प्रदर्शन के गुणांक: Difference between revisions
No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 79: | Line 79: | ||
*[http://www-3.unipv.it/energy/web/Libro%20petrecca/pdf/capitolododicesimo.pdf See COP definition in Cap XII of the book Industrial Energy Management - Principles and Applications]{{dead link|date=August 2017 |bot=InternetArchiveBot |fix-attempted=yes }} | *[http://www-3.unipv.it/energy/web/Libro%20petrecca/pdf/capitolododicesimo.pdf See COP definition in Cap XII of the book Industrial Energy Management - Principles and Applications]{{dead link|date=August 2017 |bot=InternetArchiveBot |fix-attempted=yes }} | ||
{{DEFAULTSORT:Coefficient Of Performance}} | {{DEFAULTSORT:Coefficient Of Performance}} | ||
[[Category:All articles with dead external links|Coefficient Of Performance]] | |||
[[Category:Articles with dead external links from August 2017|Coefficient Of Performance]] | |||
[[Category: | [[Category:Articles with permanently dead external links|Coefficient Of Performance]] | ||
[[Category:Created On 31/03/2023]] | [[Category:CS1 English-language sources (en)]] | ||
[[Category:Created On 31/03/2023|Coefficient Of Performance]] | |||
[[Category:Lua-based templates|Coefficient Of Performance]] | |||
[[Category:Machine Translated Page|Coefficient Of Performance]] | |||
[[Category:Pages with script errors|Coefficient Of Performance]] | |||
[[Category:Templates Vigyan Ready|Coefficient Of Performance]] | |||
[[Category:Templates that add a tracking category|Coefficient Of Performance]] | |||
[[Category:Templates that generate short descriptions|Coefficient Of Performance]] | |||
[[Category:Templates using TemplateData|Coefficient Of Performance]] | |||
[[Category:इंजीनियरिंग अनुपात|Coefficient Of Performance]] | |||
[[Category:ऊष्मप्रवैगिकी की आयामहीन संख्या|Coefficient Of Performance]] | |||
[[Category:ऊष्मा देना, हवादार बनाना और वातानुकूलन|Coefficient Of Performance]] | |||
[[Category:गर्मी पंप|Coefficient Of Performance]] |
Latest revision as of 16:31, 13 April 2023
ताप पंप और एयर कंडीशनिंग प्रणाली के प्रदर्शन या सीओपी (कभी-कभी सीपी या सीओपी) का गुणांक आवश्यक कार्य (ऊर्जा) के लिए उपयोगी हीटिंग या कूलिंग का अनुपात है।[1][2] उच्च सीओपी उच्च दक्षता, कम ऊर्जा (विद्युत्) के उपभोग के बराबर है और इस प्रकार परिचालन व्यय कम होती है।
