिस्थितियों में उत्सर्जन में देरी मिनटों या घंटों तक भी हो सकती है।


एक निश्चित ऊर्जा पर प्रकाश संदीप्ति का निरीक्षण एक संकेत के रूप में देखा जा सकता है, कि एक इलेक्ट्रॉन इस ऊर्जा से जुड़ा एक उत्तेजित अवस्था है।
एक निश्चित ऊर्जा पर प्रकाश संदीप्ति का निरीक्षण एक संकेत के रूप में देखा जा सकता है, कि एक इलेक्ट्रॉन इस ऊर्जा से जुड़ा एक उत्तेजित अवस्था है।


हालांकि यह आम तौर पर [[परमाणुओं]] और समान प्रणालियों में सच है, सहसंबंध और अन्य जटिल घटनाएं भी  प्रकाश संदीप्ति के स्रोतों के रूप में कार्य करती हैं | बहुपिंडी प्रणालियां जैसे अर्धचालक। इसे संभालने के लिए एक सैद्धांतिक दृष्टिकोण [[Index.php?title=अर्धचालक संदीप्ति समीकरण|अर्धचालक संदीप्ति समीकरण]] द्वारा दिया गया है।
चूंकि यह सामान्यत: [[परमाणुओं]] और समान प्रणालियों में सच है, सहसंबंध और अन्य जटिल घटनाएं भी  प्रकाश संदीप्ति के स्रोतों के रूप में कार्य करती हैं बहुपिंडी प्रणालियां जैसे अर्धचालक इसे संभालने के लिए एक सैद्धांतिक दृष्टिकोण [[Index.php?title=अर्धचालक संदीप्ति समीकरण|अर्धचालक संदीप्ति समीकरण]] द्वारा दिया गया है।


== रूप ==
== रूप ==
[[File:Photoluminescence animation.gif|thumb|प्रकाश संदीप्ति की उत्तेजना-विश्राम प्रक्रियाओं के लिए योजनाबद्ध]]प्रकाश संदीप्ति प्रक्रियाओं को उत्सर्जन के संबंध में उत्तेजक फोटॉन की ऊर्जा को विभिन्न मानकों द्वारा वर्गीकृत किया जा सकता है।
[[File:Photoluminescence animation.gif|thumb|प्रकाश संदीप्ति की ऊर्जन-विश्राम प्रक्रियाओं के लिए योजनाबद्ध]]प्रकाश संदीप्ति प्रक्रियाओं को उत्सर्जन के संबंध में उत्तेजक फोटॉन की ऊर्जा को विभिन्न मानकों द्वारा वर्गीकृत किया जा सकता है।
गुंजयमान उत्तेजना एक ऐसी स्थिति का वर्णन करती है जिसमें एक विशेष तरंग दैर्ध्य के फोटोन अवशोषित होते हैं और समकक्ष फोटॉन बहुत तेजी से पुनः उत्सर्जित होते हैं। इसे अक्सर [[प्रतिध्वनि प्रतिदीप्ति]] के रूप में जाना जाता है। समाधान या गैस [[चरण (पदार्थ)]] में सामग्री के लिए, इस प्रक्रिया में इलेक्ट्रॉन शामिल होते हैं लेकिन अवशोषण और उत्सर्जन के बीच रासायनिक पदार्थ की आणविक विशेषताओं को शामिल करने वाला कोई महत्वपूर्ण आंतरिक ऊर्जा नहीं होती है। पारदर्शी अकार्बनिक अर्धचालकों में जहां एक इलेक्ट्रॉनिक [[बैंड संरचना]] बनती है, माध्यमिक उत्सर्जन अधिक जटिल हो सकता है क्योंकि घटनाओं में सुसंगतता (भौतिकी) दोनों योगदान हो सकते हैं जैसे कि गुंजयमान [[रेले स्कैटरिंग]] जहां उग्र प्रकाश क्षेत्र के साथ एक निश्चित चरण संबंध बनाए रखा जाता है (यानी ऊर्जावान रूप से लोचदार प्रक्रियाएं) जहां कोई नुकसान शामिल नहीं है), और [[Index.php?title=असंगत|असंगत]] योगदान है (या अयोग्य मोड जहां कुछ ऊर्जा चैनल एक सहायक हानि मोड में हैं),<ref name="Kira1999">Kira, M.; Jahnke, F.; Koch, S. W. (1999). "Quantum Theory of Secondary Emission in Optically Excited Semiconductor Quantum Wells". ''Physical Review Letters'' '''82''' (17): 3544–3547. [https://dx.doi.org/10.1103%2FPhysRevLett.82.3544 doi:10.1103/PhysRevLett.82.3544]</ref> उदाहरण के लिए, उत्तेजनाओं के विकिरण पुनर्संयोजन से, [[कूलम्ब इंटरेक्शन]]-बाउंड इलेक्ट्रॉन-छिद्र युग्म ठोस अवस्था में होता है। अनुनाद प्रतिदीप्ति भी महत्वपूर्ण [[क्वांटम प्रकाशिकी]] सहसंबंध दिखा सकती है।<ref name="Kira1999" /><ref name="Kimble1977">Kimble, H. J.; Dagenais, M.; Mandel, L. (1977). "Photon Antibunching in Resonance Fluorescence". ''Physical Review Letters'' '''39''' (11): 691–695. [https://dx.doi.org/10.1103%2FPhysRevLett.39.691 doi:10.1103/PhysRevLett.39.691]</ref><ref name="Carmichael1976">Carmichael, H. J.; Walls, D. F. (1976). "Proposal for the measurement of the resonant Stark effect by photon correlation techniques". ''Journal of Physics B: Atomic and Molecular Physics'' '''9''' (4): L43. [https://dx.doi.org/10.1088%2F0022-3700%2F9%2F4%2F001 doi:10.1088/0022-3700/9/4/001]</ref>
अनुनाद ऊर्जन एक ऐसी स्थिति का वर्णन करती है जिसमें एक विशेष तरंग दैर्ध्य के फोटोन अवशोषित होते हैं और समकक्ष फोटॉन बहुत तेजी से पुनः उत्सर्जित होते हैं। इसे अधिकांशत: [[प्रतिध्वनि प्रतिदीप्ति]] के रूप में जाना जाता है। समाधान या गैस [[चरण (पदार्थ)]] में सामग्री के लिए, इस प्रक्रिया में इलेक्ट्रॉन शामिल होते हैं लेकिन अवशोषण और उत्सर्जन के बीच रासायनिक पदार्थ की आणविक विशेषताओं को शामिल करने वाली कोई महत्वपूर्ण आंतरिक ऊर्जा नहीं होती है। पारदर्शी अकार्बनिक अर्धचालकों में जहां एक इलेक्ट्रॉनिक [[बैंड संरचना]] बनती है, माध्यमिक उत्सर्जन अधिक जटिल हो सकता है क्योंकि घटनाओं में सुसंगतता (भौतिकी) में दोनों योगदान हो सकते हैं जैसे कि अनुनाद [[रेले स्कैटरिंग]] जहां उग्र प्रकाश क्षेत्र के साथ एक निश्चित चरण संबंध बनाए रखा जाता है (यानी ऊर्जावान रूप से लोचदार प्रक्रियाएं) जहां कोई नुकसान शामिल नहीं है), और [[Index.php?title=असंगत|असंगत]] योगदान है (या अयोग्य मोड जहां कुछ ऊर्जा चैनल एक सहायक हानि मोड में हैं),<ref name="Kira1999">Kira, M.; Jahnke, F.; Koch, S. W. (1999). "Quantum Theory of Secondary Emission in Optically Excited Semiconductor Quantum Wells". ''Physical Review Letters'' '''82''' (17): 3544–3547. [https://dx.doi.org/10.1103%2FPhysRevLett.82.3544 doi:10.1103/PhysRevLett.82.3544]</ref> उदाहरण के लिए, ऊर्जन के विकिरण पुनर्संयोजन से, [[कूलम्ब इंटरेक्शन]]-बाउंड इलेक्ट्रॉन-छिद्र युग्म ठोस अवस्था में होता है। अनुनाद प्रतिदीप्ति भी महत्वपूर्ण [[क्वांटम प्रकाशिकी]] सहसंबंध दिखा सकती है।<ref name="Kira1999" /><ref name="Kimble1977">Kimble, H. J.; Dagenais, M.; Mandel, L. (1977). "Photon Antibunching in Resonance Fluorescence". ''Physical Review Letters'' '''39''' (11): 691–695. [https://dx.doi.org/10.1103%2FPhysRevLett.39.691 doi:10.1103/PhysRevLett.39.691]</ref><ref name="Carmichael1976">Carmichael, H. J.; Walls, D. F. (1976). "Proposal for the measurement of the resonant Stark effect by photon correlation techniques". ''Journal of Physics B: Atomic and Molecular Physics'' '''9''' (4): L43. [https://dx.doi.org/10.1088%2F0022-3700%2F9%2F4%2F001 doi:10.1088/0022-3700/9/4/001]</ref>
अधिक प्रक्रियाएं तब हो सकती हैं जब कोई पदार्थ अवशोषण घटना से ऊर्जा को फिर से उत्सर्जित करने से पहले आंतरिक ऊर्जा स्वर संधान से गुजरता है। इलेक्ट्रॉन या तो एक फोटॉन के अवशोषण से ऊर्जा प्राप्त करके या फोटॉन उत्सर्जित करके ऊर्जा खो कर ऊर्जा कि स्थिति को बदलते हैं। [[रसायन विज्ञान]] से संबंधित विषयों [[में]], अक्सर प्रतिदीप्ति और [[स्फुरदीप्ति]] के बीच अंतर किया जाता है। आमतौर पर एक तेज़ प्रक्रिया है, फिर भी मूल ऊर्जा की कुछ मात्रा नष्ट हो जाती है ताकि पुनः उत्सर्जित प्रकाश फोटॉनों में अवशोषित उत्तेजना फोटॉन की तुलना में कम ऊर्जा हो। इस मामले में फिर से उत्सर्जित फोटॉन को लाल शिफ्ट कहा जाता है, इस नुकसान के बाद कम ऊर्जा का जिक्र करते हुए (जैब्लोंस्की आरेख दिखाता है)। स्फुरदीप्ति के लिए, इलेक्ट्रॉन जो फोटॉनों को अवशोषित करते हैं, [[इंटरसिस्टम क्रॉसिंग]] से गुजरते हैं जहां वे परिवर्तित [[स्पिन (भौतिकी)]] बहुलता (शब्द प्रतीक देखें) के साथ एक अवस्था में प्रवेश करते हैं, आमतौर पर एक त्रिक अवस्था। एक बार उत्तेजित इलेक्ट्रॉन को इस [[त्रिक अवस्था]] में स्थानांतरित कर दिया जाता है, तो इलेक्ट्रॉन स्वर संधान (विश्राम) कम एकल अवस्था ऊर्जा में वापस क्वांटम यांत्रिक रूप से वर्जित होता है, जिसका अर्थ है कि यह अन्य स्वर संधानों की तुलना में बहुत धीरे-धीरे होता है। इसका परिणाम एकल स्थिति में वापस विकिरण स्वर संधान की धीमी प्रक्रिया है, कभी-कभी स्थायी मिनट या घंटे। यह अंधेरे पदार्थों में चमक का आधार है।
अधिक प्रक्रियाएं तब हो सकती हैं जब कोई पदार्थ अवशोषण घटना से ऊर्जा को फिर से उत्सर्जित करने से पहले आंतरिक ऊर्जा स्वर संधान से गुजरता है। इलेक्ट्रॉन या तो एक फोटॉन के अवशोषण से ऊर्जा प्राप्त करके या फोटॉन उत्सर्जित करके ऊर्जा खो कर ऊर्जा कि स्थिति को बदलते हैं। [[रसायन विज्ञान]] से संबंधित विषयों [[में]], अधिकांशत: प्रतिदीप्ति और [[स्फुरदीप्ति]] के बीच अंतर किया जाता है। सामान्यत: यह एक तेज़ प्रक्रिया है, फिर भी मूल ऊर्जा की कुछ मात्रा नष्ट हो जाती है जिससे कि पुनः उत्सर्जित प्रकाश फोटॉनों में अवशोषित ऊर्जन फोटॉन की तुलना में कम ऊर्जा होती है। इस स्थिति में फिर से उत्सर्जित फोटॉन को लाल शिफ्ट कहा जाता है, इस नुकसान के बाद कम ऊर्जा का जिक्र करते हुए जैब्लोंस्की आरेख दिखाता है। स्फुरदीप्ति के लिए, इलेक्ट्रॉन जो फोटॉनों को अवशोषित करते हैं, [[इंटरसिस्टम क्रॉसिंग]] से गुजरते हैं जहां वे परिवर्तित [[स्पिन (भौतिकी)]] बहुलता (शब्द प्रतीक देखें) के साथ एक अवस्था में प्रवेश करते हैं, सामान्यत: एक त्रिक अवस्था। एक बार उत्तेजित इलेक्ट्रॉन को इस [[त्रिक अवस्था]] में स्थानांतरित कर दिया जाता है, तो इलेक्ट्रॉन स्वर संधान (विश्राम) कम एकल अवस्था ऊर्जा में वापस क्वांटम यांत्रिक रूप से वर्जित होता है, जिसका अर्थ है कि यह अन्य स्वर संधानों की तुलना में बहुत धीरे-धीरे होता है। इसका परिणाम एकल स्थिति में वापस विकिरण स्वर संधान की धीमी प्रक्रिया है, कभी-कभी स्थायी मिनट या घंटे। यह अंधेरे पदार्थों में चमक का आधार है।


