सीमांत स्थिरता: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
{{ | गतिशील प्रणालियों और [[नियंत्रण सिद्धांत]] में, एक [[रैखिक प्रणाली]] [[समय-अपरिवर्तनीय प्रणाली]] सामान्य रूप से स्थिर होती है यदि यह न तो [[असम्बद्ध रूप से स्थिर]] है और न ही [[अस्थिर]] है। समान्यतः कहा जाए तो, एक प्रणाली स्थिर होती है यदि यह सदैव किसी विशेष स्थिति (जिसे [[स्थिर अवस्था]] कहा जाता है) पर लौटती है और उसके पास रहती है, और अस्थिर होती है यदि यह किसी भी स्थिति से बिना बंधे हुए दूर और दूर जाती है । एक सीमांत प्रणाली, जिसे कभी-कभी तटस्थ स्थिरता के रूप में संदर्भित किया जाता है,<ref name="FranklinPowell2014">{{cite book|author1=Gene F. Franklin|author2=J. David Powell|author3=Abbas Emami-Naeini|title=डायनेमिक सिस्टम का फीडबैक नियंत्रण|edition=5|year=2006|publisher=Pearson Education|isbn=0-13-149930-0}}</ref> इन दो प्रकारों के बीच है जब विस्थापित किया जाता है, तो यह एक सामान्य स्थिर स्थिति के पास नहीं लौटता है, और न ही यह असीमित रूप से जहां से प्रारंभ हुआ था, वहां से दूर जाता है। | ||
सीमांत स्थिरता, अस्थिरता की तरह एक ऐसी विशेषता है जिससे नियंत्रण सिद्धांत बचना चाहता है; हम चाहते हैं कि, जब किसी बाहरी बल से परेशान हो, तब एक प्रणाली वांछित स्थिति में वापस आ जाएगी। यह उचित रूप से निर्माण किए गए नियंत्रण एल्गोरिदम के उपयोग की आवश्यकता है। | |||
[[अर्थमिति]] में, देखी गई [[समय श्रृंखला]] में एक [[ इकाई जड़ |इकाई जड़]] की उपस्थिति, उन्हें सामान्य स्थिर प्रदान करते हुए, एक [[निर्भर चर]] पर [[स्वतंत्र चर]] के प्रभाव के संबंध में अमान्य [[प्रतिगमन विश्लेषण]] परिणाम को जन्म दे सकता है, जब तक कि प्रणाली को एक स्थिर प्रणाली में परिवर्तित करने के लिए उपयुक्त विधियों का उपयोग नहीं किया जाता है। | |||
[[अर्थमिति]] में, देखी गई [[समय श्रृंखला]] में एक [[ इकाई जड़ ]] की उपस्थिति, उन्हें | |||
== [[निरंतर समय]] == | == [[निरंतर समय]] == | ||
एक [[सजातीय अंतर समीकरण]] निरंतर समय [[रैखिक समय-अपरिवर्तनीय प्रणाली]] | एक [[सजातीय अंतर समीकरण]] निरंतर समय [[रैखिक समय-अपरिवर्तनीय प्रणाली]] सामान्य रूप से स्थिर होती है यदि प्रणाली के हस्तांतरण-फलन में प्रत्येक [[ध्रुव (जटिल विश्लेषण)]] ([[eigenvalue]]) का वास्तविक भाग गैर-सकारात्मक है, एक या अधिक ध्रुवों में शून्य वास्तविक भाग होता है और गैर-शून्य काल्पनिक भाग और शून्य वास्तविक भाग वाले सभी ध्रुव [[सरल जड़|सरल मूल]] हैं (अर्थात जटिल तल पर ध्रुव एक दूसरे से अलग हैं) इसके विपरीत, यदि सभी ध्रुवों में कठोरता से नकारात्मक वास्तविक भाग होते हैं, तो प्रणाली के अतिरिक्त असम्बद्ध रूप से स्थिर होती है। यदि एक या अधिक ध्रुवों में सकारात्मक वास्तविक भाग होते हैं, तो प्रणाली अस्थिर होता है। | ||
