केली टेबल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 21: Line 21:


== संरचना और लेआउट ==
== संरचना और लेआउट ==
क्योंकि कई केली टेबल उन समूहों का वर्णन करते हैं जो एबेलियन समूह नहीं हैं, समूह के [[बाइनरी ऑपरेशन]] के संबंध में उत्पाद एबी समूह में सभी और बी के लिए उत्पाद बीए के बराबर होने की गारंटी नहीं है। भ्रम से बचने के लिए, परंपरा यह है कि वह कारक जो पंक्ति को लेबल करता है (केली द्वारा निकट कारक कहा जाता है) पहले आता है, और वह कारक जो कॉलम (या आगे कारक) को लेबल करता है वह दूसरा होता है। उदाहरण के लिए, पंक्ति a और स्तंभ b का प्रतिच्छेदन ab है न कि ba, जैसा कि निम्नलिखित उदाहरण में है:
कई केली टेबल उन समूहों का वर्णन करते हैं, जो एबेलियन समूह नहीं हैं। समूह के [[बाइनरी ऑपरेशन]] के संबंध में उत्पाद ''ab'' समूह में सभी ''a'' और ''b'' के लिए उत्पाद ''ba'' के बराबर होने का सम्पूर्ण प्रमाण नहीं है। भ्रम से बचने के लिए परंपरा यह है कि वह कारक जो पंक्ति को लेबल करता है (केली द्वारा निकट कारक कहा जाता है)। वह कारक पहले आता है और वह कारक जो कॉलम (या आगे कारक) को लेबल करता है। वह दूसरा कारक होता है। उदाहरण के लिए पंक्ति a और स्तंभ b का प्रतिच्छेदन ab है न कि ba, जैसा कि निम्नलिखित उदाहरण में है:


{|border="2" cellpadding="5" align="center" style="text-align: center;"
{|border="2" cellpadding="5" align="center" style="text-align: center;"
Line 43: Line 43:
== गुण और उपयोग ==
== गुण और उपयोग ==


=== क्रम[[विनिमेय]]ता ===
=== क्रम [[विनिमेय]]ता ===
केली सारणी हमें बताती है कि क्या कोई समूह आबेली समूह है। क्योंकि एक एबेलियन समूह का समूह संचालन क्रमविनिमेय है, एक समूह एबेलियन है [[अगर और केवल अगर]] इसके केली सारणी के मान इसके विकर्ण अक्ष के साथ [[सममित]] हैं। उपरोक्त समूह {1, -1} और सामान्य गुणन के तहत क्रम 3 का चक्रीय समूह दोनों एबेलियन समूहों के उदाहरण हैं, और उनके केली तालिकाओं की समरूपता का निरीक्षण इसे सत्यापित करता है। इसके विपरीत, सबसे छोटा गैर-अबेलियन समूह, [[ऑर्डर 6 का डायहेड्रल समूह]], एक सममित केली टेबल नहीं है।
केली सारणी से हमें यह जानकारी प्राप्त होती है कि क्या कोई समूह आबेली समूह है क्योंकि एक एबेलियन समूह का समूह संचालन क्रमविनिमेय है। एक समूह एबेलियन है, [[अगर और केवल अगर|यदि और केवल यदि]] इसके केली सारणी के मान इसके विकर्ण अक्ष के साथ [[सममित]] हैं। उपरोक्त समूह {1, -1} और सामान्य गुणन के अनुसार क्रम 3 का चक्रीय समूह दोनों एबेलियन समूहों के उदाहरण हैं और उनके केली सारणियों की समरूपता का निरीक्षण इसे सत्यापित करता है। इसके विपरीत सबसे छोटा गैर-अबेलियन समूह [[ऑर्डर 6 का डायहेड्रल समूह]] एक सममित केली टेबल नहीं है।


=== साहचर्य ===
=== साहचर्य ===
क्योंकि समूहों के साथ व्यवहार करते समय सहचारिता को एक स्वयंसिद्ध के रूप में लिया जाता है, केली तालिकाओं के साथ व्यवहार करते समय इसे अक्सर मान लिया जाता है। हालांकि, केली टेबल का उपयोग अर्धसमूह के संचालन को चिह्नित करने के लिए भी किया जा सकता है, जो सहयोगीता को एक स्वयंसिद्ध के रूप में नहीं मानता है (वास्तव में, केली टेबल का उपयोग किसी परिमित [[मैग्मा (बीजगणित)]] के संचालन को चिह्नित करने के लिए किया जा सकता है)। दुर्भाग्य से, यह निर्धारित करना आम तौर पर संभव नहीं है कि कोई ऑपरेशन साहचर्य है या नहीं, बस इसकी केली टेबल पर नज़र डालकर, क्योंकि यह कम्यूटेटिविटी के साथ है। ऐसा इसलिए है क्योंकि साहचर्य एक 3 टर्म समीकरण पर निर्भर करता है, <math>(ab)c=a(bc)</math>, जबकि केली सारणी 2-अवधि के उत्पाद दिखाती है। हालाँकि, प्रकाश की साहचर्यता परीक्षण क्रूर बल की तुलना में कम प्रयास के साथ साहचर्य निर्धारित कर सकता है।
समूहों के साथ व्यवहार करते समय सहचारिता को एक स्वयंसिद्ध के रूप में लिया जाता है। केली सारणियों के साथ व्यवहार करते समय इसे सामान्यतः यह मान लिया जाता है। चूंकि केली टेबल का उपयोग अर्धसमूह के संचालन को चिह्नित करने के लिए भी किया जा सकता है। जो सहयोगीता को एक स्वयंसिद्ध के रूप में नहीं मानता है (वास्तव में, केली टेबल का उपयोग किसी परिमित [[मैग्मा (बीजगणित)]] के संचालन को चिह्नित करने के लिए किया जा सकता है)। दुर्भाग्य से यह निर्धारित करना सामान्यतः संभव नहीं है कि कोई ऑपरेशन साहचर्य है या नहीं। इसकी केली टेबल को देखकर जानकारी प्राप्त कर सकते हैं क्योंकि यह कम्यूटेटिविटी के साथ है। ऐसा इसलिए है क्योंकि साहचर्य एक 3 टर्म समीकरण <math>(ab)c=a(bc)</math> पर निर्भर करता है। जबकि केली सारणी 2-अवधि के उत्पाद दिखाती है। चूंकि प्रकाश की साहचर्यता परीक्षण क्रूर बल की तुलना में कम प्रयास के साथ साहचर्य निर्धारित कर सकता है।


=== क्रम[[परिवर्तन]] ===
=== क्रम[[परिवर्तन]] ===
क्योंकि रद्दीकरण संपत्ति समूहों (और यहां तक ​​​​कि अर्धसमूहों) के लिए भी है, केली सारणी की कोई पंक्ति या स्तंभ में एक ही तत्व दो बार नहीं हो सकता है। इस प्रकार सारणी की प्रत्येक पंक्ति और स्तंभ समूह के सभी तत्वों का क्रमचय है। यह बहुत हद तक प्रतिबंधित करता है कि कौन सी केली तालिकाएँ एक वैध समूह संचालन को परिभाषित कर सकती हैं।
कैंसिलेशन गुण समूहों (और यहां तक ​​​​कि अर्धसमूहों) के लिए भी है। केली सारणी की कोई पंक्ति या स्तंभ में एक ही तत्व दो बार नहीं हो सकता है। इस प्रकार सारणी की प्रत्येक पंक्ति और स्तंभ समूह के सभी तत्वों का क्रमचय है। यह बहुत अधिक प्रतिबंधित करता है कि कौन सी केली सारणियाँ एक वैध समूह संचालन को परिभाषित कर सकती हैं।