सीओपी सामान्यतः 1 से अधिक होता है, विशेष रूप से गर्मी पंपों में, क्योंकि, केवल काम को गर्मी में परिवर्तित करने के अतिरिक्त (जो, यदि 100% कुशल, 1 का सीओपी होगा), यह गर्मी स्रोत से अतिरिक्त गर्मी पंप करता है जहां गर्मी की आवश्यकता होती है अधिकांश एयर कंडीशनर का सीओपी 2.3 से 3.5 होता है। गर्मी में रूपांतरण की तुलना में गर्मी को स्थानांतरित करने के लिए कम काम की आवश्यकता होती है, और इस कारण से, ताप पंप, एयर कंडीशनर और प्रशीतन प्रणालियों में एक से अधिक प्रदर्शन का गुणांक हो सकता है।
चूंकि, इसका अर्थ यह नहीं है कि वे 100% से अधिक कुशल हैं, दूसरे शब्दों में, किसी भी ताप इंजन में 100% या उससे अधिक की तापीय क्षमता नहीं हो सकती है। पूर्ण प्रणालियों के लिए, सीओपी गणनाओं में सभी विद्युत् उपभोग सहायक उपकरणों की ऊर्जा उपभोग सम्मिलित होनी चाहिए। सीओपी ऑपरेटिंग परिस्थितियों पर अत्यधिक निर्भर है, विशेष रूप से पूर्ण तापमान और सिंक और प्रणाली के बीच सापेक्ष तापमान, और अधिकांशतः अनुमानित स्थितियों के विरुद्ध रेखांकन या औसत होता है।[3] अवशोषण रेफ्रिजरेटर चिलर्स का प्रदर्शन सामान्यतः बहुत कम होता है, क्योंकि वे संपीड़न पर निर्भर ताप पंप नहीं होते हैं, बल्कि इसके अतिरिक्त गर्मी से संचालित रासायनिक प्रतिक्रियाओं पर विश्वास करते हैं।
समीकरण
समीकरण है:
जहाँ
- मानी गई प्रणाली (मशीन) द्वारा आपूर्ति की गई या निकाली गई उपयोगी ऊष्मा है।
- चक्र में विचारित प्रणाली में डाला गया शुद्ध यांत्रिक कार्य है।
हीटिंग और कूलिंग के लिए COP अलग हैं क्योंकि ब्याज का ताप जलाशय अलग है। जब कोई यह जानना चाहता है कि कोई मशीन कितनी अच्छी तरह ठंडी होती है, तो COP ठंडे जलाशय से लिए गए ताप का इनपुट कार्य से लिया गया अनुपात होता है। चूंकि, हीटिंग के लिए, COP इनपुट कार्य के लिए गर्म जलाशय (जो ठंडे जलाशय और इनपुट कार्य से ली गई गर्मी है) को दी गई गर्मी के परिमाण का अनुपात है:
जहाँ
- ठंडे जलाशय से गर्मी निकाली जाती है और प्रणाली में जोड़ा जाता है;
- गर्म जलाशय को दी गई गर्मी है; यह प्रणाली द्वारा खो जाता है और इसलिए नकारात्मक होता है[4] (गर्मी देखें)
ध्यान दें कि ऊष्मा पम्प का COP उसकी दिशा पर निर्भर करता है। गर्म सिंक से अस्वीकार की गई गर्मी ठंडे स्रोत से अवशोषित गर्मी से अधिक होती है, इसलिए हीटिंग COP कूलिंग COP से एक से अधिक होता है।
सैद्धांतिक प्रदर्शन सीमा
ऊष्मप्रवैगिकी के पहले नियम के अनुसार, प्रक्रिया के पूर्ण चक्र के बाद और इस तरह
तब से , हमने प्राप्त किया
अधिकतम सैद्धांतिक दक्षता (अर्थात् कार्नाट दक्षता) पर चलने वाले ऊष्मा पम्प के लिए, इसे दिखाया जा सकता है[5][4]
- और इस तरह
जहाँ और क्रमशः गर्म और ठंडे ताप जलाशयों के थर्मोडायनामिक तापमान हैं।
अधिकतम सैद्धांतिक दक्षता पर, इसलिए
जो आदर्श ऊष्मा इंजन की ऊष्मीय दक्षता के व्युत्क्रम के बराबर है, क्योंकि ऊष्मा पम्प विपरीत दिशा में चलने वाला ऊष्मा इंजन है।[6]
इसी तरह, रेफ्रिजरेटर या एयर कंडीशनर का COP अधिकतम सैद्धांतिक दक्षता पर काम कर रहा है,