यदि प्रणाली [[राज्य अंतरिक्ष प्रतिनिधित्व]] में है, तो [[जॉर्डन सामान्य रूप]] प्राप्त करके सीमांत स्थिरता का विश्लेषण किया जा सकता है:<ref>{{cite web |url=http://www.cds.caltech.edu/~murray/amwiki/index.php/Linear_Systems |title=रैखिक प्रणाली|work=Feedback Systems Wiki |author=Karl J. Åström and Richard M. Murray|publisher=Caltech|accessdate=11 August 2014}}</ref> | यदि प्रणाली [[राज्य अंतरिक्ष प्रतिनिधित्व|अवस्था स्थान प्रतिनिधित्व]] में है, तो [[जॉर्डन सामान्य रूप]] प्राप्त करके सीमांत स्थिरता का विश्लेषण किया जा सकता है:<ref>{{cite web |url=http://www.cds.caltech.edu/~murray/amwiki/index.php/Linear_Systems |title=रैखिक प्रणाली|work=Feedback Systems Wiki |author=Karl J. Åström and Richard M. Murray|publisher=Caltech|accessdate=11 August 2014}}</ref> यदि जॉर्डन ब्लॉक शून्य वास्तविक भाग वाले ध्रुवों के अनुरूप हैं तो स्केलर प्रणाली सामान्य रूप से स्थिर है। | ||
== असतत समय == | == असतत समय == | ||
एक सजातीय असतत समय रैखिक समय-अपरिवर्तनीय प्रणाली आंशिक रूप से स्थिर होती है यदि | एक सजातीय असतत समय रैखिक समय-अपरिवर्तनीय प्रणाली आंशिक रूप से स्थिर होती है यदि केवल हस्तांतरण फलन के किसी भी ध्रुव (ईगेनवेल्यूज) का सबसे बड़ा परिमाण 1 है, और 1 के बराबर परिमाण वाले ध्रुव सभी अलग हैं। यही वितरण फलन का [[वर्णक्रमीय त्रिज्या]] 1 है। यदि वर्णक्रमीय त्रिज्या 1 से कम है, तो इस प्रणाली में इसके अतिरिक्त असम्बद्ध रूप से स्थिर है। | ||
एक सरल उदाहरण में एक प्रथम-क्रम [[रैखिक अंतर समीकरण]] | एक सरल उदाहरण में एक प्रथम-क्रम [[रैखिक अंतर समीकरण]] सम्मिलित है: मान लीजिए कि एक अवस्था चर x के अनुसार विकसित होता है | ||
:<math>x_t=ax_{t-1}</math> | :<math>x_t=ax_{t-1}</math> | ||
पैरामीटर a> 0 के साथ। यदि | पैरामीटर a> 0 के साथ। यदि पद्धति मान <math>x_0,</math> से परेशान है इसके बाद के मानों का क्रम है <math>ax_0, \, a^2x_0, \, a^3x_0, \, \dots .</math> यदि a < 1, तो ये संख्याएँ आरंभिक मान की परवाह किए बिना शून्य के निकट और निकट आ जाती हैं <math>x_0,</math> जबकि यदि a> 1 संख्या बिना किसी सीमा के बड़ी और बड़ी हो जाती है। किन्तु यदि a = 1, संख्याएं इनमें से कुछ भी नहीं करती हैं | इसके अतिरिक्त x के भविष्य के सभी मान <math>x_0.</math> के मान के बराबर होते हैं इस प्रकार मामला a = 1 सीमांत स्थिरता प्रदर्शित करता है। | ||
== | == प्रणाली प्रतिक्रिया == | ||
एक | एक सामान्य रूप से स्थिर प्रणाली वह है, जिसे यदि इनपुट के रूप में परिमित परिमाण का एक [[डायराक डेल्टा समारोह|डायराक डेल्टा फलन]] दिया जाता है, तो वह विस्फोट नहीं करेगा और एक असीमित आउटपुट देगा, किन्तु न तो आउटपुट शून्य पर वापस आएगा। आउटपुट में एक सीमित ऑफ़सेट या दोलन अनिश्चित काल तक बने रहेंगे और इसलिए सामान्य रूप से कोई अंतिम स्थिर-स्थिति आउटपुट नहीं होगा। यदि एक सतत प्रणाली को शून्य वास्तविक भाग वाले ध्रुव की आवृत्ति के बराबर इनपुट दिया जाता है, तो प्रणाली का आउटपुट अनिश्चित काल तक बढ़ जाएगा (इसे शुद्ध अनुनाद के रूप में जाना जाता है)<ref>{{cite web |url=http://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-ii-second-order-constant-coefficient-linear-equations/pure-resonance/ | title= शुद्ध प्रतिध्वनि|publisher=MIT|accessdate=2 September 2015}}</ref> यह बताता है कि [[बीआईबीओ स्थिरता]] के लिए एक प्रणाली के लिए, ध्रुवों के वास्तविक हिस्सों को कठोरता से नकारात्मक (और केवल गैर-सकारात्मक नहीं) होना चाहिए। | ||