प्रकाश संदीप्ति अर्धचालक जैसे [[Index.php?title=गैलियम नाइट्राइड|गैलियम नाइट्राइड]] और इंडियम फॉस्फोरस की शुद्धता और पारदर्शी गुणवत्ता को मापने और एक प्रणाली में मौजूद विकार की मात्रा की मात्रा के लिए एक महत्वपूर्ण तकनीक है।<ref name="entropyalfaraj2017">Alfaraj, N.; Mitra, S.; Wu, F. ; Ajia, A. A.; Janjua, B.; Prabaswara, A.; Aljefri, R. A.; Sun, H.; Ng, T. K.; Ooi, B. S.; Roqan, I. S.; Li, X. (2017). "Photoinduced entropy of InGaN/GaN p-i-n double-heterostructure nanowires". ''Applied Physics Letters'' '''110''' (16): 161110. [https://dx.doi.org/10.1063/1.4981252]</ref>
प्रकाश संदीप्ति अर्धचालक जैसे [[Index.php?title=गैलियम नाइट्राइड|गैलियम नाइट्राइड]] और इंडियम फॉस्फोरस की शुद्धता और पारदर्शी गुणवत्ता को मापने और एक प्रणाली में मौजूद विकार की मात्रा की मात्रा के लिए एक महत्वपूर्ण तकनीक है।<ref name="entropyalfaraj2017">Alfaraj, N.; Mitra, S.; Wu, F. ; Ajia, A. A.; Janjua, B.; Prabaswara, A.; Aljefri, R. A.; Sun, H.; Ng, T. K.; Ooi, B. S.; Roqan, I. S.; Li, X. (2017). "Photoinduced entropy of InGaN/GaN p-i-n double-heterostructure nanowires". ''Applied Physics Letters'' '''110''' (16): 161110. [https://dx.doi.org/10.1063/1.4981252]</ref>
Line 17: Line 17:
== प्रत्यक्ष-गैप अर्धचालकों के फोटोलुमिनेन्स गुण ==
== प्रत्यक्ष-गैप अर्धचालकों के फोटोलुमिनेन्स गुण ==
एक विशिष्ट PL प्रयोग में, एक अर्धचालक एक प्रकाश-स्रोत से उत्साहित होता है जो फोटॉन को [[ ऊर्जा अंतराल ]] ऊर्जा से बड़ी ऊर्जा प्रदान करता है।
एक विशिष्ट PL प्रयोग में, एक अर्धचालक एक प्रकाश-स्रोत से उत्साहित होता है जो फोटॉन को [[ ऊर्जा अंतराल ]] ऊर्जा से बड़ी ऊर्जा प्रदान करता है।
आने वाली रोशनी एक ध्रुवीकरण को उत्तेजित करती है जिसे [[सेमीकंडक्टर बलोच समीकरण]]ों के साथ वर्णित किया जा सकता है।<ref name="SQOBook">Kira, M.; Koch, S. W. (2011). ''Semiconductor Quantum Optics.'' Cambridge University Press. {{ISBN|978-0521875097}}.</ref><ref name=Haug2009>Haug, H.; Koch, S. W. (2009). ''Quantum Theory of the Optical and Electronic Properties of Semiconductors'' (5th ed.). World Scientific. p. 216. {{ISBN|9812838848}}.</ref> एक बार जब फोटॉन अवशोषित हो जाते हैं, तो परिमित संवेग के साथ इलेक्ट्रॉन और छिद्र बन जाते हैं <math>\mathbf{k}</math> [[चालन बैंड]] और [[संयोजी बंध]] में क्रमशः। उत्तेजना तब बैंड-गैप न्यूनतम की ओर ऊर्जा और संवेग विश्राम से गुजरती है। [[कूलम्ब बिखराव]] और [[फोनन]] के साथ अन्योन्यक्रिया विशिष्ट तंत्र हैं। अंत में, फोटॉन के उत्सर्जन के तहत इलेक्ट्रॉन छिद्रों के साथ पुन: संयोजित होते हैं।
आने वाली रोशनी एक ध्रुवीकरण को उत्तेजित करती है जिसे [[सेमीकंडक्टर बलोच समीकरण|अर्धचालक बलोच समीकरण]] के साथ वर्णित किया जा सकता है।<ref name="SQOBook">Kira, M.; Koch, S. W. (2011). ''Semiconductor Quantum Optics.'' Cambridge University Press. {{ISBN|978-0521875097}}.</ref><ref name=Haug2009>Haug, H.; Koch, S. W. (2009). ''Quantum Theory of the Optical and Electronic Properties of Semiconductors'' (5th ed.). World Scientific. p. 216. {{ISBN|9812838848}}.</ref> एक बार जब फोटॉन अवशोषित हो जाते हैं, तो परिमित संवेग के साथ इलेक्ट्रॉन और छिद्र बन जाते हैं <math>\mathbf{k}</math> [[चालन बैंड]] और [[संयोजी बंध]] में क्रमशः। ऊर्जन तब बैंड-गैप न्यूनतम की ओर ऊर्जा और संवेग विश्राम से गुजरती है। [[Index.php?title=कूलॉम प्रकीर्णन|कूलॉम प्रकीर्णन]] और [[फोनन]] के साथ अन्योन्यक्रिया विशिष्ट तंत्र हैं। अंत में, फोटॉन के उत्सर्जन के अनुसार इलेक्ट्रॉन छिद्रों के साथ पुन: संयोजित होते हैं।


आदर्श, दोष-मुक्त अर्धचालक कई-शरीर की समस्या हैं | कई-शरीर प्रणालियाँ हैं जहाँ प्रकाश-पदार्थ युग्मन के अतिरिक्त आवेश-वाहकों और जाली कंपनों की परस्पर क्रियाओं पर विचार किया जाना है। सामान्य तौर पर, PL गुण भी आंतरिक [[विद्युत क्षेत्र]]ों और ढांकता हुआ वातावरण (जैसे [[फोटोनिक क्रिस्टल]] में) के प्रति बेहद संवेदनशील होते हैं जो जटिलता की और डिग्री लगाते हैं। अर्धचालक ल्यूमिनेसेंस समीकरणों द्वारा एक सटीक सूक्ष्म विवरण प्रदान किया जाता है।<ref name="SQOBook"/>
आदर्श, दोष-मुक्त अर्धचालक में कई-निकाय प्रणालियां हैं जहाँ प्रकाश-पदार्थ युग्मन के अतिरिक्त आवेश-वाहकों और जाली कंपनों की परस्पर क्रियाओं पर विचार किया जाना है। सामान्य तौर पर, PL गुण भी आंतरिक [[विद्युत क्षेत्र]] और अचालक वातावरण (जैसे [[फोटोनिक क्रिस्टल]] में) के प्रति बेहद संवेदनशील होते हैं जो जटिलता की और डिग्री लगाते हैं। अर्धचालक ल्यूमिनेसेंस समीकरणों द्वारा एक सटीक सूक्ष्म विवरण प्रदान किया जाता है।<ref name="SQOBook"/>






=== आदर्श क्वांटम-वेल संरचनाएं ===
=== आदर्श क्वांटम-वेल संरचनाएं ===
विशिष्ट PL प्रयोगों में मौलिक प्रक्रियाओं को चित्रित करने के लिए एक आदर्श, दोष मुक्त अर्धचालक क्वांटम अच्छी संरचना एक उपयोगी मॉडल प्रणाली है। यह चर्चा क्लिंगशीर्न (2012) में प्रकाशित परिणामों पर आधारित है।<ref>Klingshirn, Claus F. (2012). ''Semiconductor Optics.'' Springer. {{ISBN|978-3-642-28361-1}} {{OCLC|905285603}}.</ref> और बाल्कन (1998)।<ref>Balkan, Naci (1998). ''Hot Electrons in Semiconductors: Physics and Devices.'' Oxford University Press. {{ISBN|0198500580}}.</ref>
विशिष्ट PL प्रयोगों में मौलिक प्रक्रियाओं को चित्रित करने के लिए एक आदर्श, दोष मुक्त अर्धचालक क्वांटम एक अच्छी उपयोगी संरचना मॉडल प्रणाली है। यह चर्चा क्लिंगशीर्न (2012) और बाल्कन (1998) में प्रकाशित परिणामों पर आधारित है।<ref>Klingshirn, Claus F. (2012). ''Semiconductor Optics.'' Springer. {{ISBN|978-3-642-28361-1}} {{OCLC|905285603}}.</ref> ।<ref>Balkan, Naci (1998). ''Hot Electrons in Semiconductors: Physics and Devices.'' Oxford University Press. {{ISBN|0198500580}}.</ref>
इस चर्चा के लिए काल्पनिक मॉडल संरचना में दो सीमित परिमाणित इलेक्ट्रॉनिक और दो होल [[उपबैंड]] हैं, उदा<sub>1</sub>, यह है<sub>2</sub> और वह<sub>1</sub>, एच<sub>2</sub>, क्रमश।
इस चर्चा के लिए काल्पनिक मॉडल संरचना में दो सीमित परिमाणित इलेक्ट्रॉनिक और दो होल [[उपबैंड]] हैं, e<sub>1</sub>, e<sub>2</sub> और h<sub>1</sub>, h<sub>2</sub>, क्रमश।
इस तरह की संरचना का रैखिक [[अवशोषण स्पेक्ट्रम]] पहले (e1h1) और दूसरे क्वांटम वेल सबबैंड्स (e<sub>2</sub>, एच<sub>2</sub>), साथ ही इसी सातत्य अवस्थाों से और बाधा से अवशोषण।
इस तरह की संरचना का रैखिक [[अवशोषण स्पेक्ट्रम]] पहले (e1h1) और दूसरे क्वांटम वेल सबबैंड्स (e<sub>2</sub>, h<sub>2</sub>), साथ ही इसी सातत्य अवस्थाओं से और बाधा से अवशोषण।


==== फोटोएक्सिटेशन ====
==== फोटोएक्सिटेशन ====
सामान्य तौर पर, तीन अलग-अलग उत्तेजना स्थितियों को प्रतिष्ठित किया जाता है: गुंजयमान, अर्ध-अनुनाद और गैर-अनुनाद। गुंजयमान उत्तेजना के लिए, लेजर की केंद्रीय ऊर्जा क्वांटम कुएं के निम्नतम एक्सिटोन अनुनाद से मेल खाती है। नहीं, या अतिरिक्त की केवल एक नगण्य मात्रा, ऊर्जा को वाहक प्रणाली में इंजेक्ट किया जाता है। इन स्थितियों के लिए, सहज प्रक्रियाएं सहज उत्सर्जन में महत्वपूर्ण योगदान देती हैं।<ref name="Kira1999" /><ref name="KiraJahnke1999">Kira, M.; Jahnke, F.; Hoyer, W.; Koch, S. W. (1999). "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures". ''Progress in Quantum Electronics'' '''23''' (6): 189–279. [https://dx.doi.org/10.1016%2FS0079-6727%2899%2900008-7 doi:10.1016/S0079-6727(99)00008-7.]</ref> ध्रुवीकरण का क्षय सीधे उत्तेजना पैदा करता है। गुंजयमान उत्तेजना के लिए PL का पता लगाना चुनौतीपूर्ण है क्योंकि उत्तेजना से योगदान में भेदभाव करना मुश्किल है, यानी आवारा-प्रकाश और सतह खुरदरापन से बिखरना। इस प्रकार, [[ धब्बेदार पैटर्न ]] और रेज़ोनेंट रेले स्कैटरिंग | रेले-स्कैटरिंग हमेशा सुसंगतता (भौतिकी) उत्सर्जन के लिए आरोपित होते हैं।
सामान्य तौर पर, तीन अलग-अलग ऊर्जन स्थितियों को प्रतिष्ठित किया जाता है: अनुनाद, अर्ध-अनुनाद और गैर-अनुनाद। अनुनाद ऊर्जन के लिए, लेजर की केंद्रीय ऊर्जा क्‍वांटम कूप के निम्नतम एक्सिटोन अनुनाद से मेल खाती है। ना, या अतिरिक्त की केवल एक नगण्य मात्रा, ऊर्जा को वाहक प्रणाली में अन्तःक्षेप किया जाता है। इन स्थितियों के लिए, सहज प्रक्रियाएं सहज उत्सर्जन में महत्वपूर्ण योगदान देती हैं।<ref name="Kira1999" /><ref name="KiraJahnke1999">Kira, M.; Jahnke, F.; Hoyer, W.; Koch, S. W. (1999). "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures". ''Progress in Quantum Electronics'' '''23''' (6): 189–279. [https://dx.doi.org/10.1016%2FS0079-6727%2899%2900008-7 doi:10.1016/S0079-6727(99)00008-7.]</ref> ध्रुवीकरण का क्षय सीधे ऊर्जन पैदा करता है। अनुनाद ऊर्जन के लिए PL का पता लगाना चुनौतीपूर्ण है क्योंकि ऊर्जन से योगदान में भेदभाव करना मुश्किल है, यानी अवांछित प्रकाश विचलन और फैलाव। इस प्रकार,[[ धब्बेदार पैटर्न ]]और रेज़ोनेंट रेले स्कैटरिंग। रेले-स्कैटरिंग हमेशा सुसंगतता (भौतिकी) उत्सर्जन के लिए अध्यारोपित होते हैं।