यह देखने के लिए कि एक पंक्ति या स्तंभ में एक से अधिक बार एक ही तत्व क्यों नहीं हो सकता है, मान लीजिए कि a, x और y सभी एक समूह के तत्व हैं, जिनमें x और y भिन्न हैं। फिर तत्व a का प्रतिनिधित्व करने वाली पंक्ति में, x के अनुरूप कॉलम में उत्पाद ax होता है, और इसी तरह y के अनुरूप कॉलम में उत्पाद ay होता है। यदि ये दोनों उत्पाद बराबर थे{{snd}}अर्थात् पंक्ति a में एक ही तत्व दो बार निहित है, हमारी परिकल्पना{{snd}}तो ax ay के बराबर होगा। लेकिन क्योंकि निरस्तीकरण कानून मान्य है, हम यह निष्कर्ष निकाल सकते हैं कि यदि ax = ay, तो x = y, एक [[रिडक्टियो एड बेतुका]]। इसलिए, हमारी परिकल्पना गलत है, और एक पंक्ति में एक ही तत्व दो बार नहीं हो सकता। बिल्कुल वही तर्क स्तंभ मामले को साबित करने के लिए पर्याप्त है, और इसलिए हम यह निष्कर्ष निकालते हैं कि प्रत्येक पंक्ति और स्तंभ में एक से अधिक बार कोई तत्व नहीं होता है। क्योंकि समूह परिमित है, कबूतर सिद्धांत यह गारंटी देता है कि समूह के प्रत्येक तत्व को प्रत्येक पंक्ति में और प्रत्येक स्तंभ में ठीक एक बार प्रदर्शित किया जाएगा।
यह देखने के लिए कि एक पंक्ति या स्तंभ में एक से अधिक बार एक ही तत्व क्यों नहीं हो सकता है। माना कि a, x और y सभी एक समूह के तत्व हैं। जिनमें x और y भिन्न हैं। फिर तत्व a का प्रतिनिधित्व करने वाली पंक्ति में x के अनुरूप कॉलम में उत्पाद ax होता है और इसी प्रकार y के अनुरूप कॉलम में उत्पाद ay होता है। यदि ये दोनों उत्पाद बराबर थे, अर्थात् पंक्ति a में एक ही तत्व दो बार निहित है। हमारी परिकल्पना तो ax ay के बराबर होगा। किन्तु क्योंकि निरस्तीकरण नियम मान्य है। हम यह निष्कर्ष निकाल सकते हैं कि यदि ax = ay, तो x = y एक [[रिडक्टियो एड बेतुका]]। इसलिए हमारी परिकल्पना गलत है और एक पंक्ति में एक ही तत्व दो बार नहीं हो सकता। बिल्कुल वही तर्क स्तंभ स्थिति को सिद्ध करने के लिए पर्याप्त है और इसलिए हम यह निष्कर्ष निकालते हैं कि प्रत्येक पंक्ति और स्तंभ में एक से अधिक बार कोई तत्व नहीं होता है क्योंकि समूह परिमित है। पीजनहोल सिद्धांत यह गारंटी देता है कि समूह के प्रत्येक तत्व को प्रत्येक पंक्ति में और प्रत्येक स्तंभ में ठीक एक बार प्रदर्शित किया जाएगा।


इस प्रकार, समूह की केली सारणी [[लैटिन वर्ग]] का एक उदाहरण है।
इस प्रकार समूह की केली सारणी [[लैटिन वर्ग]] का एक उदाहरण है।


एक और, शायद सरल सबूत: रद्द करने की संपत्ति का तात्पर्य है कि समूह में प्रत्येक x के लिए, y f(x,y)= xy का एक चर कार्य एक से एक मानचित्र होना चाहिए। और परिमित सेट पर एक से एक मानचित्र क्रमचय हैं।
संभवतः सरल प्रमाण निरस्त करने के गुण का तात्पर्य है कि समूह में प्रत्येक x के लिए y f(x,y)= xy का एक चर कार्य एक से एक फलन होना चाहिए और परिमित समूह पर एक से एक फलन क्रमचय हैं।


== केली टेबल का निर्माण ==
== केली टेबल का निर्माण ==


{{cleanup|reason=section examples not clear / doesn't fit above section (layout) / broad assumptions about reader's background|date=January 2016}}
समूहों की संरचना के कारण प्रश्न में समूह संचालन के पूर्ण लक्षण वर्णन के बिना भी सामान्यतः केली सारणियों में विलुप्त तत्वों को भर सकते हैं। उदाहरण के लिए क्योंकि प्रत्येक पंक्ति और स्तंभ में समूह में प्रत्येक तत्व सम्मिलित होना चाहिए। यदि सभी तत्वों का मानक एक को छोड़कर है और एक खाली स्थान है। तो समूह के बारे में और कुछ जाने बिना यह निष्कर्ष निकालना संभव है कि तत्व के लिए बिना मूल्य के होना चाहिए या शेष रिक्त स्थान पर अधिकार। यह पता चला है कि सामान्य रूप से समूहों के बारे में यह और अन्य अवलोकन हमें समूह के बारे में बहुत कम जानने वाले समूहों के केली टेबल बनाने की अनुमति देते हैं। चूंकि यह ध्यान दिया जाना चाहिए कि निम्नलिखित पद्धति का उपयोग करके निर्मित केली सारणी समूह की सहयोगीता आवश्यकता को पूरा करने में विफल हो सकती है और इसलिए एक अर्धसमूह का प्रतिनिधित्व करती है।


समूहों की संरचना के कारण, प्रश्न में समूह संचालन के पूर्ण लक्षण वर्णन के बिना भी, अक्सर केली तालिकाओं में गायब तत्वों को भर सकते हैं। उदाहरण के लिए, क्योंकि प्रत्येक पंक्ति और स्तंभ में समूह में प्रत्येक तत्व शामिल होना चाहिए, यदि सभी तत्वों का हिसाब एक को छोड़कर है, और एक खाली स्थान है, तो समूह के बारे में और कुछ जाने बिना यह निष्कर्ष निकालना संभव है कि तत्व के लिए बेहिसाब होना चाहिए शेष रिक्त स्थान पर कब्जा। यह पता चला है कि सामान्य रूप से समूहों के बारे में यह और अन्य अवलोकन हमें समूह के बारे में बहुत कम जानने वाले समूहों के केली टेबल बनाने की अनुमति देते हैं। हालांकि, यह ध्यान दिया जाना चाहिए कि निम्नलिखित पद्धति का उपयोग करके निर्मित एक केली सारणी एक समूह की सहयोगीता आवश्यकता को पूरा करने में विफल हो सकती है, और इसलिए एक अर्धसमूह का प्रतिनिधित्व करती है।


=== एक परिमित समूह === की पहचान कंकाल
'''<big>एक परिमित समूह की पहचान कंकाल</big>'''
सारणी में पहचान तत्वों द्वारा व्युत्क्रमों की पहचान की जाती है। क्योंकि किसी भी समूह में, यहां तक ​​कि एक गैर-अबेलियन समूह में, प्रत्येक तत्व अपने व्युत्क्रम के साथ आवागमन करता है, यह इस प्रकार है कि केली टेबल पर पहचान तत्वों का वितरण सारणी के विकर्ण में सममित होगा। जो विकर्ण पर स्थित हैं, वे अपने स्वयं के अनूठे व्युत्क्रम हैं।