काल्पनिक ध्रुवों वाली एक सतत प्रणाली, | काल्पनिक ध्रुवों वाली एक सतत प्रणाली, अर्थात ध्रुवों में शून्य वास्तविक भाग होने से आउटपुट में निरंतर दोलन उत्पन्न होंगे। उदाहरण के लिए, एक अडम्प्ड सेकंड-ऑर्डर प्रणाली जैसे कि एक ऑटोमोबाइल में निलंबन प्रणाली (एक द्रव्यमान-स्प्रिंग-डैम्पर प्रणाली) जिसमें से डैम्पर को हटा दिया गया है और स्प्रिंग आदर्श है, अर्थात कोई घर्षण नहीं है, सिद्धांत रूप में सदैव के लिए दोलन करेगा । एक अन्य उदाहरण एक घर्षण रहित [[पेंडुलम (गणित)|लोलक (गणित)]] है। मूल बिंदु पर एक ध्रुव के साथ एक प्रणाली भी सामान्य रूप से स्थिर है किन्तु इस स्थितियों में प्रतिक्रिया में कोई दोलन नहीं होगा क्योंकि काल्पनिक भाग भी शून्य है (jw = 0 का अर्थ है w = 0 rad/sec)। ऐसी प्रणाली का एक उदाहरण घर्षण के साथ सतह पर द्रव्यमान है। जब एक बग़ल में आवेग लगाया जाता है, तो द्रव्यमान गति करेगा और कभी भी शून्य पर नहीं लौटेगा। चूंकि, द्रव्यमान घर्षण के कारण रुक जाएगा, और बग़ल में गति बंधी रहेगी। | ||
चूंकि सीमांत ध्रुवों के स्थान बिल्कुल काल्पनिक अक्ष या | चूंकि सीमांत ध्रुवों के स्थान बिल्कुल काल्पनिक अक्ष या इकाई सर्कल (क्रमशः निरंतर समय और असतत समय प्रणालियों के लिए) पर होना चाहिए ताकि एक प्रणाली सामान्य रूप से स्थिर हो, यह स्थिति व्यवहार में होने की संभावना नहीं है जब तक कि सीमांत स्थिरता प्रणाली की विशेषता अंतर्निहित सैद्धांतिक नहीं है । | ||
== [[स्टोकेस्टिक गतिकी]] == | == [[स्टोकेस्टिक गतिकी]] == | ||
Line 34: | Line 30: | ||
:<math>x_t=x_{t-1}+e_t,</math> | :<math>x_t=x_{t-1}+e_t,</math> | ||
जहाँ <math>e_t</math> एक आई.आई.डी. [[आँकड़ों में त्रुटियां और अवशेष]]। इस समीकरण की एक इकाई मूल है (इसकी विशेषता समीकरण (अंतर समीकरण के) के ईगेनवेल्यूज के लिए 1 का मान), और इसलिए सीमांत स्थिरता प्रदर्शित करता है, इसलिए इस तरह के समीकरण वाली प्रणाली को अनुभवजन्य रूप से मॉडलिंग करने में विशेष समय श्रृंखला विधियों का उपयोग किया जाना चाहिए। | |||
सामान्य रूप से स्थिर [[मार्कोव श्रृंखला]] वे हैं जिनके पास मार्कोव चेन या गुण वर्ग हैं। | |||
== यह भी देखें == | == यह भी देखें == | ||
Line 45: | Line 41: | ||
{{reflist}} | {{reflist}} | ||
{{DEFAULTSORT:Marginal Stability}} | {{DEFAULTSORT:Marginal Stability}} | ||
[[Category: Machine Translated Page]] | [[Category:Created On 03/03/2023|Marginal Stability]] | ||
[[Category: | [[Category:Machine Translated Page|Marginal Stability]] | ||
[[Category:Pages with script errors|Marginal Stability]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:गतिशील प्रणाली|Marginal Stability]] | |||
[[Category:स्थिरता सिद्धांत|Marginal Stability]] |
Latest revision as of 13:30, 17 April 2023