गैर-प्रतिध्वनि उत्तेजना के मामले में, संरचना कुछ अतिरिक्त ऊर्जा से उत्तेजित होती है। यह अधिकांश PL प्रयोगों में उपयोग की जाने वाली विशिष्ट स्थिति है क्योंकि [[स्पेक्ट्रोमीटर]] या [[ऑप्टिकल फिल्टर]] का उपयोग करके उत्तेजना ऊर्जा में भेदभाव किया जा सकता है।
गैर-प्रतिध्वनि ऊर्जन के स्थिति में, संरचना कुछ अतिरिक्त ऊर्जा से उत्तेजित होती है। यह अधिकांश PL प्रयोगों में उपयोग की जाने वाली विशिष्ट स्थिति है क्योंकि [[Index.php?title=वर्णक्रममापी|वर्णक्रममापी]] या [[Index.php?title=प्रकाश निस्यदंक|प्रकाश निस्यदंक]] का उपयोग करके ऊर्जन ऊर्जा में भेदभाव किया जा सकता है।
अर्ध-अनुनाद उत्तेजना और बाधा उत्तेजना के बीच अंतर करना होगा।
अर्ध-अनुनाद ऊर्जन और बाधा ऊर्जन के बीच अंतर करना होगा।


अर्ध-अनुनाद स्थितियों के लिए, उत्तेजना की ऊर्जा को जमीनी स्थिति से ऊपर रखा जाता है, लेकिन अभी भी संभावित अवरोध अवशोषण किनारे से नीचे है, उदाहरण के लिए, पहले सबबैंड की निरंतरता में। इन स्थितियों के लिए ध्रुवीकरण क्षय गुंजयमान उत्तेजना की तुलना में बहुत तेज है और क्वांटम अच्छी तरह से उत्सर्जन में सुसंगत योगदान नगण्य हैं। इंजेक्शन वाहकों की अधिशेष ऊर्जा के कारण वाहक प्रणाली का प्रारंभिक तापमान जाली तापमान से काफी अधिक है। अंत में, प्रारंभ में केवल इलेक्ट्रॉन-छिद्र प्लाज्मा बनाया जाता है। इसके बाद एक्साइटन्स का निर्माण होता है।<ref name="KaindlCarnahan2003">Kaindl, R. A.; Carnahan, M. A.; Hägele, D.; Lövenich, R.; Chemla, D. S. (2003). "Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas". ''Nature'' '''423''' (6941): 734–738. [https://dx.doi.org/10.1038%2Fnature01676 doi:10.1038/nature01676.]</ref><ref name="ChatterjeeEll2004">Chatterjee, S.; Ell, C.; Mosor, S.; [[Galina Khitrova|Khitrova, G.]]; Gibbs, H.; Hoyer, W.; Kira, M.; Koch, S. W.; Prineas, J.; Stolz, H. (2004). "Excitonic Photoluminescence in Semiconductor Quantum Wells: Plasma versus Excitons". ''Physical Review Letters'' '''92''' (6). [https://dx.doi.org/10.1103%2FPhysRevLett.92.067402 doi:10.1103/PhysRevLett.92.067402.]</ref>
अर्ध-अनुनाद स्थितियों के लिए, ऊर्जन की ऊर्जा को जमीनी स्थिति से ऊपर रखा जाता है, लेकिन अभी भी संभावित अवरोध अवशोषण किनारे से नीचे है, उदाहरण के लिए, पहले सबबैंड की निरंतरता में। इन स्थितियों के लिए ध्रुवीकरण क्षय अनुनाद ऊर्जन की तुलना में बहुत तेज है और क्वांटम से उत्सर्जन में सुसंगत योगदान नगण्य हैं। अंतःक्षेपित वाहकों की अधिशेष ऊर्जा के कारण वाहक प्रणाली का प्रारंभिक तापमान जाली तापमान से काफी अधिक है। अंत में, केवल इलेक्ट्रॉन-छिद्र प्लाज्मा बनाया जाता है। इसके बाद एक्साइटन्स का निर्माण होता है।<ref name="KaindlCarnahan2003">Kaindl, R. A.; Carnahan, M. A.; Hägele, D.; Lövenich, R.; Chemla, D. S. (2003). "Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas". ''Nature'' '''423''' (6941): 734–738. [https://dx.doi.org/10.1038%2Fnature01676 doi:10.1038/nature01676.]</ref><ref name="ChatterjeeEll2004">Chatterjee, S.; Ell, C.; Mosor, S.; [[Galina Khitrova|Khitrova, G.]]; Gibbs, H.; Hoyer, W.; Kira, M.; Koch, S. W.; Prineas, J.; Stolz, H. (2004). "Excitonic Photoluminescence in Semiconductor Quantum Wells: Plasma versus Excitons". ''Physical Review Letters'' '''92''' (6). [https://dx.doi.org/10.1103%2FPhysRevLett.92.067402 doi:10.1103/PhysRevLett.92.067402.]</ref>
बाधा उत्तेजना के मामले में, क्वांटम कुएं में प्रारंभिक वाहक वितरण बाधा और कुएं के बीच बिखरने वाले वाहक पर दृढ़ता से निर्भर करता है।
बाधा ऊर्जन की स्थिति में, क्‍वांटम कूप में प्रारंभिक वाहक वितरण बाधा और कूप के बीच बिखरने वाले वाहक पर दृढ़ता से निर्भर करता है।


==== विश्राम ====
==== विश्राम ====
प्रारंभ में, लेज़र प्रकाश नमूने में सुसंगत ध्रुवीकरण को प्रेरित करता है, अर्थात, इलेक्ट्रॉन और छेद अवस्थाओं के बीच स्वर संधान लेज़र आवृत्ति और एक निश्चित चरण के साथ दोलन करता है। अल्ट्रा-फास्ट कूलम्ब- और फोनन-स्कैटरिंग के कारण गैर-अनुनाद उत्तेजना के मामले में ध्रुवीकरण आमतौर पर उप-100 एफएस समय-पैमाने पर होता है।<ref name="ArltSiegner1999">Arlt, S.; Siegner, U.; Kunde, J.; Morier-Genoud, F.; Keller, U. (1999). "Ultrafast dephasing of continuum transitions in bulk semiconductors". ''Physical Review B'' '''59''' (23): 14860–14863. [https://dx.doi.org/10.1103%2FPhysRevB.59.14860 doi:10.1103/PhysRevB.59.14860.]</ref>
प्रारंभ में, लेज़र प्रकाश नमूने में सुसंगत ध्रुवीकरण को प्रेरित करता है, अर्थात, इलेक्ट्रॉन और छिद्र अवस्थाओं के बीच स्वर संधान लेज़र आवृत्ति और एक निश्चित चरण के साथ दोलन करता है। अल्ट्रा-फास्ट कूलम्ब- और फोनन-स्कैटरिंग के कारण गैर-अनुनाद ऊर्जन के स्थिति में ध्रुवीकरण सामान्यत: उप-100 fs समय-पैमाने पर होता है।<ref name="ArltSiegner1999">Arlt, S.; Siegner, U.; Kunde, J.; Morier-Genoud, F.; Keller, U. (1999). "Ultrafast dephasing of continuum transitions in bulk semiconductors". ''Physical Review B'' '''59''' (23): 14860–14863. [https://dx.doi.org/10.1103%2FPhysRevB.59.14860 doi:10.1103/PhysRevB.59.14860.]</ref>
ध्रुवीकरण के अपघटन से क्रमशः चालन और वैलेंस बैंड में इलेक्ट्रॉनों और छिद्रों की आबादी का निर्माण होता है। वाहक आबादी का जीवनकाल अपेक्षाकृत लंबा है, विकिरण और गैर-विकिरण पुनर्संयोजन जैसे ऑगर पुनर्संयोजन द्वारा सीमित है। इस जीवनकाल के दौरान इलेक्ट्रॉनों और छेदों का एक अंश उत्तेजना पैदा कर सकता है, यह विषय अभी भी साहित्य में विवादास्पद रूप से चर्चा में है। गठन की दर प्रायोगिक स्थितियों जैसे कि जाली तापमान, उत्तेजना घनत्व, साथ ही सामान्य सामग्री मापदंडों पर निर्भर करती है, उदाहरण के लिए, कूलम्ब-इंटरैक्शन या एक्सिटोन बाइंडिंग एनर्जी की ताकत।
ध्रुवीकरण के अपघटन से क्रमशः चालन और वैलेंस बैंड में इलेक्ट्रॉनों और छिद्रों की संख्या का निर्माण होता है। वाहक संख्या का जीवनकाल अपेक्षाकृत लंबा है, विकिरण और गैर-विकिरण पुनर्संयोजन जैसे ऑगर पुनर्संयोजन द्वारा सीमित है। इस जीवनकाल के दौरान इलेक्ट्रॉनों और छिद्रों का एक अंश ऊर्जन पैदा कर सकता है, यह विषय अभी भी साहित्य में विवादास्पद रूप से चर्चा में है। विरचन की दर प्रायोगिक स्थितियों जैसे कि जाली तापमान, ऊर्जन घनत्व, साथ ही सामान्य सामग्री मापदंडों पर निर्भर करती है, उदाहरण के लिए, कूलम्ब-इंटरैक्शन या एक्सिटोन बाइंडिंग एनर्जी की ताकत।


विशिष्ट समय-मान GaAs में सैकड़ों [[पीकोसैकन्ड]] की सीमा में हैं;<ref name="KaindlCarnahan2003" />वे [[ वाइड-बैंडगैप अर्धचालक ]] | वाइड-गैप सेमीकंडक्टर्स में बहुत छोटे दिखाई देते हैं।<ref name="UmlauffHoffmann1998">Umlauff, M.; Hoffmann, J.; Kalt, H.; Langbein, W.; Hvam, J.; Scholl, M.; Söllner, J.; Heuken, M.; Jobst, B.; Hommel, D. (1998). "Direct observation of free-exciton thermalization in quantum-well structures". ''Physical Review B'' '''57''' (3): 1390–1393. [https://dx.doi.org/10.1103%2FPhysRevB.57.1390 doi:10.1103/PhysRevB.57.1390].</ref>
विशिष्ट समय-मान GaAs में सैकड़ों [[पीकोसैकन्ड]] की सीमा में हैं;<ref name="KaindlCarnahan2003" /> वाइड-गैप अर्धचालक्स में बहुत छोटे दिखाई देते हैं।<ref name="UmlauffHoffmann1998">Umlauff, M.; Hoffmann, J.; Kalt, H.; Langbein, W.; Hvam, J.; Scholl, M.; Söllner, J.; Heuken, M.; Jobst, B.; Hommel, D. (1998). "Direct observation of free-exciton thermalization in quantum-well structures". ''Physical Review B'' '''57''' (3): 1390–1393. [https://dx.doi.org/10.1103%2FPhysRevB.57.1390 doi:10.1103/PhysRevB.57.1390].</ref>
लघु ([[गुजरने]]) दालों के साथ उत्तेजना और ध्रुवीकरण के अर्ध-तात्कालिक क्षय के तुरंत बाद, वाहक वितरण मुख्य रूप से उत्तेजना की वर्णक्रमीय चौड़ाई द्वारा निर्धारित किया जाता है, उदाहरण के लिए, एक [[लेज़र]] पल्स। वितरण इस प्रकार अत्यधिक गैर-तापीय है और एक [[गाऊसी वितरण]] जैसा दिखता है, जो एक परिमित गति पर केंद्रित है। फेमटोसेकंड के पहले सैकड़ों में, वाहक फ़ोनों द्वारा बिखरे हुए हैं, या कूलम्ब-इंटरैक्शन के माध्यम से उन्नत वाहक घनत्व पर हैं। वाहक प्रणाली क्रमिक रूप से फर्मी-डिराक वितरण के लिए आराम करती है, आमतौर पर पहले पिकोसेकंड के भीतर। अंत में, फोनन के उत्सर्जन के तहत वाहक प्रणाली शांत हो जाती है। सामग्री प्रणाली, जाली तापमान और अधिशेष ऊर्जा जैसी उत्तेजना स्थितियों के आधार पर इसमें कई [[नैनोसेकंड]] तक लग सकते हैं।
लघु ([[गुजरने]]) स्पंद के साथ ऊर्जन और ध्रुवीकरण के अर्ध-तात्कालिक क्षय के तुरंत बाद, वाहक वितरण मुख्य रूप से ऊर्जन की वर्णक्रमीय चौड़ाई द्वारा निर्धारित किया जाता है, उदाहरण के लिए, एक [[लेज़र]] स्पंद। वितरण इस प्रकार अत्यधिक गैर-तापीय है और एक [[गाऊसी वितरण]] जैसा दिखता है, जो एक परिमित गति पर केंद्रित है। पहले के सैकड़ों फेमटोसेकंड में, वाहक फ़ोनों द्वारा बिखरे हुए हैं, या कूलम्ब-इंटरैक्शन के माध्यम से उन्नत वाहक घनत्व पर हैं। वाहक प्रणाली क्रमिक रूप से फर्मी-डिराक वितरण के लिए आराम करती है, सामान्यत: पहले पिकोसेकंड के भीतर। अंत में, फोनन के उत्सर्जन के अनुसार वाहक प्रणाली शांत हो जाती है। इसमें कई नैनोसेकंड तक लग सकते हैं, जो सामग्री प्रणाली, जाली तापमान और ऊर्जना की स्थिति जैसे अधिशेष ऊर्जा पर निर्भर करता है।