क्योंकि केली टेबल की पंक्तियों और स्तंभों का क्रम वास्तव में मनमाना है, उन्हें निम्नलिखित तरीके से क्रमबद्ध करना सुविधाजनक है: समूह के पहचान तत्व से शुरू करना, जो हमेशा अपना व्युत्क्रम होता है, पहले उन सभी तत्वों को सूचीबद्ध करें जो उनके हैं खुद का व्युत्क्रम, उसके बाद एक दूसरे से सटे सूचीबद्ध व्युत्क्रमों के जोड़े।
सारणी में पहचान तत्वों द्वारा व्युत्क्रमों की पहचान की जाती है क्योंकि किसी भी समूह में, यहां तक ​​कि एक गैर-अबेलियन समूह में, प्रत्येक तत्व अपने व्युत्क्रम के साथ आवागमन करता है। यह इस प्रकार है कि केली टेबल पर पहचान तत्वों का वितरण सारणी के विकर्ण में सममित होगा। जो विकर्ण पर स्थित हैं। वे अपने स्वयं के अनूठे व्युत्क्रम हैं।


फिर, किसी विशेष क्रम के एक परिमित समूह के लिए, इसकी पहचान कंकाल को चिह्नित करना आसान है, इसलिए नाम दिया गया है क्योंकि पिछले पैराग्राफ में वर्णित तरीके से निर्मित केली टेबल पर पहचान तत्व मुख्य विकर्ण के बारे में क्लस्टर किए गए हैं{{snd}या तो वे सीधे उस पर झूठ बोलते हैं, या वे उससे अलग हो जाते हैं।
क्योंकि केली टेबल की पंक्तियों और स्तंभों का क्रम वास्तव में अनोखा है। उन्हें निम्नलिखित प्रकारों से क्रमबद्ध करना सुविधाजनक है। समूह के पहचान तत्व से प्रारम्भ करना, जो सदैव अपना व्युत्क्रम होता है। पहले उन सभी तत्वों को सूचीबद्ध करें। जो उनके स्वयं का व्युत्क्रम हैं। उसके बाद एक दूसरे से सटे सूचीबद्ध व्युत्क्रमों के जोड़े को भी सम्मिलित करें।


यह साबित करना अपेक्षाकृत तुच्छ है कि अलग-अलग पहचान वाले कंकालों वाले समूह [[ समरूपी ]] नहीं हो सकते हैं, हालांकि बातचीत सच नहीं है (उदाहरण के लिए, [[चक्रीय समूह]] सी<sub>8</sub>और [[चतुर्धातुक समूह]] Q गैर-समरूपी हैं लेकिन समान पहचान कंकाल हैं)।
फिर किसी विशेष क्रम के एक परिमित समूह के लिए इसकी पहचान कंकाल को चिह्नित करना सरल है। इसलिए नाम दिया गया है क्योंकि पिछले पैराग्राफ में वर्णित प्रकारों से निर्मित केली टेबल पर पहचान तत्व मुख्य विकर्ण के बारे में क्लस्टर किए गए हैं या तो वे सीधे उस पर झूठ बोलते हैं या वे उससे अलग हो जाते हैं।


तत्वों , , बी, सी, डी, और एफ के साथ छह-तत्व समूह पर विचार करें। परिपाटी के अनुसार, ई समूह का पहचान तत्व है। चूंकि पहचान तत्व हमेशा अपने व्युत्क्रम होता है, और व्युत्क्रम अद्वितीय होते हैं, तथ्य यह है कि इस समूह में 6 तत्व हैं इसका मतलब है कि के अलावा कम से कम एक तत्व का अपना व्युत्क्रम होना चाहिए। तो हमारे पास निम्नलिखित संभावित कंकाल हैं:
यह सिद्ध करना अपेक्षाकृत तुच्छ है कि अलग-अलग पहचान वाले कंकालों वाले समूह [[ समरूपी |समरूपी]] नहीं हो सकते हैं। चूंकि यह सच नहीं है (उदाहरण के लिए, [[चक्रीय समूह]] ''C''<sub>8</sub>और [[चतुर्धातुक समूह]] Q गैर-समरूपी हैं। किन्तु समान पहचान कंकाल हैं)।
 
तत्वों ''e'', ''a'', ''b'', ''c'', ''d'' और ''f'' के साथ छह-तत्व समूह पर विचार करें। परिपाटी के अनुसार ''e'' समूह का पहचान तत्व है। चूंकि पहचान तत्व सदैव अपने व्युत्क्रम होता है और व्युत्क्रम अद्वितीय होते हैं। तथ्य यह है कि इस समूह में 6 तत्व हैं। इसका अर्थ है कि ''e'' के अतिरिक्त कम से कम एक तत्व का अपना व्युत्क्रम होना चाहिए। तो हमारे पास निम्नलिखित संभावित कंकाल हैं:
#सभी तत्व अपने आप में प्रतिलोम हैं,
#सभी तत्व अपने आप में प्रतिलोम हैं,
# सभी तत्व d और f को छोड़कर अपने स्वयं के व्युत्क्रम हैं, इनमें से प्रत्येक बाद वाले दो दूसरे के व्युत्क्रम हैं,
# सभी तत्व d और f को छोड़कर अपने स्वयं के व्युत्क्रम हैं। इनमें से प्रत्येक बाद वाले दो दूसरे के व्युत्क्रम हैं,
#a इसका अपना व्युत्क्रम है, b और c व्युत्क्रम हैं, और d और f व्युत्क्रम हैं।
#a इसका अपना व्युत्क्रम है, b और c व्युत्क्रम हैं और d और f व्युत्क्रम हैं।


हमारे विशेष उदाहरण में, क्रम 6 के पहले कंकाल का समूह मौजूद नहीं है; वास्तव में, केवल इसलिए कि एक विशेष पहचान कंकाल बोधगम्य है, इसका सामान्य अर्थ यह नहीं है कि एक समूह मौजूद है जो इसे फिट करता है।
हमारे विशेष उदाहरण में क्रम 6 के पहले कंकाल का समूह उपस्थित नहीं है। वास्तव में केवल इसलिए कि एक विशेष पहचान कंकाल बोधगम्य है। इसका सामान्य अर्थ यह नहीं है कि एक समूह उपस्थित है जो इसे फिट करता है।


कोई भी समूह जिसमें प्रत्येक तत्व का अपना व्युत्क्रम होता है, एबेलियन होता है: a और b को समूह के तत्व होने दें, फिर ab = (ab)<sup>-1</sup> = बी<sup>-1</sup><sup>-1</सुप> = बा.
कोई भी समूह जिसमें प्रत्येक तत्व का अपना व्युत्क्रम होता है। एबेलियन होता है: a और b को समूह के तत्व होने दें। फिर ''ab'' = (''ab'')<sup>−1</sup> = ''b''<sup>−1</sup>''a''<sup>−1</sup> = ''ba''


=== पहचान कंकाल भरना ===
एक बार एक विशेष पहचान कंकाल निर्धारित हो जाने के बाद केली टेबल भरना प्रारम्भ करना संभव है। उदाहरण के लिए ऊपर बताए गए दूसरे कंकाल के क्रम 6 के समूह के पहचान कंकाल को लें:
एक बार एक विशेष पहचान कंकाल तय हो जाने के बाद, केली टेबल भरना शुरू करना संभव है। उदाहरण के लिए, ऊपर बताए गए दूसरे कंकाल के क्रम 6 के समूह के पहचान कंकाल को लें:


{| border="2" cellpadding="5" align="center"
{| border="2" cellpadding="5" align="center"
Line 112: Line 111:
|  ||  ||  ||  || <big>e</big> ||   
|  ||  ||  ||  || <big>e</big> ||   
|}
|}
जाहिर है, ई-पंक्ति और -कॉलम को तुरंत भरा जा सकता है।
प्रदर्शित है। ''e''-पंक्ति और ''e''-कॉलम को तुरंत भरा जा सकता है।