गतिशील प्रणालियों और नियंत्रण सिद्धांत में, एक रैखिक प्रणाली समय-अपरिवर्तनीय प्रणाली सामान्य रूप से स्थिर होती है यदि यह न तो असम्बद्ध रूप से स्थिर है और न ही अस्थिर है। समान्यतः कहा जाए तो, एक प्रणाली स्थिर होती है यदि यह सदैव किसी विशेष स्थिति (जिसे स्थिर अवस्था कहा जाता है) पर लौटती है और उसके पास रहती है, और अस्थिर होती है यदि यह किसी भी स्थिति से बिना बंधे हुए दूर और दूर जाती है । एक सीमांत प्रणाली, जिसे कभी-कभी तटस्थ स्थिरता के रूप में संदर्भित किया जाता है,[1] इन दो प्रकारों के बीच है जब विस्थापित किया जाता है, तो यह एक सामान्य स्थिर स्थिति के पास नहीं लौटता है, और न ही यह असीमित रूप से जहां से प्रारंभ हुआ था, वहां से दूर जाता है।
सीमांत स्थिरता, अस्थिरता की तरह एक ऐसी विशेषता है जिससे नियंत्रण सिद्धांत बचना चाहता है; हम चाहते हैं कि, जब किसी बाहरी बल से परेशान हो, तब एक प्रणाली वांछित स्थिति में वापस आ जाएगी। यह उचित रूप से निर्माण किए गए नियंत्रण एल्गोरिदम के उपयोग की आवश्यकता है।
अर्थमिति में, देखी गई समय श्रृंखला में एक इकाई जड़ की उपस्थिति, उन्हें सामान्य स्थिर प्रदान करते हुए, एक निर्भर चर पर स्वतंत्र चर के प्रभाव के संबंध में अमान्य प्रतिगमन विश्लेषण परिणाम को जन्म दे सकता है, जब तक कि प्रणाली को एक स्थिर प्रणाली में परिवर्तित करने के लिए उपयुक्त विधियों का उपयोग नहीं किया जाता है।
निरंतर समय
एक सजातीय अंतर समीकरण निरंतर समय रैखिक समय-अपरिवर्तनीय प्रणाली सामान्य रूप से स्थिर होती है यदि प्रणाली के हस्तांतरण-फलन में प्रत्येक ध्रुव (जटिल विश्लेषण) (eigenvalue) का वास्तविक भाग गैर-सकारात्मक है, एक या अधिक ध्रुवों में शून्य वास्तविक भाग होता है और गैर-शून्य काल्पनिक भाग और शून्य वास्तविक भाग वाले सभी ध्रुव सरल मूल हैं (अर्थात जटिल तल पर ध्रुव एक दूसरे से अलग हैं) इसके विपरीत, यदि सभी ध्रुवों में कठोरता से नकारात्मक वास्तविक भाग होते हैं, तो प्रणाली के अतिरिक्त असम्बद्ध रूप से स्थिर होती है। यदि एक या अधिक ध्रुवों में सकारात्मक वास्तविक भाग होते हैं, तो प्रणाली अस्थिर होता है।
यदि प्रणाली अवस्था स्थान प्रतिनिधित्व में है, तो जॉर्डन सामान्य रूप प्राप्त करके सीमांत स्थिरता का विश्लेषण किया जा सकता है:[2] यदि जॉर्डन ब्लॉक शून्य वास्तविक भाग वाले ध्रुवों के अनुरूप हैं तो स्केलर प्रणाली सामान्य रूप से स्थिर है।
असतत समय
एक सजातीय असतत समय रैखिक समय-अपरिवर्तनीय प्रणाली आंशिक रूप से स्थिर होती है यदि केवल हस्तांतरण फलन के किसी भी ध्रुव (ईगेनवेल्यूज) का सबसे बड़ा परिमाण 1 है, और 1 के बराबर परिमाण वाले ध्रुव सभी अलग हैं। यही वितरण फलन का वर्णक्रमीय त्रिज्या 1 है। यदि वर्णक्रमीय त्रिज्या 1 से कम है, तो इस प्रणाली में इसके अतिरिक्त असम्बद्ध रूप से स्थिर है।
एक सरल उदाहरण में एक प्रथम-क्रम रैखिक अंतर समीकरण सम्मिलित है: मान लीजिए कि एक अवस्था चर x के अनुसार विकसित होता है
पैरामीटर a> 0 के साथ। यदि पद्धति मान से परेशान है इसके बाद के मानों का क्रम है यदि a < 1, तो ये संख्याएँ आरंभिक मान की परवाह किए बिना शून्य के निकट और निकट आ जाती हैं जबकि यदि a> 1 संख्या बिना किसी सीमा के बड़ी और बड़ी हो जाती है। किन्तु यदि a = 1, संख्याएं इनमें से कुछ भी नहीं करती हैं | इसके अतिरिक्त x के भविष्य के सभी मान के मान के बराबर होते हैं इस प्रकार मामला a = 1 सीमांत स्थिरता प्रदर्शित करता है।
प्रणाली प्रतिक्रिया