प्रारंभ में, फोनोन # ध्वनिक और ऑप्टिकल फोनन के उत्सर्जन के माध्यम से वाहक तापमान तेजी से घटता है। यह ऑप्टिकल फ़ोनों से जुड़ी तुलनात्मक रूप से बड़ी ऊर्जा (36meV या GaAs में 420K) और उनके अपेक्षाकृत सपाट फैलाव के कारण काफी कुशल है, जिससे ऊर्जा और संवेग के संरक्षण के तहत बिखरने की प्रक्रियाओं की एक विस्तृत श्रृंखला की अनुमति मिलती है। एक बार जब वाहक तापमान ऑप्टिकल फोनन ऊर्जा के अनुरूप मूल्य से कम हो जाता है, तो फोनोन # ध्वनिक और ऑप्टिकल फोनॉन छूट पर हावी हो जाते हैं। यहां, उनके [[ध्वनिक फैलाव]] और छोटी ऊर्जाओं के कारण शीतलन कम कुशल है और पिकोसेकंड के पहले दसियों से परे तापमान बहुत धीमा हो जाता है।<ref name="KashShah1984">Kash, Kathleen; Shah, Jagdeep (1984). "Carrier energy relaxation in In0.53Ga0.47As determined from picosecond luminescence studies". ''Applied Physics Letters'' '''45''' (4): 401. [https://dx.doi.org/10.1063%2F1.95235 doi:10.1063/1.95235.]</ref><ref name="PollandRühle1987">पोलैंड, एच.; रुहेल, डब्ल्यू।; कुहल, जे.; प्लॉग, के.; फुजिवारा, के.; नाकायमा, टी. (1987). क्वांटम कुओं के रूप में GaAs/Al_{x}Ga_{1-x} में थर्मलाइज्ड इलेक्ट्रॉनों और छिद्रों का कोई संतुलन नहीं। भौतिक समीक्षा बी '35' (15): 8273-8276। [https://dx.doi.org/10.1103%2FhysRevB.35.8273 doi:10.1103/PhysRevB.35.8273.]</ref> उच्च उत्तेजना घनत्व पर, तथाकथित हॉट-फोनन प्रभाव द्वारा वाहक शीतलन को और बाधित किया जाता है। रेफरी नाम= शाहलाइट 1970 >शाह, जगदीप; लेइट, आर.सी.सी.; स्कॉट, जे.एफ. (1970)। GaAs में फोटो-उत्साहित गर्म लो फोन। सॉलिड स्टेट कम्युनिकेशंस '8' (14): 1089-1093। [https://dx.doi.org/10.1016%2F0038-1098%2870%2990002-5 doi:10.1016/0038-1098(70)90002-5.]</ref> बड़ी संख्या में गर्म वाहकों की छूट ऑप्टिकल फोनन की एक उच्च पीढ़ी दर की ओर जाता है जो ध्वनिक फोनन में क्षय दर से अधिक होता है। यह ऑप्टिकल फोनों की एक गैर-संतुलन अधिक जनसंख्या बनाता है और इस प्रकार चार्ज-वाहकों द्वारा किसी भी शीतलन को महत्वपूर्ण रूप से दबाकर उनके बढ़ते पुन: अवशोषण का कारण बनता है। इस प्रकार, सिस्टम धीमी गति से ठंडा होता है, वाहक घनत्व जितना अधिक होता है।
प्रारंभ में, फोनोन # ध्वनिक और ऑप्टिकल फोनन के उत्सर्जन के माध्यम से वाहक तापमान तेजी से घटता है। यह ऑप्टिकल फ़ोनों से जुड़ी तुलनात्मक रूप से बड़ी ऊर्जा (36meV या GaAs में 420K) और उनके अपेक्षाकृत सपाट फैलाव के कारण काफी कुशल है, जिससे ऊर्जा और संवेग के संरक्षण के अनुसार बिखरने की प्रक्रियाओं की एक विस्तृत श्रृंखला की अनुमति मिलती है। एक बार जब वाहक तापमान ऑप्टिकल फोनन ऊर्जा के अनुरूप मूल्य से कम हो जाता है, तो फोनोन # ध्वनिक और ऑप्टिकल फोनॉन छूट पर हावी हो जाते हैं। यहां, उनके [[ध्वनिक फैलाव]] और छोटी ऊर्जाओं के कारण शीतलन कम कुशल है और पिकोसेकंड के पहले दसियों से परे तापमान बहुत धीमा हो जाता है।<ref name="KashShah1984">Kash, Kathleen; Shah, Jagdeep (1984). "Carrier energy relaxation in In0.53Ga0.47As determined from picosecond luminescence studies". ''Applied Physics Letters'' '''45''' (4): 401. [https://dx.doi.org/10.1063%2F1.95235 doi:10.1063/1.95235.]</ref><ref name="PollandRühle1987">पोलैंड, एच.; रुहेल, डब्ल्यू।; कुहल, जे.; प्लॉग, के.; फुजिवारा, के.; नाकायमा, टी. (1987). क्वांटम कुओं के रूप में GaAs/Al_{x}Ga_{1-x} में थर्मलाइज्ड इलेक्ट्रॉनों और छिद्रों का कोई संतुलन नहीं। भौतिक समीक्षा बी '35' (15): 8273-8276। [https://dx.doi.org/10.1103%2FhysRevB.35.8273 doi:10.1103/PhysRevB.35.8273.]</ref> उन्नत ऊर्जना घनत्व पर वाहक शीतलन को तथाकथित हॉट फोनोन प्रभाव द्वारा आगे रोका जाता है। बड़ी संख्या में गर्म वाहकों की छूट ऑप्टिकल फोनन की एक उच्च जनन दर की ओर जाता है जो ध्वनिक फोनन में क्षय दर से अधिक होता है। यह ऑप्टिकल फोनों की एक गैर-संतुलन अधिक संख्या बनाता है और इस प्रकार चार्ज-वाहकों द्वारा किसी भी शीतलन को महत्वपूर्ण रूप से दबाकर उनके बढ़ते पुन: अवशोषण का कारण बनता है। इस प्रकार,वाहक घनत्व जितना अधिक होता है सिस्टम उतनी ही धीमी गति से ठंडा होता है,


==== विकिरण पुनर्संयोजन ====
==== विकिरण पुनर्संयोजन ====
उत्तेजन के बाद सीधे उत्सर्जन वर्णक्रमीय रूप से बहुत व्यापक है, फिर भी सबसे मजबूत उत्तेजना अनुनाद के आसपास के क्षेत्र में केंद्रित है। जैसा कि वाहक वितरण आराम करता है और ठंडा होता है, PL शिखर की चौड़ाई कम हो जाती है और उत्सर्जन ऊर्जा विकार के बिना आदर्श नमूनों के लिए एक्साइटन (जैसे इलेक्ट्रॉन) की जमीनी स्थिति से मेल खाती है। PL स्पेक्ट्रम इलेक्ट्रॉनों और छिद्रों के वितरण द्वारा परिभाषित अपने अर्ध-स्थिर-अवस्था आकार तक पहुंचता है। उत्तेजना घनत्व बढ़ाने से उत्सर्जन स्पेक्ट्रा बदल जाएगा। वे कम घनत्व के लिए उत्तेजक जमीनी अवस्था में हावी हैं। उच्च सबबैंड स्वर संधानों से अतिरिक्त शिखर वाहक घनत्व या जाली तापमान में वृद्धि के रूप में दिखाई देते हैं क्योंकि ये अवस्था अधिक से अधिक आबादी वाले होते हैं। इसके अलावा, मुख्य PL चोटी की चौड़ाई उत्तेजना-प्रेरित डीफेसिंग कारण बढ़ती उत्तेजना के साथ काफी बढ़ जाती है<ref name="WangFerrio1993">Wang, Hailin; Ferrio, Kyle; Steel, Duncan; Hu, Y.; Binder, R.; Koch, S. W. (1993). "Transient nonlinear optical response from excitation induced dephasing in GaAs". ''Physical Review Letters'' '''71''' (8): 1261–1264. [https://dx.doi.org/10.1103%2FPhysRevLett.71.1261 doi:10.1103/PhysRevLett.71.1261.]</ref> और कूलम्ब-रीनॉर्मलाइजेशन और फेज-फिलिंग के कारण उत्सर्जन शिखर ऊर्जा में एक छोटे से बदलाव का अनुभव करता है।<ref name="Haug2009" />
ऊर्जन के बाद सीधे उत्सर्जन वर्णक्रमीय रूप से बहुत व्यापक है, फिर भी सबसे मजबूत ऊर्जन अनुनाद के आसपास के क्षेत्र में केंद्रित है। जैसा कि वाहक वितरण आराम करता है और ठंडा होता है, PL शिखर की चौड़ाई कम हो जाती है और उत्सर्जन ऊर्जा विकार के बिना आदर्श नमूनों के लिए एक्साइटन (जैसे इलेक्ट्रॉन) की जमीनी स्थिति से मेल खाती है। PL स्पेक्ट्रम इलेक्ट्रॉनों और छिद्रों के वितरण द्वारा परिभाषित अपने अर्ध-स्थिर-अवस्था आकार तक पहुंचता है। ऊर्जन घनत्व बढ़ाने से उत्सर्जन स्पेक्ट्रा बदल जाएगा। वे कम घनत्व के लिए उत्तेजक जमीनी अवस्था में हावी हैं। उच्च सबबैंड स्वर संधानों से अतिरिक्त शिखर वाहक घनत्व या जाली तापमान में वृद्धि के रूप में दिखाई देते हैं क्योंकि ये अवस्था अधिक से अधिक संख्या वाले होते हैं। इसके अलावा, मुख्य PL शिर की चौड़ाई ऊर्जन-प्रेरित डीफेसिंग के कारण बढ़ती ऊर्जन के साथ काफी बढ़ जाती है<ref name="WangFerrio1993">Wang, Hailin; Ferrio, Kyle; Steel, Duncan; Hu, Y.; Binder, R.; Koch, S. W. (1993). "Transient nonlinear optical response from excitation induced dephasing in GaAs". ''Physical Review Letters'' '''71''' (8): 1261–1264. [https://dx.doi.org/10.1103%2FPhysRevLett.71.1261 doi:10.1103/PhysRevLett.71.1261.]</ref> और कूलम्ब-पुनर्सामान्यीकरण और फेज-फिलिंग के कारण उत्सर्जन शिखर ऊर्जा में एक छोटे से बदलाव का अनुभव करता है।<ref name="Haug2009" />


सामान्य तौर पर, एक्सिटोन आबादी और प्लाज्मा, असंबद्ध इलेक्ट्रॉन और छिद्र दोनों, [[सेमीकंडक्टर-ल्यूमिनेसेंस समीकरण]]ों में वर्णित प्रकाश संदीप्ति के स्रोतों के रूप में कार्य कर सकते हैं। दोनों बहुत ही समान वर्णक्रमीय विशेषताएं उत्पन्न करते हैं जिन्हें भेद करना मुश्किल है; हालाँकि, उनके उत्सर्जन की गतिशीलता में काफी भिन्नता है। एक्सिटोन के क्षय से एकल-घातीय क्षय फलन उत्पन्न होता है क्योंकि उनके विकिरण पुनर्संयोजन की संभावना वाहक घनत्व पर निर्भर नहीं करती है। असंबद्ध इलेक्ट्रॉनों और छेदों के लिए सहज उत्सर्जन की संभावना, लगभग इलेक्ट्रॉन और छिद्र आबादी के उत्पाद के समानुपाती होती है, जो अंततः एक अतिशयोक्तिपूर्ण कार्य द्वारा वर्णित गैर-एकल-घातीय क्षय के लिए अग्रणी होती है।
सामान्य तौर पर, एक्सिटोन संख्या और प्लाज्मा, असहसंबद्ध इलेक्ट्रॉन और छिद्र दोनों, [[Index.php?title=अर्धचालक-संदीप्ति समीकरण|अर्धचालक-संदीप्ति समीकरण]] में वर्णित प्रकाश संदीप्ति के स्रोतों के रूप में कार्य कर सकते हैं। दोनों बहुत ही समान वर्णक्रमीय विशेषताएं उत्पन्न करते हैं जिन्हें भेद करना मुश्किल है; चूंकि, उनके उत्सर्जन की गतिशीलता में काफी भिन्नता है। एक्सिटोन के क्षय से एकल-घातीय क्षय फलन उत्पन्न होता है क्योंकि उनके विकिरण पुनर्संयोजन की संभावना वाहक घनत्व पर निर्भर नहीं करती है। असंबद्ध इलेक्ट्रॉनों और छिद्रों के लिए सहज उत्सर्जन की संभावना, लगभग इलेक्ट्रॉन और छिद्र संख्या के उत्पाद के समानुपाती होती है, जो अंततः एक अतिशयोक्तिपूर्ण कार्य द्वारा वर्णित गैर-एकल-घातीय क्षय के लिए अग्रणी होती है।