   {|border="2" cellpadding="5" align="center"
   {|border="2" cellpadding="5" align="center"
Line 141: Line 140:
| <big>f</big> ||  ||  ||  || <big>e</big> ||   
| <big>f</big> ||  ||  ||  || <big>e</big> ||   
|}
|}
एक बार यह हो जाने के बाद आगे बढ़ने के कई संभावित विकल्प हैं। हम ab के मान पर ध्यान केन्द्रित करेंगे। लैटिन वर्ग संपत्ति के अनुसार, ab के केवल संभवतः मान्य मान c, d, या f हैं। हालाँकि हम देख सकते हैं कि दो तत्वों d और f के चारों ओर अदला-बदली करने से ठीक वैसी ही सारणी बनेगी जैसी हमारे पास पहले से है, मनमाने ढंग से चयनित लेबल के लिए सहेजें। इसलिए हम उम्मीद करेंगे कि इन दोनों विकल्पों में से एक ही परिणाम के परिणामस्वरूप, समरूपता तक, और इसलिए हमें उनमें से केवल एक पर विचार करने की आवश्यकता है।
एक बार यह हो जाने के बाद आगे बढ़ने के कई संभावित विकल्प हैं। हम ab के मान पर ध्यान केन्द्रित करेंगे। लैटिन वर्ग गुण के अनुसार ab के केवल संभवतः मान्य मान c, d या f हैं। चूंकि हम देख सकते हैं कि दो तत्वों d और f के चारों ओर परिवर्तन करने से ठीक वैसी ही सारणी बनेगी, जैसी हमारे पास पहले से है। विशेष प्रकार से चयनित लेबल के लिए सहेजें। इसलिए हम आशा करेंगे कि इन दोनों विकल्पों में से एक ही परिणाम के परिणामस्वरूप, समरूपता तक और इसलिए हमें उनमें से केवल एक पर विचार करने की आवश्यकता है।


यह भी ध्यान रखना महत्वपूर्ण है कि एक या कई मान बाद में विरोधाभास का कारण बन सकते हैं (और हमारे मामले में करते हैं)।{{snd}} का अर्थ केवल यह है कि वे वास्तव में मान्य मान बिल्कुल भी नहीं थे।
यह भी ध्यान रखना महत्वपूर्ण है कि एक या कई मान बाद में विरोधाभास का कारण बन सकते हैं (और हमारे स्थिति में करते हैं)। इसका अर्थ केवल यह है कि वे वास्तव में मान्य मान बिल्कुल भी नहीं थे।


==== एबी = सी ====
==== ''ab'' = ''c'' ====
बारी-बारी से बाईं ओर और दाईं ओर गुणा करके, एक समीकरण को समीकरणों के एक पाश में विस्तारित करना संभव है, जहां कोई भी अन्य सभी को दर्शाता है:
बारी-बारी से बाईं ओर और दाईं ओर गुणा करके एक समीकरण को समीकरणों के एक पाश में विस्तारित करना संभव है। जहां कोई भी अन्य सभी को दर्शाता है:
*बायीं ओर ab = c को a से गुणा करने पर b = ac प्राप्त होता है
*बायीं ओर ab = c को a से गुणा करने पर b = ac प्राप्त होता है।
*दाईं ओर b = ac को c से गुणा करने पर bc = a मिलता है
*दाईं ओर b = ac को c से गुणा करने पर bc = a मिलता है।
*बाईं ओर बीसी = को बी से गुणा करने पर सी = बीए मिलता है
*बाईं ओर ''bc'' = ''a'' को बी से गुणा करने पर ''c'' = ''ba'' मिलता है।
* दाईं ओर c = ba को a से गुणा करने पर ca = b मिलता है
* दाईं ओर c = ba को a से गुणा करने पर ca = b मिलता है।
* बाईं ओर c = b को c से गुणा करने पर a = cb प्राप्त होता है
* बाईं ओर c = b को c से गुणा करने पर a = cb प्राप्त होता है।
* दाईं ओर a = cb को b से गुणा करने पर ab = c प्राप्त होता है
* दाईं ओर a = cb को b से गुणा करने पर ab = c प्राप्त होता है।


इन सभी उत्पादों को भरने पर, केली सारणी अब इस तरह दिखती है (लाल रंग में नए तत्व):
इन सभी उत्पादों को भरने पर केली सारणी अब इस प्रकार प्रदर्शित होती है (लाल रंग में नए तत्व):


{| border="2" cellpadding="5" align="center"
{| border="2" cellpadding="5" align="center"
Line 183: Line 182:
| <big>f</big> ||  ||  ||  || <big>e</big> ||  
| <big>f</big> ||  ||  ||  || <big>e</big> ||  
|}
|}
चूंकि केली सारणी एक लैटिन वर्ग है, इसलिए विज्ञापन का एकमात्र संभावित वैध मान f है, और इसी तरह af का एकमात्र संभव मान d है।
चूंकि केली सारणी एक लैटिन वर्ग है। इसलिए विज्ञापन का एकमात्र संभावित वैध मान f है और इसी प्रकार af का एकमात्र संभव मान d है।


इन मूल्यों को भरते हुए, केली सारणी अब इस तरह दिखती है (नीले रंग में नए तत्व):
इन मूल्यों को भरते हुए केली सारणी अब इस प्रकार दिखती है (नीले रंग में नए तत्व):


{| border="2" cellpadding="5" align="center"
{| border="2" cellpadding="5" align="center"
Line 214: Line 213:
| <big>f</big> || || ||  || <big>e</big> ||
| <big>f</big> || || ||  || <big>e</big> ||
|}
|}
दुर्भाग्य से, समूह के सभी तत्व पहले से ही सारणी में बीडी के ऊपर या बाईं ओर मौजूद हैं, इसलिए बीडी का कोई मूल्य नहीं है जो लैटिन वर्ग की संपत्ति को संतुष्ट करता है।
दुर्भाग्य से समूह के सभी तत्व पहले से ही सारणी में बीडी के ऊपर या बाईं ओर उपस्थित हैं। इसलिए ''bd'' का कोई मूल्य नहीं है। जो लैटिन वर्ग की गुण को संतुष्ट करता है।


इसका मतलब यह है कि हमारे द्वारा चुना गया विकल्प (ab = c) हमें एक ऐसे बिंदु पर ले गया है जहाँ विरोधाभास पैदा किए बिना bd को कोई मान नहीं दिया जा सकता है। इसलिए हमने दिखाया है कि ab ≠ c.
इसका अर्थ यह है कि हमारे द्वारा चुना गया विकल्प (ab = c) हमें एक ऐसे बिंदु पर ले गया है। जहाँ विरोधाभास उत्पन्न किए बिना bd को कोई मान नहीं दिया जा सकता है। इसलिए हमने दिखाया है कि ab ≠ c.