गर्मी पंपों पर प्रयुक्त होता है और एयर कंडीशनर और रेफ्रिजरेटर पर प्रयुक्त होता है।
वास्तविक प्रणालियों के लिए मापे गए मान सदैव इन सैद्धांतिक अधिकतम से बहुत कम होंगे।
यूरोप में, भू-स्रोत ऊष्मा पम्प इकाइयों के लिए मानक परीक्षण स्थितियों और के लिए 308 के (35 °C; 95 °F) तथा 273 के (0 °C; 32 °F) का उपयोग किया जाता है। उपरोक्त सूत्र के अनुसार, अधिकतम सैद्धांतिक COP
होगा
सर्वोत्तम प्रणालियों के परीक्षण के परिणाम लगभग 4.5 हैं। जब पूरे मौसम में स्थापित इकाइयों को मापते हैं और पाइपिंग प्रणाली के माध्यम से पानी पंप करने के लिए आवश्यक ऊर्जा के लिए लेखांकन करते हैं, तो हीटिंग के लिए मौसमी COP लगभग 3.5 या उससे कम होते हैं। यह आगे और संशोधन की अनुरोध का संकेत देता है।
किसी वायु स्रोत ऊष्मा पम्प के लिए यूरोपीय संघ की मानक परीक्षण नियमों के लिए 20 °C (68 °F) के शुष्क-बल्ब तापमान पर होती हैं और के लिए 7 °C (44.6 °F)। [7] उप-शून्य यूरोपीय सर्दियों के तापमान को देखते हुए, वास्तविक विश्व ताप प्रदर्शन ऐसे मानक COP आंकड़ों की तुलना में अत्यधिक खराब है।
सीओपी में संशोधन
जैसा कि सूत्र दिखाता है, तापमान अंतर - को कम करके ताप पंप प्रणाली के सीओपी में संशोधन किया जा सकता है, जिस पर प्रणाली काम करता है। हीटिंग प्रणाली के लिए इसका अर्थ दो चीजें होंगी: 1) आउटपुट तापमान को लगभग कम करना 30 °C (86 °F) जिसके लिए पाइप वाले फर्श, दीवार या छत को गर्म करने की आवश्यकता होती है, या एयर हीटर के लिए बड़े आकार के पानी की आवश्यकता होती है और 2) इनपुट तापमान को बढ़ाना (उदाहरण के लिए बड़े ग्राउंड स्रोत का उपयोग करके या सौर-सहायता प्राप्त थर्मल बैंक तक पहुंच द्वारा) [8] ). सही रूप से तापीय चालकता का निर्धारण अधिक सही ग्राउंड लूप की अनुमति देगा [9] या बोरहोल आकार,[10] उच्च वापसी तापमान और अधिक कुशल प्रणाली के परिणामस्वरूप, एयर कूलर के लिए, सीओपी को हवा के अतिरिक्त इनपुट के रूप में भूजल का उपयोग करके और हवा के प्रवाह को बढ़ाकर आउटपुट पक्ष पर तापमान में गिरावट को कम करके सुधार किया जा सकता है। दोनों प्रणालियों के लिए, पाइप और वायु नहरों के आकार को बढ़ाने से द्रव की गति को कम करके शोर और पंपों (और वेंटिलेटर) की ऊर्जा उपभोग को कम करने में सहायता मिलेगी, जो बदले में रेनॉल्ड्स संख्या को कम करती है और इसलिए अशांति (और शोर) और सिर का हानि (हाइड्रोलिक हेड देखें) ताप पंप को आंतरिक ताप परिवर्तक के आकार में वृद्धि करके सुधारा जा सकता है, जो बदले में कंप्रेसर की शक्ति के सापेक्ष हीट पंप प्रदर्शन (और व्यय) को बढ़ाता है, और प्रणाली के आंतरिक तापमान अंतर को कम करके भी कंप्रेसर। स्पष्ट है, यह बाद वाला उपाय ऐसे ताप पंपों को उच्च तापमान का उत्पादन करने के लिए अनुपयुक्त बनाता है, जिसका अर्थ है कि उत्पादन के लिए अलग मशीन की आवश्यकता होती है, उदाहरण के लिए, गर्म नल का पानी।