=== विकार के प्रभाव ===
=== विकार के प्रभाव ===
वास्तविक भौतिक प्रणालियाँ हमेशा अव्यवस्था को शामिल करती हैं। उदाहरण संरचनात्मक [[क्रिस्टलोग्राफिक दोष]] हैं<ref>{{cite journal|doi=10.1088/0022-3727/47/42/423001|arxiv=1405.1261|bibcode=2014JPhD...47P3001L|title= ल्यूमिनेसेंस GaN में स्टैकिंग दोषों से जुड़ा हुआ है|journal=J. Phys. D: Appl. Phys.|volume=47|issue=42|pages=423001|year=2014|last1=Lähnemann|first1=J.|last2=Jahn|first2=U.|last3=Brandt|first3=O.|last4=Flissikowski|first4=T.|last5=Dogan|first5=P.|last6=Grahn|first6=H.T.|s2cid=118671207}}</ref> रासायनिक संरचना की विविधताओं के कारण जाली या क्रम और विकार (भौतिकी) में। आदर्श संरचना की गड़बड़ी के बारे में विस्तृत ज्ञान की कमी के कारण सूक्ष्म सिद्धांतों के लिए उनका उपचार बेहद चुनौतीपूर्ण है। इस प्रकार, PL पर बाहरी प्रभावों के प्रभाव को आमतौर पर घटनात्मक रूप से संबोधित किया जाता है।<ref name="BaranovskiiEichmann1998">Baranovskii, S.; Eichmann, R.; Thomas, P. (1998). "Temperature-dependent exciton luminescence in quantum wells by computer simulation". ''Physical Review B'' '''58''' (19): 13081–13087. [https://dx.doi.org/10.1103%2FPhysRevB.58.13081 doi:10.1103/PhysRevB.58.13081.]</ref> प्रयोगों में, विकार वाहकों के स्थानीयकरण को जन्म दे सकता है और इसलिए प्रकाश संदीप्ति जीवन काल में काफी वृद्धि कर सकता है क्योंकि स्थानीय वाहक आसानी से गैर-विकिरण पुनर्संयोजन केंद्रों को नहीं ढूंढ सकते हैं जैसे मुक्त कर सकते हैं।
वास्तविक भौतिक प्रणालियाँ हमेशा अव्यवस्था को शामिल करती हैं। उदाहरण:- संरचनात्मक [[Index.php?title=क्रिस्टलोग्राफिक त्रुटि|क्रिस्टलोग्राफिक त्रुटि]] हैं<ref>{{cite journal|doi=10.1088/0022-3727/47/42/423001|arxiv=1405.1261|bibcode=2014JPhD...47P3001L|title= ल्यूमिनेसेंस GaN में स्टैकिंग दोषों से जुड़ा हुआ है|journal=J. Phys. D: Appl. Phys.|volume=47|issue=42|pages=423001|year=2014|last1=Lähnemann|first1=J.|last2=Jahn|first2=U.|last3=Brandt|first3=O.|last4=Flissikowski|first4=T.|last5=Dogan|first5=P.|last6=Grahn|first6=H.T.|s2cid=118671207}}</ref> रासायनिक संरचना की विविधताओं के कारण जाली या क्रम और विकार (भौतिकी) में। आदर्श संरचना की गड़बड़ी के बारे में विस्तृत ज्ञान की कमी के कारण सूक्ष्म सिद्धांतों के लिए उनका उपचार बेहद चुनौतीपूर्ण है। इस प्रकार, PL पर बाहरी प्रभावों के प्रभाव को सामान्यत: घटनात्मक रूप से संबोधित किया जाता है।<ref name="BaranovskiiEichmann1998">Baranovskii, S.; Eichmann, R.; Thomas, P. (1998). "Temperature-dependent exciton luminescence in quantum wells by computer simulation". ''Physical Review B'' '''58''' (19): 13081–13087. [https://dx.doi.org/10.1103%2FPhysRevB.58.13081 doi:10.1103/PhysRevB.58.13081.]</ref> प्रयोगों में, विकार वाहकों के स्थानीयकरण को जन्म दे सकता है और इसलिए प्रकाश संदीप्ति जीवन काल में काफी वृद्धि कर सकता है क्योंकि स्थानीय वाहक आसानी से गैर-विकिरण पुनर्संयोजन केंद्रों को नहीं ढूंढ सकते हैं जितना कि मुक्त कर सकते हैं।


[[किंग अब्दुल्ला विज्ञान और प्रौद्योगिकी विश्वविद्यालय (KAUST)]]KAUST) के शोधकर्ताओं ने [[InGaN]]/GaN p-i-n [[ डबल-विषम संरचना ]] और [[AlGaN]] [[nanowires]] के तापमान-निर्भर प्रकाश संदीप्ति का उपयोग करके फोटोइंड्रेड एन्ट्रॉपी (यानी थर्मोडायनामिक डिसऑर्डर) का अध्ययन किया है।<ref name="entropyalfaraj2017"/><ref name="entropyalfaraj2017_1">अल्फाराज, एन.; मुमताज़ मुहम्मद, एम.; ली, के.; जंजुआ, बी.; अल्जेफ्री, आर.ए.; सन, एच.; एनजी, टी. के.; ऊई, बी.एस.; रोकन, आई.एस.; ली, एक्स। (2017)। AlGaN नैनोवायरों में थर्मोडायनामिक फोटोइंडोस्ड डिसऑर्डर। AIP एडवांस '7' (12): 125113। [https://doi.org/10.1063/1.5003443]</ref> उन्होंने प्रकाश-प्रेरित एन्ट्रापी को थर्मोडायनामिक मात्रा के रूप में परिभाषित किया जो उपयोगी कार्य में रूपांतरण के लिए सिस्टम की ऊर्जा की अनुपलब्धता का प्रतिनिधित्व करता है। [[वाहक पुनर्संयोजन]] और फोटॉन उत्सर्जन के कारण। उन्होंने समय-समाधान किए गए प्रकाश संदीप्ति अध्ययन के परिणामों का उपयोग करते हुए नैनोवायर सक्रिय क्षेत्रों में फोटोकैरियर गतिकी में परिवर्तन के लिए एन्ट्रापी पीढ़ी में परिवर्तन से संबंधित है। उन्होंने परिकल्पना की कि InGaN परतों में उत्पन्न विकार की मात्रा अंततः बढ़ जाती है क्योंकि सतह के अवस्थाों के थर्मल सक्रियण के कारण तापमान कमरे के तापमान तक पहुँच जाता है, जबकि AlGaN नैनोवायरों में एक नगण्य वृद्धि देखी गई, जो व्यापक रूप से विकार-प्रेरित अनिश्चितता की निम्न डिग्री का संकेत देती है। बैंडगैप सेमीकंडक्टर। फोटोप्रेरित एन्ट्रापी का अध्ययन करने के लिए, वैज्ञानिकों ने एक गणितीय मॉडल विकसित किया है जो फोटोएक्सिटेशन और प्रकाश संदीप्ति से उत्पन्न शुद्ध ऊर्जा विनिमय पर विचार करता है।
[[किंग अब्दुल्ला विज्ञान और प्रौद्योगिकी विश्वविद्यालय (KAUST)]] के शोधकर्ताओं ने [[InGaN]]/ GaN p-i-n [[ डबल-विषम संरचना ]]और [[AlGaN]] [[Index.php?title=नैनोवायर|नैनोवायर]] के तापमान-निर्भर प्रकाश संदीप्ति का उपयोग करके फोटोइंड्रेड एन्ट्रॉपी (यानी ऊष्मागतिक डिसऑर्डर) का अध्ययन किया है। <ref name="entropyalfaraj2017"/><ref name="entropyalfaraj2017_1">अल्फाराज, एन.; मुमताज़ मुहम्मद, एम.; ली, के.; जंजुआ, बी.; अल्जेफ्री, आर.ए.; सन, एच.; एनजी, टी. के.; ऊई, बी.एस.; रोकन, आई.एस.; ली, एक्स। (2017)। AlGaN नैनोवायरों में थर्मोडायनामिक फोटोइंडोस्ड डिसऑर्डर। AIP एडवांस '7' (12): 125113। [https://doi.org/10.1063/1.5003443]</ref> उन्होंने प्रकाश-प्रेरित एन्ट्रापी को ऊष्मागतिक मात्रा के रूप में परिभाषित किया जो उपयोगी कार्य में रूपांतरण के लिए सिस्टम की ऊर्जा की अनुपलब्धता का प्रतिनिधित्व करता है। [[वाहक पुनर्संयोजन]] और फोटॉन उत्सर्जन के कारण। उन्होंने समय-समाधान किए गए प्रकाश संदीप्ति अध्ययन के परिणामों का उपयोग करते हुए नैनोवायर सक्रिय क्षेत्रों में फोटोकैरियर गतिकी में परिवर्तन के लिए एन्ट्रापी पीढ़ी में परिवर्तन से संबंधित है। उन्होंने परिकल्पना की कि InGaN परतों में उत्पन्न विकार की मात्रा अंततः बढ़ जाती है क्योंकि सतह के अवस्थाों के थर्मल सक्रियण के कारण तापमान कमरे के तापमान तक पहुँच जाता है, जबकि AlGaN नैनोवायरों में एक नगण्य वृद्धि देखी गई, जो व्यापक रूप से विकार-प्रेरित अनिश्चितता की निम्न डिग्री का संकेत देती है। ऊर्जा अंतराल अर्धचालक। फोटोप्रेरित एन्ट्रापी का अध्ययन करने के लिए, वैज्ञानिकों ने एक गणितीय मॉडल विकसित किया है जो फोटोएक्सिटेशन और प्रकाश संदीप्ति से उत्पन्न शुद्ध ऊर्जा विनिमय पर विचार करता है।


== तापमान का पता लगाने के लिए फोटोल्यूमिनेसेंट सामग्री ==
== तापमान का पता लगाने के लिए फोटोल्यूमिनेसेंट सामग्री ==
Line 60: Line 60:


== प्रायोगिक तरीके ==
== प्रायोगिक तरीके ==
Photoluminescence स्पेक्ट्रोस्कोपी अर्धचालक और अणुओं के ऑप्टिकल और इलेक्ट्रॉनिक गुणों के लक्षण वर्णन के लिए एक व्यापक रूप से इस्तेमाल की जाने वाली तकनीक है। तकनीक अपने आप में तेज, संपर्क रहित और गैर-विनाशकारी है। इसलिए, इसका उपयोग जटिल नमूना तैयार किए बिना निर्माण प्रक्रिया के दौरान विभिन्न आकारों (माइक्रोन से सेंटीमीटर तक) की सामग्री के ऑप्टोइलेक्ट्रोनिक गुणों का अध्ययन करने के लिए किया जा सकता है।<ref>{{Cite journal|url=https://pubs.acs.org/doi/full/10.1021/acsnano.0c08668|doi = 10.1021/acsnano.0c08668|title = दो आयामी संक्रमण-धातु डाइक्लोजेनाइड्स में स्थिर-राज्य फोटोल्यूमिनेसेंस स्पेक्ट्रोस्कोपी के तंत्र और अनुप्रयोग|year = 2020|last1 = Tebyetekerwa|first1 = Mike|last2 = Zhang|first2 = Jian|last3 = Xu|first3 = Zhen|last4 = Truong|first4 = Thien N.|last5 = Yin|first5 = Zongyou|last6 = Lu|first6 = Yuerui|last7 = Ramakrishna|first7 = Seeram|last8 = MacDonald|first8 = Daniel|last9 = Nguyen|first9 = Hieu T.|journal = ACS Nano|volume = 14|issue = 11|pages = 14579–14604|pmid = 33155803|s2cid = 226269683}}</ref> उदाहरण के लिए, सौर सेल अवशोषक के प्रकाश संदीप्ति माप सामग्री का उत्पादन कर सकने वाले अधिकतम वोल्टेज की भविष्यवाणी कर सकते हैं।<ref>{{cite journal |last1=Sibentritt |first1=Susanne |last2=Weiss |first2=Thomas Paul |last3=Sood |first3=Mohit |last4=Wolter |first4=Max Hilaire |last5=Lomuscio |first5=Alberto |last6=Ramirez |first6=Omar |title=फोटोलुमिनेसेंस कैसे सौर कोशिकाओं की दक्षता की भविष्यवाणी कर सकता है|journal=Journal of Physics: Materials |date=2021 |volume=4|issue=4 |page=042010 |doi=10.1088/2515-7639/ac266e |bibcode=2021JPhM....4d2010S |s2cid=239106918 |doi-access=free }}</ref> रसायन विज्ञान में, विधि को अक्सर [[प्रतिदीप्ति स्पेक्ट्रोस्कोपी]] के रूप में जाना जाता है, लेकिन उपकरण समान है। टाइम-सॉल्व्ड स्पेक्ट्रोस्कोपी#टाइम-सॉल्व्ड फ्लोरेसेंस स्पेक्ट्रोस्कोपी|टाइम-सॉल्व्ड फ्लोरेसेंस स्पेक्ट्रोस्कोपी का उपयोग करके विश्राम प्रक्रियाओं का अध्ययन किया जा सकता है ताकि प्रकाश संदीप्ति के क्षय जीवनकाल का पता लगाया जा सके। इन तकनीकों को माइक्रोस्कोपी के साथ जोड़ा जा सकता है, एक नमूने में प्रकाश संदीप्ति की तीव्रता ([[ संनाभि माइक्रोस्कोपी ]]) या आजीवन ([[प्रतिदीप्ति-आजीवन इमेजिंग माइक्रोस्कोपी]]) को मैप करने के लिए (उदाहरण के लिए एक सेमीकंडक्टिंग वेफर, या एक जैविक नमूना जिसे फ्लोरोसेंट अणुओं के साथ चिह्नित किया गया है) .
प्रकाश संदीप्ति स्पेक्ट्रोस्कोपी अर्धचालक और अणुओं के प्रकाशिक और इलेक्ट्रॉनिक गुणों के लक्षण के वर्णन के लिए एक व्यापक रूप से उपयोग की जाने वाली तकनीक है। तकनीक अपने आप में तेज, संपर्क रहित और गैर-विनाशकारी है। इसलिए, इसका उपयोग जटिल नमूना तैयार किए बिना निर्माण प्रक्रिया के दौरान विभिन्न आकारों (माइक्रोन से सेंटीमीटर तक) की सामग्री के प्रकाशीय इलेक्ट्रॉनिकी गुणों का अध्ययन करने के लिए किया जा सकता है।<ref>{{Cite journal|url=https://pubs.acs.org/doi/full/10.1021/acsnano.0c08668|doi = 10.1021/acsnano.0c08668|title = दो आयामी संक्रमण-धातु डाइक्लोजेनाइड्स में स्थिर-राज्य फोटोल्यूमिनेसेंस स्पेक्ट्रोस्कोपी के तंत्र और अनुप्रयोग|year = 2020|last1 = Tebyetekerwa|first1 = Mike|last2 = Zhang|first2 = Jian|last3 = Xu|first3 = Zhen|last4 = Truong|first4 = Thien N.|last5 = Yin|first5 = Zongyou|last6 = Lu|first6 = Yuerui|last7 = Ramakrishna|first7 = Seeram|last8 = MacDonald|first8 = Daniel|last9 = Nguyen|first9 = Hieu T.|journal = ACS Nano|volume = 14|issue = 11|pages = 14579–14604|pmid = 33155803|s2cid = 226269683}}</ref> उदाहरण के लिए, सौर सेल अवशोषक के प्रकाश संदीप्ति माप सामग्री का उत्पादन कर सकने वाले अधिकतम वोल्टेज का पूर्वानुमान कर सकते हैं।<ref>{{cite journal |last1=Sibentritt |first1=Susanne |last2=Weiss |first2=Thomas Paul |last3=Sood |first3=Mohit |last4=Wolter |first4=Max Hilaire |last5=Lomuscio |first5=Alberto |last6=Ramirez |first6=Omar |title=फोटोलुमिनेसेंस कैसे सौर कोशिकाओं की दक्षता की भविष्यवाणी कर सकता है|journal=Journal of Physics: Materials |date=2021 |volume=4|issue=4 |page=042010 |doi=10.1088/2515-7639/ac266e |bibcode=2021JPhM....4d2010S |s2cid=239106918 |doi-access=free }}</ref> रसायन विज्ञान में, विधि को अधिकांशत: [[प्रतिदीप्ति स्पेक्ट्रोस्कोपी]] के रूप में जाना जाता है, लेकिन उपकरण समान है। टाइम-सॉल्व्ड स्पेक्ट्रोस्कोपी, टाइम-सॉल्व्ड फ्लोरेसेंस स्पेक्ट्रोस्कोपी, टाइम-सॉल्व्ड फ्लोरेसेंस स्पेक्ट्रोस्कोपी का उपयोग करके विश्राम प्रक्रियाओं का अध्ययन किया जा सकता है जिससे कि प्रकाश संदीप्ति के क्षय जीवनकाल का पता लगाया जा सके। इन तकनीकों को सूक्ष्मदर्शिकी के साथ जोड़ा जा सकता है, एक नमूने में प्रकाश संदीप्ति की तीव्रता ([[Index.php?title=संनाभि सूक्ष्मदर्शिकी|संनाभि सूक्ष्मदर्शिकी]]) या आजीवन ([[Index.php?title=प्रतिदीप्ति-आजीवन प्रतिबिंबन सूक्ष्मदर्शिकी|प्रतिदीप्ति-आजीवन प्रतिबिंबन सूक्ष्मदर्शिकी]]) को मैप करने के लिए (उदाहरण के लिए एक अर्धचालन वेफर, या एक जैविक नमूना जिसे फ्लोरोसेंट अणुओं के साथ चिह्नित किया गया है) .