यदि हम इसी तरह से दिखाते हैं कि सभी विकल्प विरोधाभासों की ओर ले जाते हैं, तो हमें यह निष्कर्ष निकालना चाहिए कि क्रम 6 का कोई भी समूह उस पहचान ढांचे के साथ मौजूद नहीं है जिसके साथ हमने शुरुआत की थी।
यदि हम इसी प्रकार से दिखाते हैं कि सभी विकल्प विरोधाभासों की ओर ले जाते हैं। तो हमें यह निष्कर्ष निकालना चाहिए कि क्रम 6 का कोई भी समूह उस पहचान ढांचे के साथ उपस्थित नहीं है। जिसके साथ हमने प्रारम्भ किया था।


= अब = डी ====
= '''''ab'' = ''d'''''=
बारी-बारी से बाईं ओर और दाईं ओर गुणा करके, एक समीकरण को समीकरणों के एक पाश में विस्तारित करना संभव है, जहां कोई भी अन्य सभी को दर्शाता है:
बारी-बारी से बाईं ओर और दाईं ओर गुणा करके एक समीकरण को समीकरणों के एक पाश में विस्तारित करना संभव है। जहां कोई भी अन्य सभी को दर्शाता है:
*बाईं ओर ab = d को a से गुणा करने पर b = ad मिलता है
*बाईं ओर ab = d को a से गुणा करने पर b = ad मिलता है।
*दाईं ओर दिए गए b = ad को f से गुणा करने पर bf = a मिलता है
*दाईं ओर दिए गए b = ad को f से गुणा करने पर bf = a मिलता है।
*बाईं ओर bf = a को b से गुणा करने पर f = ba प्राप्त होता है
*बाईं ओर bf = a को b से गुणा करने पर f = ba प्राप्त होता है।
* दाईं ओर f = ba को a से गुणा करने पर fa = b मिलता है
* दाईं ओर f = ba को a से गुणा करने पर fa = b मिलता है।
*बाईं ओर के fa = b को d से गुणा करने पर a = db प्राप्त होता है
*बाईं ओर के fa = b को d से गुणा करने पर a = db प्राप्त होता है।
* दाईं ओर a = db को b से गुणा करने पर ab = d प्राप्त होता है
* दाईं ओर a = db को b से गुणा करने पर ab = d प्राप्त होता है।


इन सभी उत्पादों को भरने पर, केली सारणी अब इस तरह दिखती है (लाल रंग में नए तत्व):
इन सभी उत्पादों को भरने पर केली सारणी अब इस प्रकार दिखती है (लाल रंग में नए तत्व):


{| border="2" cellpadding="5" align="center"
{| border="2" cellpadding="5" align="center"
Line 258: Line 257:
| <big>f</big> || <big><span style="color:red;">b</span></big> ||  ||  || <big>e</big> ||  
| <big>f</big> || <big><span style="color:red;">b</span></big> ||  ||  || <big>e</big> ||  
|}
|}
नीले रंग में दिखाए गए के शेष उत्पाद अब लैटिन वर्ग संपत्ति का उपयोग करके दर्ज किए जा सकते हैं। उदाहरण के लिए, c पंक्ति a से गायब है और कॉलम c में दो बार नहीं हो सकता है, इसलिए ac = f।
नीले रंग में दिखाए गए a के शेष उत्पाद अब लैटिन वर्ग गुण का उपयोग करके भरे जा सकते हैं। उदाहरण के लिए c पंक्ति a से विलुप्त है और कॉलम c में दो बार नहीं हो सकता है। इसलिए ac = f।
{| border="2" cellpadding="5" align="center"
{| border="2" cellpadding="5" align="center"
!style="background:#efefef;"|  
!style="background:#efefef;"|  
Line 286: Line 285:
| <big>f</big> || <big><span style="color:red;">b</span></big> ||  || || <big>e</big> ||  
| <big>f</big> || <big><span style="color:red;">b</span></big> ||  || || <big>e</big> ||  
|}
|}
इसी प्रकार, हरे रंग में दिखाए गए बी के शेष उत्पाद, फिर दर्ज किए जा सकते हैं:
इसी प्रकार हरे रंग में दिखाए गए बी के शेष उत्पाद फिर से भरे किए जा सकते हैं:


{| border="2" cellpadding="5" align="center"
{| border="2" cellpadding="5" align="center"
Line 315: Line 314:
| <big>f</big> || <big><span style="color:red;">b</span></big> || <big><span style="color:green;">c</span></big> || <big><span style="color:blue;">a</span></big> || <big>e</big> ||  
| <big>f</big> || <big><span style="color:red;">b</span></big> || <big><span style="color:green;">c</span></big> || <big><span style="color:blue;">a</span></big> || <big>e</big> ||  
|}
|}
शेष उत्पाद, जिनमें से प्रत्येक पंक्ति या स्तंभ में केवल लापता मान है, अब नारंगी में दिखाए गए लैटिन वर्ग गुण का उपयोग करके भरा जा सकता है:
शेष उत्पाद, जिनमें से प्रत्येक पंक्ति या स्तंभ में केवल विलुप्त मान है। अब नारंगी में दिखाए गए लैटिन वर्ग गुण का उपयोग करके भरा जा सकता है:


{| border="2" cellpadding="5" align="center"
{| border="2" cellpadding="5" align="center"
Line 343: Line 342:
!style="background:#efefef;"| <big>f</big>
!style="background:#efefef;"| <big>f</big>
| <big>f</big> || <big><span style="color:red;">b</span></big> || <big><span style="color:green;">c</span></big> || <big><span style="color:blue;">a</span></big> || <big>e</big> || <big><span style="color:orange;">d</span></big>
| <big>f</big> || <big><span style="color:red;">b</span></big> || <big><span style="color:green;">c</span></big> || <big><span style="color:blue;">a</span></big> || <big>e</big> || <big><span style="color:orange;">d</span></big>
|}जैसा कि हम एक विरोधाभास प्राप्त किए बिना पूरी सारणी भरने में कामयाब रहे हैं, हमें क्रम 6 का एक समूह मिला है, और निरीक्षण से पता चलता है कि यह गैर-अबेलियन है। यह समूह वास्तव में सबसे छोटा गैर-अबेलियन समूह है, [[डायहेड्रल समूह]] डी<sub>3</sub>
|}जैसा कि हम एक विरोधाभास प्राप्त किए बिना पूरी सारणी भरने में सफल रहे हैं। हमें क्रम 6 का एक समूह मिला है और निरीक्षण से पता चलता है कि यह गैर-अबेलियन है। यह समूह वास्तव में सबसे छोटा गैर-अबेलियन समूह [[डायहेड्रल समूह]] ''D''<sub>3</sub> है।




=== उपरोक्त विधि का उपयोग करके निर्मित अर्धसमूह का उदाहरण ===
=== उपरोक्त विधि का उपयोग करके निर्मित अर्धसमूह का उदाहरण ===
केली सारणी जो आगे आती है, एक पहचान कंकाल दर्ज करके, पहली पंक्ति और स्तंभ में भरकर, और फिर उस ab = c को अभिगृहीत करके निर्मित की जा सकती है। वैकल्पिक मान्यता ab = d का परिणाम समाकारिता है। शेष सारणी एक लैटिन वर्ग के रूप में अनुसरण करती है। हालाँकि, सारणी के संदर्भ में (एसी) बी = डीबी = , जबकि (सीबी) = विज्ञापन = बी। इसलिए यह सहयोगीता सिद्धांत को विफल करता है और एक समूह के बजाय एक अर्धसमूह का प्रतिनिधित्व करता है।
केली सारणी जो आगे आती है, एक पहचान कंकाल भरे करके, पहली पंक्ति और स्तंभ में भरकर और फिर उस ab = c को अभिगृहीत करके निर्मित की जा सकती है। वैकल्पिक मान्यता ab = d का परिणाम समाकारिता है। शेष सारणी एक लैटिन वर्ग के रूप में अनुसरण करती है। चूंकि सारणी के संदर्भ में ''(ac)b = db = a'', जबकि ''(cb) = ad = b''। इसलिए यह सहयोगीता सिद्धांत को विफल करता है और एक समूह के अतिरिक्त एक अर्धसमूह का प्रतिनिधित्व करता है।
{| border="2" cellpadding="5" align="center"
{| border="2" cellpadding="5" align="center"
! style="background:#efefef;" |
! style="background:#efefef;" |
Line 375: Line 374:
== क्रमपरिवर्तन मैट्रिक्स पीढ़ी ==
== क्रमपरिवर्तन मैट्रिक्स पीढ़ी ==