दूसरे या तीसरे चरण को जोड़कर अवशोषण चिलर्स के सीओपी में सुधार किया जा सकता है। डबल और ट्रिपल प्रभाव वाले चिलर एकल प्रभाव वाले चिलर की तुलना में बहुत अधिक कुशल होते हैं, और 1 सीओपी को पार कर सकते हैं। उन्हें उच्च दबाव और उच्च तापमान वाली भाप की आवश्यकता होती है, लेकिन यह अभी भी प्रति टन कूलिंग प्रति घंटे अपेक्षाकृत कम 10 पाउंड भाप है।[11]
मौसमी दक्षता
गर्मी के लिए मौसमी सीओपी या प्रदर्शन के मौसमी गुणांक (एससीओपी) का उपयोग करके पूरे वर्ष में ऊर्जा दक्षता का यथार्थवादी संकेत प्राप्त किया जा सकता है। मौसमी ऊर्जा दक्षता अनुपात (एसईईआर) का उपयोग अधिकांशतः एयर कंडीशनिंग के लिए किया जाता है। एससीओपी नई कार्यप्रणाली है जो अपेक्षित वास्तविक जीवन के प्रदर्शन का उत्तम संकेत देती है, सीओपी के उपयोग को पुराने पैमाने का उपयोग करने पर विचार किया जा सकता है। मौसमी दक्षता इस बात का संकेत देती है कि ऊष्मा पम्प पूरे शीतलन या ताप के मौसम में कितनी कुशलता से संचालित होता है।[12]
यह भी देखें
- मौसमी ऊर्जा दक्षता अनुपात (एसईईआर)
- मौसमी तापीय ऊर्जा भंडारण (एसटीईएस)
- ताप मौसमी प्रदर्शन कारक (एचएसपीएफ)
- पावर उपयोग प्रभावशीलता (पीयूई)
- ऊष्मीय दक्षता
- वाष्प-संपीड़न प्रशीतन
- एयर कंडीशनर
- एचवीएसी
टिप्पणियाँ
- ↑ "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2013-01-24. Retrieved 2013-10-16.
- ↑ "सीओपी (प्रदर्शन का गुणांक)". us.grundfos.com (in English). Archived from the original on 2014-06-28. Retrieved 2019-04-08.
- ↑ "संग्रहीत प्रति" (PDF). Archived from the original (PDF) on 2009-01-07. Retrieved 2013-10-16.
- ↑ 4.0 4.1 Planck, M. (1945). ऊष्मप्रवैगिकी पर ग्रंथ. Dover Publications. p. §90 & §137.
eqs.(39), (40), & (65)
. - ↑ Fermi, E. (1956). ऊष्मप्रवैगिकी. Dover Publications (still in print). p. 48.
eq.(64)
. - ↑ Borgnakke, C., & Sonntag, R. (2013). The Second Law of Thermodynamics. In Fundamentals of Thermodynamics (8th ed., pp. 244-245). Wiley.
- ↑ According to European Union COMMISSION DELEGATED REGULATION (EU) No 626/2011 ANNEX VII Table 2
- ↑ "Thermal Banks store heat between seasons | Seasonal Heat Storage | Rechargeable Heat Battery | Energy Storage | Thermogeology | UTES | Solar recharge of heat batteries". www.icax.co.uk. Retrieved 2019-04-08.
- ↑ "मृदा तापीय चालकता परीक्षण". Carbon Zero Consulting (in English). Retrieved 2019-04-08.
- ↑ "जीएसएचसी व्यवहार्यता और डिजाइन". Carbon Zero Consulting (in English). Retrieved 2019-04-08.
- ↑ Depart of Energy Advanced Manufacturing office. Paper DOE/GO-102012-3413. January 2012
- ↑ "मौसमी दक्षता का एक नया युग शुरू हो गया है" (PDF). Daikin.co.uk. Daikin. Archived from the original (PDF) on 31 July 2014. Retrieved 31 March 2015.