== यह भी देखें ==
== यह भी देखें ==
* [[[[chemiluminescence]]]]
* [[[[Index.php?title=रासायनिक संदीप्ति|रासायनिक संदीप्ति]]]]
* रासायनिक संदीप्ति
* रासायनिक संदीप्ति
* [[उत्सर्जन (विद्युत चुम्बकीय विकिरण)]]
* [[उत्सर्जन (विद्युत चुम्बकीय विकिरण)]]
Line 72: Line 72:
* [[लाल शिफ्ट]]
* [[लाल शिफ्ट]]
* [[प्रभारी वाहक]]
* [[प्रभारी वाहक]]
* सेमीकंडक्टर बलोच समीकरण
* अर्धचालक बलोच समीकरण
* [[इलियट सूत्र]]
* [[इलियट सूत्र]]
* [[सेमीकंडक्टर लेजर सिद्धांत]]
* [[सेमीकंडक्टर लेजर सिद्धांत|अर्धचालक लेजर सिद्धांत]]
* [[प्रकाश स्रोतों की सूची]]
* [[प्रकाश स्रोतों की सूची]]
* चमक
* चमक
Line 94: Line 94:
* {{cite book|last1=Kira|first1=M.|last2=Koch|first2=S. W.|title=Semiconductor Quantum Optics|date=2011|publisher=Cambridge University Press|isbn=978-0521875097}}
* {{cite book|last1=Kira|first1=M.|last2=Koch|first2=S. W.|title=Semiconductor Quantum Optics|date=2011|publisher=Cambridge University Press|isbn=978-0521875097}}
* {{cite book|last1=Peygambarian|first1=N.|last2=Koch|first2=S. W.|last3=Mysyrowicz|first3=André|title=Introduction to Semiconductor Optics|date=1993|publisher=Prentice Hall|isbn=978-0-13-638990-3}}
* {{cite book|last1=Peygambarian|first1=N.|last2=Koch|first2=S. W.|last3=Mysyrowicz|first3=André|title=Introduction to Semiconductor Optics|date=1993|publisher=Prentice Hall|isbn=978-0-13-638990-3}}
[[Category: स्पेक्ट्रोस्कोपी]] [[Category: चमक]]


 
[[Category:All Wikipedia articles written in American English]]
 
[[Category:Commons category link from Wikidata]]
[[Category: Machine Translated Page]]
[[Category:Created On 24/03/2023]]
[[Category:Created On 24/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Use American English from April 2019]]
[[Category:चमक]]
[[Category:स्पेक्ट्रोस्कोपी]]

Latest revision as of 12:16, 27 October 2023

यूवी प्रकाश के अनुसार प्रतिदीप्ति समाधान। लंबे समय तक विद्युत चुम्बकीय तरंग दैर्ध्य के अनुसार अवशोषित फोटोन तेजी से फिर से उत्सर्जित होते हैं।

प्रकाश संदीप्ति (PL के रूप में संक्षिप्त) फोटॉन (विद्युत चुम्बकीय विकिरण) के अवशोषण के बाद किसी भी प्रकार के पदार्थ से प्रकाश उत्सर्जन होता है।[1] यह चमक (प्रकाश उत्सर्जन) के कई रूपों में से एक है और फोटोएक्सीटेशन (यानी फोटॉन जो एक परमाणु में उच्च ऊर्जा स्तर पर इलेक्ट्रॉनों (अतिसूक्ष्म परमाणु) को उत्तेजित करते हैं) द्वारा आरंभ किया जाता है, इसलिए पूर्वयोजन फोटो-।[2] ऊर्जन के बाद, विभिन्न विश्राम प्रक्रियाएं सामान्य होती हैं जिनमें अन्य फोटॉन फिर से विकीर्ण होते हैं। अवशोषण और उत्सर्जन के बीच समय अवधि भिन्न हो सकती है। अकार्बनिक अर्धचालकों में मुक्त- वाहक प्लाज्मा से जुड़े उत्सर्जन के लिए लघु फेमटोसेकंड-प्रणाली से लेकर[3] आणविक प्रणालियों में स्फुरदीप्ति प्रक्रियाओं के लिए मिलीसेकंड(क्षण का लाखवां भाग) तक; और विशेष परिस्थितियों में उत्सर्जन में देरी मिनटों या घंटों तक भी हो सकती है।

एक निश्चित ऊर्जा पर प्रकाश संदीप्ति का निरीक्षण एक संकेत के रूप में देखा जा सकता है, कि एक इलेक्ट्रॉन इस ऊर्जा से जुड़ा एक उत्तेजित अवस्था है।

चूंकि यह सामान्यत: परमाणुओं और समान प्रणालियों में सच है, सहसंबंध और अन्य जटिल घटनाएं भी प्रकाश संदीप्ति के स्रोतों के रूप में कार्य करती हैं । बहुपिंडी प्रणालियां जैसे अर्धचालक इसे संभालने के लिए एक सैद्धांतिक दृष्टिकोण अर्धचालक संदीप्ति समीकरण द्वारा दिया गया है।

रूप

प्रकाश संदीप्ति की ऊर्जन-विश्राम प्रक्रियाओं के लिए योजनाबद्ध

प्रकाश संदीप्ति प्रक्रियाओं को उत्सर्जन के संबंध में उत्तेजक फोटॉन की ऊर्जा को विभिन्न मानकों द्वारा वर्गीकृत किया जा सकता है।

अनुनाद ऊर्जन एक ऐसी स्थिति का वर्णन करती है जिसमें एक विशेष तरंग दैर्ध्य के फोटोन अवशोषित होते हैं और समकक्ष फोटॉन बहुत तेजी से पुनः उत्सर्जित होते हैं। इसे अधिकांशत: प्रतिध्वनि प्रतिदीप्ति के रूप में जाना जाता है। समाधान या गैस चरण (पदार्थ) में सामग्री के लिए, इस प्रक्रिया में इलेक्ट्रॉन शामिल होते हैं लेकिन अवशोषण और उत्सर्जन के बीच रासायनिक पदार्थ की आणविक विशेषताओं को शामिल करने वाली कोई महत्वपूर्ण आंतरिक ऊर्जा नहीं होती है। पारदर्शी अकार्बनिक अर्धचालकों में जहां एक इलेक्ट्रॉनिक बैंड संरचना बनती है, माध्यमिक उत्सर्जन अधिक जटिल हो सकता है क्योंकि घटनाओं में सुसंगतता (भौतिकी) में दोनों योगदान हो सकते हैं जैसे कि अनुनाद रेले स्कैटरिंग जहां उग्र प्रकाश क्षेत्र के साथ एक निश्चित चरण संबंध बनाए रखा जाता है (यानी ऊर्जावान रूप से लोचदार प्रक्रियाएं) जहां कोई नुकसान शामिल नहीं है), और असंगत योगदान है (या अयोग्य मोड जहां कुछ ऊर्जा चैनल एक सहायक हानि मोड में हैं),[4] उदाहरण के लिए, ऊर्जन के विकिरण पुनर्संयोजन से, कूलम्ब इंटरेक्शन-बाउंड इलेक्ट्रॉन-छिद्र युग्म ठोस अवस्था में होता है। अनुनाद प्रतिदीप्ति भी महत्वपूर्ण क्वांटम प्रकाशिकी सहसंबंध दिखा सकती है।[4][5][6] अधिक प्रक्रियाएं तब हो सकती हैं जब कोई पदार्थ अवशोषण घटना से ऊर्जा को फिर से उत्सर्जित करने से पहले आंतरिक ऊर्जा स्वर संधान से गुजरता है। इलेक्ट्रॉन या तो एक फोटॉन के अवशोषण से ऊर्जा प्राप्त करके या फोटॉन उत्सर्जित करके ऊर्जा खो कर ऊर्जा कि स्थिति को बदलते हैं। रसायन विज्ञान से संबंधित विषयों में, अधिकांशत: प्रतिदीप्ति और स्फुरदीप्ति के बीच अंतर किया जाता है। सामान्यत: यह एक तेज़ प्रक्रिया है, फिर भी मूल ऊर्जा की कुछ मात्रा नष्ट हो जाती है जिससे कि पुनः उत्सर्जित प्रकाश फोटॉनों में अवशोषित ऊर्जन फोटॉन की तुलना में कम ऊर्जा होती है। इस स्थिति में फिर से उत्सर्जित फोटॉन को लाल शिफ्ट कहा जाता है, इस नुकसान के बाद कम ऊर्जा का जिक्र करते हुए जैब्लोंस्की आरेख दिखाता है। स्फुरदीप्ति के लिए, इलेक्ट्रॉन जो फोटॉनों को अवशोषित करते हैं, इंटरसिस्टम क्रॉसिंग से गुजरते हैं जहां वे परिवर्तित स्पिन (भौतिकी) बहुलता (शब्द प्रतीक देखें) के साथ एक अवस्था में प्रवेश करते हैं, सामान्यत: एक त्रिक अवस्था। एक बार उत्तेजित इलेक्ट्रॉन को इस त्रिक अवस्था में स्थानांतरित कर दिया जाता है, तो इलेक्ट्रॉन स्वर संधान (विश्राम) कम एकल अवस्था ऊर्जा में वापस क्वांटम यांत्रिक रूप से वर्जित होता है, जिसका अर्थ है कि यह अन्य स्वर संधानों की तुलना में बहुत धीरे-धीरे होता है। इसका परिणाम एकल स्थिति में वापस विकिरण स्वर संधान की धीमी प्रक्रिया है, कभी-कभी स्थायी मिनट या घंटे। यह अंधेरे पदार्थों में चमक का आधार है।

प्रकाश संदीप्ति अर्धचालक जैसे गैलियम नाइट्राइड और इंडियम फॉस्फोरस की शुद्धता और पारदर्शी गुणवत्ता को मापने और एक प्रणाली में मौजूद विकार की मात्रा की मात्रा के लिए एक महत्वपूर्ण तकनीक है।[7] समय-समाधान प्रकाश संदीप्ति (टीआरपीएल) एक ऐसी विधि है जहां नमूना प्रकाश पल्स से उत्तेजित होता है और फिर समय के संबंध में प्रकाश संदीप्ति में क्षय मापा जाता है। यह तकनीक गैलियम आर्सेनाइड (GaAs) जैसे III-V अर्धचालकों के अल्पसंख्यक वाहक जीवनकाल को मापने के लिए उपयोगी है।