केली सारणी के मानक रूप में पंक्तियों में तत्वों का क्रम स्तंभों में क्रम के समान होता है। एक अन्य रूप स्तंभों के तत्वों को व्यवस्थित करना है ताकि nth स्तंभ nth पंक्ति में तत्व के व्युत्क्रम से मेल खाता हो। हमारे उदाहरण में डी<sub>3</sub>, हमें केवल अंतिम दो स्तंभों को स्विच करने की आवश्यकता है, क्योंकि f और d केवल ऐसे तत्व हैं जो अपने स्वयं के व्युत्क्रम नहीं हैं, बल्कि एक दूसरे के व्युत्क्रम हैं।
केली सारणी के मानक रूप में पंक्तियों में तत्वों का क्रम स्तंभों में क्रम के समान होता है। अन्य रूप स्तंभों के तत्वों को व्यवस्थित करना है। जिससे nth स्तंभ nth पंक्ति में तत्व के व्युत्क्रम से मिलता हो। हमारे उदाहरण में ''D''<sub>3</sub> हमें केवल अंतिम दो स्तंभों को स्विच करने की आवश्यकता है क्योंकि f और d केवल ऐसे तत्व हैं। जो अपने स्वयं के व्युत्क्रम नहीं हैं। किन्तु एक दूसरे के व्युत्क्रम हैं।


{| border="2" cellpadding="5" align="center"
{| border="2" cellpadding="5" align="center"
Line 404: Line 403:
| <big>f</big> || <big>b</big> || <big>c</big>  || <big>a</big> || <big>d</big> || <big>e</big>   
| <big>f</big> || <big>b</big> || <big>c</big>  || <big>a</big> || <big>d</big> || <big>e</big>   
|}
|}
यह विशेष उदाहरण हमें छह [[क्रमपरिवर्तन मैट्रिक्स]] (सभी तत्व 1 या 0, प्रत्येक पंक्ति और स्तंभ में ठीक एक 1) बनाने देता है। एक तत्व का प्रतिनिधित्व करने वाले 6x6 मैट्रिक्स में प्रत्येक स्थिति में 1 होगा जिसमें केली टेबल में तत्व का अक्षर होगा और हर दूसरी स्थिति में शून्य होगा, उस प्रतीक के लिए [[क्रोनकर डेल्टा]] फ़ंक्शन। (ध्यान दें कि ई मुख्य विकर्ण के नीचे हर स्थिति में है, जो हमें इस मामले में 6x6 मैट्रिक्स के लिए पहचान मैट्रिक्स देता है, जैसा कि हम उम्मीद करेंगे।) यहां वह मैट्रिक्स है जो हमारे तत्व का प्रतिनिधित्व करता है, उदाहरण के लिए।
यह विशेष उदाहरण हमें छह [[क्रमपरिवर्तन मैट्रिक्स]] (सभी तत्व 1 या 0, प्रत्येक पंक्ति और स्तंभ में ठीक एक 1) बनाने देता है। एक तत्व का प्रतिनिधित्व करने वाले 6x6 मैट्रिक्स में प्रत्येक स्थिति में 1 होगा जिसमें केली टेबल में तत्व का अक्षर होगा और हर दूसरी स्थिति में शून्य होगा। उस प्रतीक के लिए [[क्रोनकर डेल्टा]] फलन (ध्यान दें कि ई मुख्य विकर्ण के नीचे हर स्थिति में है। जो हमें इस स्थिति में 6x6 मैट्रिक्स के लिए पहचान मैट्रिक्स देता है, जैसा कि हम उम्मीद करेंगे।) यहां वह मैट्रिक्स है, जो हमारे तत्व का प्रतिनिधित्व करता है। उदाहरण के लिए-


{| border="2" cellpadding="5" align="center"
{| border="2" cellpadding="5" align="center"
Line 433: Line 432:
| <big>0</big> || <big>0</big> || <big>0</big>  || <big>1</big> || <big>0</big> || <big>0</big>   
| <big>0</big> || <big>0</big> || <big>0</big>  || <big>1</big> || <big>0</big> || <big>0</big>   
|}
|}
यह हमें सीधे दिखाता है कि क्रम n का कोई भी समूह क्रमचय समूह S का एक उपसमूह है<sub>''n''</sub>, आदेश n!
यह हमें सीधे प्रदर्शित करता है कि क्रम n का कोई भी समूह क्रमचय समूह ''S<sub>n</sub>'' का एक उपसमूह है और आदेश n! क्रमांक है।


== सामान्यीकरण ==
== सामान्यीकरण ==
उपरोक्त गुण समूहों के लिए मान्य कुछ अभिगृहीतों पर निर्भर करते हैं। अन्य बीजगणितीय संरचनाओं के लिए केली तालिकाओं पर विचार करना स्वाभाविक है, जैसे कि [[ semigroup ]]्स, क्वासिग्रुप्स, और मैग्मा (बीजगणित), लेकिन ऊपर दिए गए कुछ गुण धारण नहीं करते हैं।
उपरोक्त गुण समूहों के लिए मान्य कुछ अभिगृहीतों पर निर्भर करते हैं। अन्य बीजगणितीय संरचनाओं के लिए केली सारणियों पर विचार करना स्वाभाविक है। जैसे कि [[ semigroup | सेमीग्रुप्स]], क्वासिग्रुप्स और मैग्मा (बीजगणित)। किन्तु ऊपर दिए गए कुछ गुण धारण नहीं करते हैं।


== यह भी देखें ==
== यह भी देखें ==
Line 446: Line 445:
* [[Arthur Cayley|Cayley, Arthur]]. "On the theory of groups, as depending on the symbolic equation ''θ''<sup>&nbsp;''n''</sup> = 1", ''Philosophical Magazine'', Vol. 7 (1854), pp.&nbsp;40&ndash;47.  [https://books.google.com/books?hl=en&lr=&id=aJsllJyUPs0C&oi=fnd&pg=PA1&ots=HSTQQLHmmZ&sig=B45n8im0zbG0UWoIcqx9OQN7wGc#PPA123,M1 Available on-line at Google Books as part of his collected works.]
* [[Arthur Cayley|Cayley, Arthur]]. "On the theory of groups, as depending on the symbolic equation ''θ''<sup>&nbsp;''n''</sup> = 1", ''Philosophical Magazine'', Vol. 7 (1854), pp.&nbsp;40&ndash;47.  [https://books.google.com/books?hl=en&lr=&id=aJsllJyUPs0C&oi=fnd&pg=PA1&ots=HSTQQLHmmZ&sig=B45n8im0zbG0UWoIcqx9OQN7wGc#PPA123,M1 Available on-line at Google Books as part of his collected works.]
* [[Arthur Cayley|Cayley, Arthur]]. "On the Theory of Groups", ''[[American Journal of Mathematics]]'', Vol. 11, No. 2 (Jan 1889), pp.&nbsp;139&ndash;157. [https://www.jstor.org/stable/2369415 Available at JSTOR.]
* [[Arthur Cayley|Cayley, Arthur]]. "On the Theory of Groups", ''[[American Journal of Mathematics]]'', Vol. 11, No. 2 (Jan 1889), pp.&nbsp;139&ndash;157. [https://www.jstor.org/stable/2369415 Available at JSTOR.]
[[Category: परिमित समूह]]


[[Category: Machine Translated Page]]
[[Category:Created On 21/03/2023]]
[[Category:Created On 21/03/2023]]
[[Category:Machine Translated Page]]
[[Category:परिमित समूह]]