एक सामान्य रूप से स्थिर प्रणाली वह है, जिसे यदि इनपुट के रूप में परिमित परिमाण का एक डायराक डेल्टा फलन दिया जाता है, तो वह विस्फोट नहीं करेगा और एक असीमित आउटपुट देगा, किन्तु न तो आउटपुट शून्य पर वापस आएगा। आउटपुट में एक सीमित ऑफ़सेट या दोलन अनिश्चित काल तक बने रहेंगे और इसलिए सामान्य रूप से कोई अंतिम स्थिर-स्थिति आउटपुट नहीं होगा। यदि एक सतत प्रणाली को शून्य वास्तविक भाग वाले ध्रुव की आवृत्ति के बराबर इनपुट दिया जाता है, तो प्रणाली का आउटपुट अनिश्चित काल तक बढ़ जाएगा (इसे शुद्ध अनुनाद के रूप में जाना जाता है)[3] यह बताता है कि बीआईबीओ स्थिरता के लिए एक प्रणाली के लिए, ध्रुवों के वास्तविक हिस्सों को कठोरता से नकारात्मक (और केवल गैर-सकारात्मक नहीं) होना चाहिए।
काल्पनिक ध्रुवों वाली एक सतत प्रणाली, अर्थात ध्रुवों में शून्य वास्तविक भाग होने से आउटपुट में निरंतर दोलन उत्पन्न होंगे। उदाहरण के लिए, एक अडम्प्ड सेकंड-ऑर्डर प्रणाली जैसे कि एक ऑटोमोबाइल में निलंबन प्रणाली (एक द्रव्यमान-स्प्रिंग-डैम्पर प्रणाली) जिसमें से डैम्पर को हटा दिया गया है और स्प्रिंग आदर्श है, अर्थात कोई घर्षण नहीं है, सिद्धांत रूप में सदैव के लिए दोलन करेगा । एक अन्य उदाहरण एक घर्षण रहित लोलक (गणित) है। मूल बिंदु पर एक ध्रुव के साथ एक प्रणाली भी सामान्य रूप से स्थिर है किन्तु इस स्थितियों में प्रतिक्रिया में कोई दोलन नहीं होगा क्योंकि काल्पनिक भाग भी शून्य है (jw = 0 का अर्थ है w = 0 rad/sec)। ऐसी प्रणाली का एक उदाहरण घर्षण के साथ सतह पर द्रव्यमान है। जब एक बग़ल में आवेग लगाया जाता है, तो द्रव्यमान गति करेगा और कभी भी शून्य पर नहीं लौटेगा। चूंकि, द्रव्यमान घर्षण के कारण रुक जाएगा, और बग़ल में गति बंधी रहेगी।
चूंकि सीमांत ध्रुवों के स्थान बिल्कुल काल्पनिक अक्ष या इकाई सर्कल (क्रमशः निरंतर समय और असतत समय प्रणालियों के लिए) पर होना चाहिए ताकि एक प्रणाली सामान्य रूप से स्थिर हो, यह स्थिति व्यवहार में होने की संभावना नहीं है जब तक कि सीमांत स्थिरता प्रणाली की विशेषता अंतर्निहित सैद्धांतिक नहीं है ।
स्टोकेस्टिक गतिकी
स्टोचैस्टिक गतिकी के संदर्भ में सीमांत स्थिरता भी एक महत्वपूर्ण अवधारणा है। उदाहरण के लिए, कुछ प्रक्रियाएँ यादृच्छिक चलन का अनुसरण कर सकती हैं, जैसा कि असतत समय में दिया गया है
जहाँ एक आई.आई.डी. आँकड़ों में त्रुटियां और अवशेष। इस समीकरण की एक इकाई मूल है (इसकी विशेषता समीकरण (अंतर समीकरण के) के ईगेनवेल्यूज के लिए 1 का मान), और इसलिए सीमांत स्थिरता प्रदर्शित करता है, इसलिए इस तरह के समीकरण वाली प्रणाली को अनुभवजन्य रूप से मॉडलिंग करने में विशेष समय श्रृंखला विधियों का उपयोग किया जाना चाहिए।
सामान्य रूप से स्थिर मार्कोव श्रृंखला वे हैं जिनके पास मार्कोव चेन या गुण वर्ग हैं।
यह भी देखें
संदर्भ
- ↑ Gene F. Franklin; J. David Powell; Abbas Emami-Naeini (2006). डायनेमिक सिस्टम का फीडबैक नियंत्रण (5 ed.). Pearson Education. ISBN 0-13-149930-0.
- ↑ Karl J. Åström and Richard M. Murray. "रैखिक प्रणाली". Feedback Systems Wiki. Caltech. Retrieved 11 August 2014.
- ↑ "शुद्ध प्रतिध्वनि". MIT. Retrieved 2 September 2015.