प्रत्यक्ष-गैप अर्धचालकों के फोटोलुमिनेन्स गुण

एक विशिष्ट PL प्रयोग में, एक अर्धचालक एक प्रकाश-स्रोत से उत्साहित होता है जो फोटॉन को ऊर्जा अंतराल ऊर्जा से बड़ी ऊर्जा प्रदान करता है। आने वाली रोशनी एक ध्रुवीकरण को उत्तेजित करती है जिसे अर्धचालक बलोच समीकरण के साथ वर्णित किया जा सकता है।[8][9] एक बार जब फोटॉन अवशोषित हो जाते हैं, तो परिमित संवेग के साथ इलेक्ट्रॉन और छिद्र बन जाते हैं चालन बैंड और संयोजी बंध में क्रमशः। ऊर्जन तब बैंड-गैप न्यूनतम की ओर ऊर्जा और संवेग विश्राम से गुजरती है। कूलॉम प्रकीर्णन और फोनन के साथ अन्योन्यक्रिया विशिष्ट तंत्र हैं। अंत में, फोटॉन के उत्सर्जन के अनुसार इलेक्ट्रॉन छिद्रों के साथ पुन: संयोजित होते हैं।

आदर्श, दोष-मुक्त अर्धचालक में कई-निकाय प्रणालियां हैं जहाँ प्रकाश-पदार्थ युग्मन के अतिरिक्त आवेश-वाहकों और जाली कंपनों की परस्पर क्रियाओं पर विचार किया जाना है। सामान्य तौर पर, PL गुण भी आंतरिक विद्युत क्षेत्र और अचालक वातावरण (जैसे फोटोनिक क्रिस्टल में) के प्रति बेहद संवेदनशील होते हैं जो जटिलता की और डिग्री लगाते हैं। अर्धचालक ल्यूमिनेसेंस समीकरणों द्वारा एक सटीक सूक्ष्म विवरण प्रदान किया जाता है।[8]


आदर्श क्वांटम-वेल संरचनाएं

विशिष्ट PL प्रयोगों में मौलिक प्रक्रियाओं को चित्रित करने के लिए एक आदर्श, दोष मुक्त अर्धचालक क्वांटम एक अच्छी उपयोगी संरचना मॉडल प्रणाली है। यह चर्चा क्लिंगशीर्न (2012) और बाल्कन (1998) में प्रकाशित परिणामों पर आधारित है।[10][11] इस चर्चा के लिए काल्पनिक मॉडल संरचना में दो सीमित परिमाणित इलेक्ट्रॉनिक और दो होल उपबैंड हैं, e1, e2 और h1, h2, क्रमश। इस तरह की संरचना का रैखिक अवशोषण स्पेक्ट्रम पहले (e1h1) और दूसरे क्वांटम वेल सबबैंड्स (e2, h2), साथ ही इसी सातत्य अवस्थाओं से और बाधा से अवशोषण।

फोटोएक्सिटेशन

सामान्य तौर पर, तीन अलग-अलग ऊर्जन स्थितियों को प्रतिष्ठित किया जाता है: अनुनाद, अर्ध-अनुनाद और गैर-अनुनाद। अनुनाद ऊर्जन के लिए, लेजर की केंद्रीय ऊर्जा क्‍वांटम कूप के निम्नतम एक्सिटोन अनुनाद से मेल खाती है। ना, या अतिरिक्त की केवल एक नगण्य मात्रा, ऊर्जा को वाहक प्रणाली में अन्तःक्षेप किया जाता है। इन स्थितियों के लिए, सहज प्रक्रियाएं सहज उत्सर्जन में महत्वपूर्ण योगदान देती हैं।[4][12] ध्रुवीकरण का क्षय सीधे ऊर्जन पैदा करता है। अनुनाद ऊर्जन के लिए PL का पता लगाना चुनौतीपूर्ण है क्योंकि ऊर्जन से योगदान में भेदभाव करना मुश्किल है, यानी अवांछित प्रकाश विचलन और फैलाव। इस प्रकार,धब्बेदार पैटर्न और रेज़ोनेंट रेले स्कैटरिंग। रेले-स्कैटरिंग हमेशा सुसंगतता (भौतिकी) उत्सर्जन के लिए अध्यारोपित होते हैं।

गैर-प्रतिध्वनि ऊर्जन के स्थिति में, संरचना कुछ अतिरिक्त ऊर्जा से उत्तेजित होती है। यह अधिकांश PL प्रयोगों में उपयोग की जाने वाली विशिष्ट स्थिति है क्योंकि वर्णक्रममापी या प्रकाश निस्यदंक का उपयोग करके ऊर्जन ऊर्जा में भेदभाव किया जा सकता है। अर्ध-अनुनाद ऊर्जन और बाधा ऊर्जन के बीच अंतर करना होगा।

अर्ध-अनुनाद स्थितियों के लिए, ऊर्जन की ऊर्जा को जमीनी स्थिति से ऊपर रखा जाता है, लेकिन अभी भी संभावित अवरोध अवशोषण किनारे से नीचे है, उदाहरण के लिए, पहले सबबैंड की निरंतरता में। इन स्थितियों के लिए ध्रुवीकरण क्षय अनुनाद ऊर्जन की तुलना में बहुत तेज है और क्वांटम से उत्सर्जन में सुसंगत योगदान नगण्य हैं। अंतःक्षेपित वाहकों की अधिशेष ऊर्जा के कारण वाहक प्रणाली का प्रारंभिक तापमान जाली तापमान से काफी अधिक है। अंत में, केवल इलेक्ट्रॉन-छिद्र प्लाज्मा बनाया जाता है। इसके बाद एक्साइटन्स का निर्माण होता है।[13][14] बाधा ऊर्जन की स्थिति में, क्‍वांटम कूप में प्रारंभिक वाहक वितरण बाधा और कूप के बीच बिखरने वाले वाहक पर दृढ़ता से निर्भर करता है।

विश्राम

प्रारंभ में, लेज़र प्रकाश नमूने में सुसंगत ध्रुवीकरण को प्रेरित करता है, अर्थात, इलेक्ट्रॉन और छिद्र अवस्थाओं के बीच स्वर संधान लेज़र आवृत्ति और एक निश्चित चरण के साथ दोलन करता है। अल्ट्रा-फास्ट कूलम्ब- और फोनन-स्कैटरिंग के कारण गैर-अनुनाद ऊर्जन के स्थिति में ध्रुवीकरण सामान्यत: उप-100 fs समय-पैमाने पर होता है।[15] ध्रुवीकरण के अपघटन से क्रमशः चालन और वैलेंस बैंड में इलेक्ट्रॉनों और छिद्रों की संख्या का निर्माण होता है। वाहक संख्या का जीवनकाल अपेक्षाकृत लंबा है, विकिरण और गैर-विकिरण पुनर्संयोजन जैसे ऑगर पुनर्संयोजन द्वारा सीमित है। इस जीवनकाल के दौरान इलेक्ट्रॉनों और छिद्रों का एक अंश ऊर्जन पैदा कर सकता है, यह विषय अभी भी साहित्य में विवादास्पद रूप से चर्चा में है। विरचन की दर प्रायोगिक स्थितियों जैसे कि जाली तापमान, ऊर्जन घनत्व, साथ ही सामान्य सामग्री मापदंडों पर निर्भर करती है, उदाहरण के लिए, कूलम्ब-इंटरैक्शन या एक्सिटोन बाइंडिंग एनर्जी की ताकत।

विशिष्ट समय-मान GaAs में सैकड़ों पीकोसैकन्ड की सीमा में हैं;[13] वाइड-गैप अर्धचालक्स में बहुत छोटे दिखाई देते हैं।[16] लघु (गुजरने) स्पंद के साथ ऊर्जन और ध्रुवीकरण के अर्ध-तात्कालिक क्षय के तुरंत बाद, वाहक वितरण मुख्य रूप से ऊर्जन की वर्णक्रमीय चौड़ाई द्वारा निर्धारित किया जाता है, उदाहरण के लिए, एक लेज़र स्पंद। वितरण इस प्रकार अत्यधिक गैर-तापीय है और एक गाऊसी वितरण जैसा दिखता है, जो एक परिमित गति पर केंद्रित है। पहले के सैकड़ों फेमटोसेकंड में, वाहक फ़ोनों द्वारा बिखरे हुए हैं, या कूलम्ब-इंटरैक्शन के माध्यम से उन्नत वाहक घनत्व पर हैं। वाहक प्रणाली क्रमिक रूप से फर्मी-डिराक वितरण के लिए आराम करती है, सामान्यत: पहले पिकोसेकंड के भीतर। अंत में, फोनन के उत्सर्जन के अनुसार वाहक प्रणाली शांत हो जाती है। इसमें कई नैनोसेकंड तक लग सकते हैं, जो सामग्री प्रणाली, जाली तापमान और ऊर्जना की स्थिति जैसे अधिशेष ऊर्जा पर निर्भर करता है।

प्रारंभ में, फोनोन # ध्वनिक और ऑप्टिकल फोनन के उत्सर्जन के माध्यम से वाहक तापमान तेजी से घटता है। यह ऑप्टिकल फ़ोनों से जुड़ी तुलनात्मक रूप से बड़ी ऊर्जा (36meV या GaAs में 420K) और उनके अपेक्षाकृत सपाट फैलाव के कारण काफी कुशल है, जिससे ऊर्जा और संवेग के संरक्षण के अनुसार बिखरने की प्रक्रियाओं की एक विस्तृत श्रृंखला की अनुमति मिलती है। एक बार जब वाहक तापमान ऑप्टिकल फोनन ऊर्जा के अनुरूप मूल्य से कम हो जाता है, तो फोनोन # ध्वनिक और ऑप्टिकल फोनॉन छूट पर हावी हो जाते हैं। यहां, उनके ध्वनिक फैलाव और छोटी ऊर्जाओं के कारण शीतलन कम कुशल है और पिकोसेकंड के पहले दसियों से परे तापमान बहुत धीमा हो जाता है।[17][18] उन्नत ऊर्जना घनत्व पर वाहक शीतलन को तथाकथित हॉट फोनोन प्रभाव द्वारा आगे रोका जाता है। बड़ी संख्या में गर्म वाहकों की छूट ऑप्टिकल फोनन की एक उच्च जनन दर की ओर जाता है जो ध्वनिक फोनन में क्षय दर से अधिक होता है। यह ऑप्टिकल फोनों की एक गैर-संतुलन अधिक संख्या बनाता है और इस प्रकार चार्ज-वाहकों द्वारा किसी भी शीतलन को महत्वपूर्ण रूप से दबाकर उनके बढ़ते पुन: अवशोषण का कारण बनता है। इस प्रकार,वाहक घनत्व जितना अधिक होता है सिस्टम उतनी ही धीमी गति से ठंडा होता है, ।

विकिरण पुनर्संयोजन

ऊर्जन के बाद सीधे उत्सर्जन वर्णक्रमीय रूप से बहुत व्यापक है, फिर भी सबसे मजबूत ऊर्जन अनुनाद के आसपास के क्षेत्र में केंद्रित है। जैसा कि वाहक वितरण आराम करता है और ठंडा होता है, PL शिखर की चौड़ाई कम हो जाती है और उत्सर्जन ऊर्जा विकार के बिना आदर्श नमूनों के लिए एक्साइटन (जैसे इलेक्ट्रॉन) की जमीनी स्थिति से मेल खाती है। PL स्पेक्ट्रम इलेक्ट्रॉनों और छिद्रों के वितरण द्वारा परिभाषित अपने अर्ध-स्थिर-अवस्था आकार तक पहुंचता है। ऊर्जन घनत्व बढ़ाने से उत्सर्जन स्पेक्ट्रा बदल जाएगा। वे कम घनत्व के लिए उत्तेजक जमीनी अवस्था में हावी हैं। उच्च सबबैंड स्वर संधानों से अतिरिक्त शिखर वाहक घनत्व या जाली तापमान में वृद्धि के रूप में दिखाई देते हैं क्योंकि ये अवस्था अधिक से अधिक संख्या वाले होते हैं। इसके अलावा, मुख्य PL शिर की चौड़ाई ऊर्जन-प्रेरित डीफेसिंग के कारण बढ़ती ऊर्जन के साथ काफी बढ़ जाती है[19] और कूलम्ब-पुनर्सामान्यीकरण और फेज-फिलिंग के कारण उत्सर्जन शिखर ऊर्जा में एक छोटे से बदलाव का अनुभव करता है।[9]

सामान्य तौर पर, एक्सिटोन संख्या और प्लाज्मा, असहसंबद्ध इलेक्ट्रॉन और छिद्र दोनों, अर्धचालक-संदीप्ति समीकरण में वर्णित प्रकाश संदीप्ति के स्रोतों के रूप में कार्य कर सकते हैं। दोनों बहुत ही समान वर्णक्रमीय विशेषताएं उत्पन्न करते हैं जिन्हें भेद करना मुश्किल है; चूंकि, उनके उत्सर्जन की गतिशीलता में काफी भिन्नता है। एक्सिटोन के क्षय से एकल-घातीय क्षय फलन उत्पन्न होता है क्योंकि उनके विकिरण पुनर्संयोजन की संभावना वाहक घनत्व पर निर्भर नहीं करती है। असंबद्ध इलेक्ट्रॉनों और छिद्रों के लिए सहज उत्सर्जन की संभावना, लगभग इलेक्ट्रॉन और छिद्र संख्या के उत्पाद के समानुपाती होती है, जो अंततः एक अतिशयोक्तिपूर्ण कार्य द्वारा वर्णित गैर-एकल-घातीय क्षय के लिए अग्रणी होती है।