Latest revision as of 10:04, 18 April 2023

19 वीं शताब्दी के यूनाइटेड किंगडम के गणितज्ञ आर्थर केली के नाम पर केली सारणी परिमित समूह की संरचना का वर्णन करती है। जो समूह के सभी तत्वों के सभी संभावित उत्पादों को एक वर्ग सारणी में एक जोड़ या गुणन सारणी की जानकारी प्रदान करती है। एक समूह के कई गुण – जैसे कि यह एबेलियन समूह है या नहीं, कौन से तत्व किन तत्वों के व्युत्क्रम तत्व हैं और समूह के केंद्र का आकार और सामग्री (समूह सिद्धांत) केली सारणी के द्वारा खोजा जा सकता है।

केली सारणी का एक सरल उदाहरण साधारण गुणन के अंतर्गत समूह {1, -1} के लिए एक है:

× 1 −1
1 1 −1
−1 −1 1


इतिहास

केली टेबल्स को पहली बार केली के 1854 के पेपर, ऑन द थ्योरी ऑफ़ ग्रुप्स में प्रतीकात्मक समीकरण θ n = 1" के आधार पर प्रस्तुत किया गया था। उस पेपर में उन्हें केवल सारणियों के रूप में संदर्भित किया गया था और वे केवल उदाहरण थे। बाद में उन्हें अपने निर्माता के सम्मान में केली टेबल के रूप में जाना जाने लगा।

संरचना और लेआउट

कई केली टेबल उन समूहों का वर्णन करते हैं, जो एबेलियन समूह नहीं हैं। समूह के बाइनरी ऑपरेशन के संबंध में उत्पाद ab समूह में सभी a और b के लिए उत्पाद ba के बराबर होने का सम्पूर्ण प्रमाण नहीं है। भ्रम से बचने के लिए परंपरा यह है कि वह कारक जो पंक्ति को लेबल करता है (केली द्वारा निकट कारक कहा जाता है)। वह कारक पहले आता है और वह कारक जो कॉलम (या आगे कारक) को लेबल करता है। वह दूसरा कारक होता है। उदाहरण के लिए पंक्ति a और स्तंभ b का प्रतिच्छेदन ab है न कि ba, जैसा कि निम्नलिखित उदाहरण में है:

* a b c
a a2 ab ac
b ba b2 bc
c ca cb c2


गुण और उपयोग

क्रम विनिमेयता

केली सारणी से हमें यह जानकारी प्राप्त होती है कि क्या कोई समूह आबेली समूह है क्योंकि एक एबेलियन समूह का समूह संचालन क्रमविनिमेय है। एक समूह एबेलियन है, यदि और केवल यदि इसके केली सारणी के मान इसके विकर्ण अक्ष के साथ सममित हैं। उपरोक्त समूह {1, -1} और सामान्य गुणन के अनुसार क्रम 3 का चक्रीय समूह दोनों एबेलियन समूहों के उदाहरण हैं और उनके केली सारणियों की समरूपता का निरीक्षण इसे सत्यापित करता है। इसके विपरीत सबसे छोटा गैर-अबेलियन समूह ऑर्डर 6 का डायहेड्रल समूह एक सममित केली टेबल नहीं है।

साहचर्य

समूहों के साथ व्यवहार करते समय सहचारिता को एक स्वयंसिद्ध के रूप में लिया जाता है। केली सारणियों के साथ व्यवहार करते समय इसे सामान्यतः यह मान लिया जाता है। चूंकि केली टेबल का उपयोग अर्धसमूह के संचालन को चिह्नित करने के लिए भी किया जा सकता है। जो सहयोगीता को एक स्वयंसिद्ध के रूप में नहीं मानता है (वास्तव में, केली टेबल का उपयोग किसी परिमित मैग्मा (बीजगणित) के संचालन को चिह्नित करने के लिए किया जा सकता है)। दुर्भाग्य से यह निर्धारित करना सामान्यतः संभव नहीं है कि कोई ऑपरेशन साहचर्य है या नहीं। इसकी केली टेबल को देखकर जानकारी प्राप्त कर सकते हैं क्योंकि यह कम्यूटेटिविटी के साथ है। ऐसा इसलिए है क्योंकि साहचर्य एक 3 टर्म समीकरण पर निर्भर करता है। जबकि केली सारणी 2-अवधि के उत्पाद दिखाती है। चूंकि प्रकाश की साहचर्यता परीक्षण क्रूर बल की तुलना में कम प्रयास के साथ साहचर्य निर्धारित कर सकता है।

क्रमपरिवर्तन

कैंसिलेशन गुण समूहों (और यहां तक ​​​​कि अर्धसमूहों) के लिए भी है। केली सारणी की कोई पंक्ति या स्तंभ में एक ही तत्व दो बार नहीं हो सकता है। इस प्रकार सारणी की प्रत्येक पंक्ति और स्तंभ समूह के सभी तत्वों का क्रमचय है। यह बहुत अधिक प्रतिबंधित करता है कि कौन सी केली सारणियाँ एक वैध समूह संचालन को परिभाषित कर सकती हैं।

यह देखने के लिए कि एक पंक्ति या स्तंभ में एक से अधिक बार एक ही तत्व क्यों नहीं हो सकता है। माना कि a, x और y सभी एक समूह के तत्व हैं। जिनमें x और y भिन्न हैं। फिर तत्व a का प्रतिनिधित्व करने वाली पंक्ति में x के अनुरूप कॉलम में उत्पाद ax होता है और इसी प्रकार y के अनुरूप कॉलम में उत्पाद ay होता है। यदि ये दोनों उत्पाद बराबर थे, अर्थात् पंक्ति a में एक ही तत्व दो बार निहित है। हमारी परिकल्पना तो ax ay के बराबर होगा। किन्तु क्योंकि निरस्तीकरण नियम मान्य है। हम यह निष्कर्ष निकाल सकते हैं कि यदि ax = ay, तो x = y एक रिडक्टियो एड बेतुका। इसलिए हमारी परिकल्पना गलत है और एक पंक्ति में एक ही तत्व दो बार नहीं हो सकता। बिल्कुल वही तर्क स्तंभ स्थिति को सिद्ध करने के लिए पर्याप्त है और इसलिए हम यह निष्कर्ष निकालते हैं कि प्रत्येक पंक्ति और स्तंभ में एक से अधिक बार कोई तत्व नहीं होता है क्योंकि समूह परिमित है। पीजनहोल सिद्धांत यह गारंटी देता है कि समूह के प्रत्येक तत्व को प्रत्येक पंक्ति में और प्रत्येक स्तंभ में ठीक एक बार प्रदर्शित किया जाएगा।

इस प्रकार समूह की केली सारणी लैटिन वर्ग का एक उदाहरण है।

संभवतः सरल प्रमाण निरस्त करने के गुण का तात्पर्य है कि समूह में प्रत्येक x के लिए y f(x,y)= xy का एक चर कार्य एक से एक फलन होना चाहिए और परिमित समूह पर एक से एक फलन क्रमचय हैं।

केली टेबल का निर्माण

समूहों की संरचना के कारण प्रश्न में समूह संचालन के पूर्ण लक्षण वर्णन के बिना भी सामान्यतः केली सारणियों में विलुप्त तत्वों को भर सकते हैं। उदाहरण के लिए क्योंकि प्रत्येक पंक्ति और स्तंभ में समूह में प्रत्येक तत्व सम्मिलित होना चाहिए। यदि सभी तत्वों का मानक एक को छोड़कर है और एक खाली स्थान है। तो समूह के बारे में और कुछ जाने बिना यह निष्कर्ष निकालना संभव है कि तत्व के लिए बिना मूल्य के होना चाहिए या शेष रिक्त स्थान पर अधिकार। यह पता चला है कि सामान्य रूप से समूहों के बारे में यह और अन्य अवलोकन हमें समूह के बारे में बहुत कम जानने वाले समूहों के केली टेबल बनाने की अनुमति देते हैं। चूंकि यह ध्यान दिया जाना चाहिए कि निम्नलिखित पद्धति का उपयोग करके निर्मित केली सारणी समूह की सहयोगीता आवश्यकता को पूरा करने में विफल हो सकती है और इसलिए एक अर्धसमूह का प्रतिनिधित्व करती है।