विकार के प्रभाव

वास्तविक भौतिक प्रणालियाँ हमेशा अव्यवस्था को शामिल करती हैं। उदाहरण:- संरचनात्मक क्रिस्टलोग्राफिक त्रुटि हैं[20] रासायनिक संरचना की विविधताओं के कारण जाली या क्रम और विकार (भौतिकी) में। आदर्श संरचना की गड़बड़ी के बारे में विस्तृत ज्ञान की कमी के कारण सूक्ष्म सिद्धांतों के लिए उनका उपचार बेहद चुनौतीपूर्ण है। इस प्रकार, PL पर बाहरी प्रभावों के प्रभाव को सामान्यत: घटनात्मक रूप से संबोधित किया जाता है।[21] प्रयोगों में, विकार वाहकों के स्थानीयकरण को जन्म दे सकता है और इसलिए प्रकाश संदीप्ति जीवन काल में काफी वृद्धि कर सकता है क्योंकि स्थानीय वाहक आसानी से गैर-विकिरण पुनर्संयोजन केंद्रों को नहीं ढूंढ सकते हैं जितना कि मुक्त कर सकते हैं।

किंग अब्दुल्ला विज्ञान और प्रौद्योगिकी विश्वविद्यालय (KAUST) के शोधकर्ताओं ने InGaN/ GaN p-i-n डबल-विषम संरचना और AlGaN नैनोवायर के तापमान-निर्भर प्रकाश संदीप्ति का उपयोग करके फोटोइंड्रेड एन्ट्रॉपी (यानी ऊष्मागतिक डिसऑर्डर) का अध्ययन किया है। [7][22] उन्होंने प्रकाश-प्रेरित एन्ट्रापी को ऊष्मागतिक मात्रा के रूप में परिभाषित किया जो उपयोगी कार्य में रूपांतरण के लिए सिस्टम की ऊर्जा की अनुपलब्धता का प्रतिनिधित्व करता है। वाहक पुनर्संयोजन और फोटॉन उत्सर्जन के कारण। उन्होंने समय-समाधान किए गए प्रकाश संदीप्ति अध्ययन के परिणामों का उपयोग करते हुए नैनोवायर सक्रिय क्षेत्रों में फोटोकैरियर गतिकी में परिवर्तन के लिए एन्ट्रापी पीढ़ी में परिवर्तन से संबंधित है। उन्होंने परिकल्पना की कि InGaN परतों में उत्पन्न विकार की मात्रा अंततः बढ़ जाती है क्योंकि सतह के अवस्थाों के थर्मल सक्रियण के कारण तापमान कमरे के तापमान तक पहुँच जाता है, जबकि AlGaN नैनोवायरों में एक नगण्य वृद्धि देखी गई, जो व्यापक रूप से विकार-प्रेरित अनिश्चितता की निम्न डिग्री का संकेत देती है। ऊर्जा अंतराल अर्धचालक। फोटोप्रेरित एन्ट्रापी का अध्ययन करने के लिए, वैज्ञानिकों ने एक गणितीय मॉडल विकसित किया है जो फोटोएक्सिटेशन और प्रकाश संदीप्ति से उत्पन्न शुद्ध ऊर्जा विनिमय पर विचार करता है।

तापमान का पता लगाने के लिए फोटोल्यूमिनेसेंट सामग्री

फॉस्फोर थर्मोमेट्री में, तापमान को मापने के लिए प्रकाश संदीप्ति प्रक्रिया की तापमान निर्भरता का उपयोग किया जाता है।

प्रायोगिक तरीके

प्रकाश संदीप्ति स्पेक्ट्रोस्कोपी अर्धचालक और अणुओं के प्रकाशिक और इलेक्ट्रॉनिक गुणों के लक्षण के वर्णन के लिए एक व्यापक रूप से उपयोग की जाने वाली तकनीक है। तकनीक अपने आप में तेज, संपर्क रहित और गैर-विनाशकारी है। इसलिए, इसका उपयोग जटिल नमूना तैयार किए बिना निर्माण प्रक्रिया के दौरान विभिन्न आकारों (माइक्रोन से सेंटीमीटर तक) की सामग्री के प्रकाशीय इलेक्ट्रॉनिकी गुणों का अध्ययन करने के लिए किया जा सकता है।[23] उदाहरण के लिए, सौर सेल अवशोषक के प्रकाश संदीप्ति माप सामग्री का उत्पादन कर सकने वाले अधिकतम वोल्टेज का पूर्वानुमान कर सकते हैं।[24] रसायन विज्ञान में, विधि को अधिकांशत: प्रतिदीप्ति स्पेक्ट्रोस्कोपी के रूप में जाना जाता है, लेकिन उपकरण समान है। टाइम-सॉल्व्ड स्पेक्ट्रोस्कोपी, टाइम-सॉल्व्ड फ्लोरेसेंस स्पेक्ट्रोस्कोपी, टाइम-सॉल्व्ड फ्लोरेसेंस स्पेक्ट्रोस्कोपी का उपयोग करके विश्राम प्रक्रियाओं का अध्ययन किया जा सकता है जिससे कि प्रकाश संदीप्ति के क्षय जीवनकाल का पता लगाया जा सके। इन तकनीकों को सूक्ष्मदर्शिकी के साथ जोड़ा जा सकता है, एक नमूने में प्रकाश संदीप्ति की तीव्रता (संनाभि सूक्ष्मदर्शिकी) या आजीवन (प्रतिदीप्ति-आजीवन प्रतिबिंबन सूक्ष्मदर्शिकी) को मैप करने के लिए (उदाहरण के लिए एक अर्धचालन वेफर, या एक जैविक नमूना जिसे फ्लोरोसेंट अणुओं के साथ चिह्नित किया गया है) .

यह भी देखें

संदर्भ

  1. Tebyetekerwa, Mike; Zhang, Jian; Xu, Zhen; Truong, Thien N.; Yin, Zongyou; Lu, Yuerui; Ramakrishna, Seeram; Macdonald, Daniel; Nguyen, Hieu T. (24 November 2020). "दो आयामी संक्रमण-धातु डाइक्लोजेनाइड्स में स्थिर-राज्य फोटोल्यूमिनेसेंस स्पेक्ट्रोस्कोपी के तंत्र और अनुप्रयोग". ACS Nano. 14 (11): 14579–14604. doi:10.1021/acsnano.0c08668. PMID 33155803. S2CID 226269683.
  2. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "photochemistry".
  3. Hayes, G.R.; Deveaud, B. (2002). "Is Luminescence from Quantum Wells Due to Excitons?". Physica Status Solidi A 190 (3): 637–640. doi:10.1002/1521-396X(200204)190:3<637::AID-PSSA637>3.0.CO;2-7
  4. 4.0 4.1 4.2 Kira, M.; Jahnke, F.; Koch, S. W. (1999). "Quantum Theory of Secondary Emission in Optically Excited Semiconductor Quantum Wells". Physical Review Letters 82 (17): 3544–3547. doi:10.1103/PhysRevLett.82.3544
  5. Kimble, H. J.; Dagenais, M.; Mandel, L. (1977). "Photon Antibunching in Resonance Fluorescence". Physical Review Letters 39 (11): 691–695. doi:10.1103/PhysRevLett.39.691
  6. Carmichael, H. J.; Walls, D. F. (1976). "Proposal for the measurement of the resonant Stark effect by photon correlation techniques". Journal of Physics B: Atomic and Molecular Physics 9 (4): L43. doi:10.1088/0022-3700/9/4/001
  7. 7.0 7.1 Alfaraj, N.; Mitra, S.; Wu, F. ; Ajia, A. A.; Janjua, B.; Prabaswara, A.; Aljefri, R. A.; Sun, H.; Ng, T. K.; Ooi, B. S.; Roqan, I. S.; Li, X. (2017). "Photoinduced entropy of InGaN/GaN p-i-n double-heterostructure nanowires". Applied Physics Letters 110 (16): 161110. [1]
  8. 8.0 8.1 Kira, M.; Koch, S. W. (2011). Semiconductor Quantum Optics. Cambridge University Press. ISBN 978-0521875097.
  9. 9.0 9.1 Haug, H.; Koch, S. W. (2009). Quantum Theory of the Optical and Electronic Properties of Semiconductors (5th ed.). World Scientific. p. 216. ISBN 9812838848.
  10. Klingshirn, Claus F. (2012). Semiconductor Optics. Springer. ISBN 978-3-642-28361-1 OCLC 905285603.
  11. Balkan, Naci (1998). Hot Electrons in Semiconductors: Physics and Devices. Oxford University Press. ISBN 0198500580.
  12. Kira, M.; Jahnke, F.; Hoyer, W.; Koch, S. W. (1999). "Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures". Progress in Quantum Electronics 23 (6): 189–279. doi:10.1016/S0079-6727(99)00008-7.
  13. 13.0 13.1 Kaindl, R. A.; Carnahan, M. A.; Hägele, D.; Lövenich, R.; Chemla, D. S. (2003). "Ultrafast terahertz probes of transient conducting and insulating phases in an electron–hole gas". Nature 423 (6941): 734–738. doi:10.1038/nature01676.
  14. Chatterjee, S.; Ell, C.; Mosor, S.; Khitrova, G.; Gibbs, H.; Hoyer, W.; Kira, M.; Koch, S. W.; Prineas, J.; Stolz, H. (2004). "Excitonic Photoluminescence in Semiconductor Quantum Wells: Plasma versus Excitons". Physical Review Letters 92 (6). doi:10.1103/PhysRevLett.92.067402.
  15. Arlt, S.; Siegner, U.; Kunde, J.; Morier-Genoud, F.; Keller, U. (1999). "Ultrafast dephasing of continuum transitions in bulk semiconductors". Physical Review B 59 (23): 14860–14863. doi:10.1103/PhysRevB.59.14860.
  16. Umlauff, M.; Hoffmann, J.; Kalt, H.; Langbein, W.; Hvam, J.; Scholl, M.; Söllner, J.; Heuken, M.; Jobst, B.; Hommel, D. (1998). "Direct observation of free-exciton thermalization in quantum-well structures". Physical Review B 57 (3): 1390–1393. doi:10.1103/PhysRevB.57.1390.
  17. Kash, Kathleen; Shah, Jagdeep (1984). "Carrier energy relaxation in In0.53Ga0.47As determined from picosecond luminescence studies". Applied Physics Letters 45 (4): 401. doi:10.1063/1.95235.
  18. पोलैंड, एच.; रुहेल, डब्ल्यू।; कुहल, जे.; प्लॉग, के.; फुजिवारा, के.; नाकायमा, टी. (1987). क्वांटम कुओं के रूप में GaAs/Al_{x}Ga_{1-x} में थर्मलाइज्ड इलेक्ट्रॉनों और छिद्रों का कोई संतुलन नहीं। भौतिक समीक्षा बी '35' (15): 8273-8276। doi:10.1103/PhysRevB.35.8273.
  19. Wang, Hailin; Ferrio, Kyle; Steel, Duncan; Hu, Y.; Binder, R.; Koch, S. W. (1993). "Transient nonlinear optical response from excitation induced dephasing in GaAs". Physical Review Letters 71 (8): 1261–1264. doi:10.1103/PhysRevLett.71.1261.
  20. Lähnemann, J.; Jahn, U.; Brandt, O.; Flissikowski, T.; Dogan, P.; Grahn, H.T. (2014). "ल्यूमिनेसेंस GaN में स्टैकिंग दोषों से जुड़ा हुआ है". J. Phys. D: Appl. Phys. 47 (42): 423001. arXiv:1405.1261. Bibcode:2014JPhD...47P3001L. doi:10.1088/0022-3727/47/42/423001. S2CID 118671207.
  21. Baranovskii, S.; Eichmann, R.; Thomas, P. (1998). "Temperature-dependent exciton luminescence in quantum wells by computer simulation". Physical Review B 58 (19): 13081–13087. doi:10.1103/PhysRevB.58.13081.
  22. अल्फाराज, एन.; मुमताज़ मुहम्मद, एम.; ली, के.; जंजुआ, बी.; अल्जेफ्री, आर.ए.; सन, एच.; एनजी, टी. के.; ऊई, बी.एस.; रोकन, आई.एस.; ली, एक्स। (2017)। AlGaN नैनोवायरों में थर्मोडायनामिक फोटोइंडोस्ड डिसऑर्डर। AIP एडवांस '7' (12): 125113। [2]
  23. Tebyetekerwa, Mike; Zhang, Jian; Xu, Zhen; Truong, Thien N.; Yin, Zongyou; Lu, Yuerui; Ramakrishna, Seeram; MacDonald, Daniel; Nguyen, Hieu T. (2020). "दो आयामी संक्रमण-धातु डाइक्लोजेनाइड्स में स्थिर-राज्य फोटोल्यूमिनेसेंस स्पेक्ट्रोस्कोपी के तंत्र और अनुप्रयोग". ACS Nano. 14 (11): 14579–14604. doi:10.1021/acsnano.0c08668. PMID 33155803. S2CID 226269683.
  24. Sibentritt, Susanne; Weiss, Thomas Paul; Sood, Mohit; Wolter, Max Hilaire; Lomuscio, Alberto; Ramirez, Omar (2021). "फोटोलुमिनेसेंस कैसे सौर कोशिकाओं की दक्षता की भविष्यवाणी कर सकता है". Journal of Physics: Materials. 4 (4): 042010. Bibcode:2021JPhM....4d2010S. doi:10.1088/2515-7639/ac266e. S2CID 239106918.


अग्रिम पठन

  • Klingshirn, C. F. (2006). Semiconductor Optics. Springer. ISBN 978-3540383451.
  • Kalt, H.; Hetterich, M. (2004). Optics of Semiconductors and Their Nanostructures. Springer. ISBN 978-3540383451.
  • Donald A. McQuarrie; John D. Simon (1997), Physical Chemistry, a molecular approach, University Science Books
  • Kira, M.; Koch, S. W. (2011). Semiconductor Quantum Optics. Cambridge University Press. ISBN 978-0521875097.
  • Peygambarian, N.; Koch, S. W.; Mysyrowicz, André (1993). Introduction to Semiconductor Optics. Prentice Hall. ISBN 978-0-13-638990-3.