एक परिमित समूह की पहचान कंकाल

सारणी में पहचान तत्वों द्वारा व्युत्क्रमों की पहचान की जाती है क्योंकि किसी भी समूह में, यहां तक ​​कि एक गैर-अबेलियन समूह में, प्रत्येक तत्व अपने व्युत्क्रम के साथ आवागमन करता है। यह इस प्रकार है कि केली टेबल पर पहचान तत्वों का वितरण सारणी के विकर्ण में सममित होगा। जो विकर्ण पर स्थित हैं। वे अपने स्वयं के अनूठे व्युत्क्रम हैं।

क्योंकि केली टेबल की पंक्तियों और स्तंभों का क्रम वास्तव में अनोखा है। उन्हें निम्नलिखित प्रकारों से क्रमबद्ध करना सुविधाजनक है। समूह के पहचान तत्व से प्रारम्भ करना, जो सदैव अपना व्युत्क्रम होता है। पहले उन सभी तत्वों को सूचीबद्ध करें। जो उनके स्वयं का व्युत्क्रम हैं। उसके बाद एक दूसरे से सटे सूचीबद्ध व्युत्क्रमों के जोड़े को भी सम्मिलित करें।

फिर किसी विशेष क्रम के एक परिमित समूह के लिए इसकी पहचान कंकाल को चिह्नित करना सरल है। इसलिए नाम दिया गया है क्योंकि पिछले पैराग्राफ में वर्णित प्रकारों से निर्मित केली टेबल पर पहचान तत्व मुख्य विकर्ण के बारे में क्लस्टर किए गए हैं या तो वे सीधे उस पर झूठ बोलते हैं या वे उससे अलग हो जाते हैं।

यह सिद्ध करना अपेक्षाकृत तुच्छ है कि अलग-अलग पहचान वाले कंकालों वाले समूह समरूपी नहीं हो सकते हैं। चूंकि यह सच नहीं है (उदाहरण के लिए, चक्रीय समूह C8और चतुर्धातुक समूह Q गैर-समरूपी हैं। किन्तु समान पहचान कंकाल हैं)।

तत्वों e, a, b, c, d और f के साथ छह-तत्व समूह पर विचार करें। परिपाटी के अनुसार e समूह का पहचान तत्व है। चूंकि पहचान तत्व सदैव अपने व्युत्क्रम होता है और व्युत्क्रम अद्वितीय होते हैं। तथ्य यह है कि इस समूह में 6 तत्व हैं। इसका अर्थ है कि e के अतिरिक्त कम से कम एक तत्व का अपना व्युत्क्रम होना चाहिए। तो हमारे पास निम्नलिखित संभावित कंकाल हैं:

  1. सभी तत्व अपने आप में प्रतिलोम हैं,
  2. सभी तत्व d और f को छोड़कर अपने स्वयं के व्युत्क्रम हैं। इनमें से प्रत्येक बाद वाले दो दूसरे के व्युत्क्रम हैं,
  3. a इसका अपना व्युत्क्रम है, b और c व्युत्क्रम हैं और d और f व्युत्क्रम हैं।

हमारे विशेष उदाहरण में क्रम 6 के पहले कंकाल का समूह उपस्थित नहीं है। वास्तव में केवल इसलिए कि एक विशेष पहचान कंकाल बोधगम्य है। इसका सामान्य अर्थ यह नहीं है कि एक समूह उपस्थित है जो इसे फिट करता है।

कोई भी समूह जिसमें प्रत्येक तत्व का अपना व्युत्क्रम होता है। एबेलियन होता है: a और b को समूह के तत्व होने दें। फिर ab = (ab)−1 = b−1a−1 = ba

एक बार एक विशेष पहचान कंकाल निर्धारित हो जाने के बाद केली टेबल भरना प्रारम्भ करना संभव है। उदाहरण के लिए ऊपर बताए गए दूसरे कंकाल के क्रम 6 के समूह के पहचान कंकाल को लें:

e a b c d f
e e
a e
b e
c e
d e
f e

प्रदर्शित है। e-पंक्ति और e-कॉलम को तुरंत भरा जा सकता है।

e a b c d f
e e a b c d f
a a e
b b e
c c e
d d e
f f e

एक बार यह हो जाने के बाद आगे बढ़ने के कई संभावित विकल्प हैं। हम ab के मान पर ध्यान केन्द्रित करेंगे। लैटिन वर्ग गुण के अनुसार ab के केवल संभवतः मान्य मान c, d या f हैं। चूंकि हम देख सकते हैं कि दो तत्वों d और f के चारों ओर परिवर्तन करने से ठीक वैसी ही सारणी बनेगी, जैसी हमारे पास पहले से है। विशेष प्रकार से चयनित लेबल के लिए सहेजें। इसलिए हम आशा करेंगे कि इन दोनों विकल्पों में से एक ही परिणाम के परिणामस्वरूप, समरूपता तक और इसलिए हमें उनमें से केवल एक पर विचार करने की आवश्यकता है।

यह भी ध्यान रखना महत्वपूर्ण है कि एक या कई मान बाद में विरोधाभास का कारण बन सकते हैं (और हमारे स्थिति में करते हैं)। इसका अर्थ केवल यह है कि वे वास्तव में मान्य मान बिल्कुल भी नहीं थे।

ab = c

बारी-बारी से बाईं ओर और दाईं ओर गुणा करके एक समीकरण को समीकरणों के एक पाश में विस्तारित करना संभव है। जहां कोई भी अन्य सभी को दर्शाता है:

  • बायीं ओर ab = c को a से गुणा करने पर b = ac प्राप्त होता है।
  • दाईं ओर b = ac को c से गुणा करने पर bc = a मिलता है।
  • बाईं ओर bc = a को बी से गुणा करने पर c = ba मिलता है।
  • दाईं ओर c = ba को a से गुणा करने पर ca = b मिलता है।
  • बाईं ओर c = b को c से गुणा करने पर a = cb प्राप्त होता है।
  • दाईं ओर a = cb को b से गुणा करने पर ab = c प्राप्त होता है।

इन सभी उत्पादों को भरने पर केली सारणी अब इस प्रकार प्रदर्शित होती है (लाल रंग में नए तत्व):

e a b c d f
e e a b c d f
a a e c b
b b c e a
c c b a e
d d e
f f e

चूंकि केली सारणी एक लैटिन वर्ग है। इसलिए विज्ञापन का एकमात्र संभावित वैध मान f है और इसी प्रकार af का एकमात्र संभव मान d है।

इन मूल्यों को भरते हुए केली सारणी अब इस प्रकार दिखती है (नीले रंग में नए तत्व):

e a b c d f
e e a b c d f
a a e c b f d
b b c e a
c c b a e
d d e
f f e

दुर्भाग्य से समूह के सभी तत्व पहले से ही सारणी में बीडी के ऊपर या बाईं ओर उपस्थित हैं। इसलिए bd का कोई मूल्य नहीं है। जो लैटिन वर्ग की गुण को संतुष्ट करता है।

इसका अर्थ यह है कि हमारे द्वारा चुना गया विकल्प (ab = c) हमें एक ऐसे बिंदु पर ले गया है। जहाँ विरोधाभास उत्पन्न किए बिना bd को कोई मान नहीं दिया जा सकता है। इसलिए हमने दिखाया है कि ab ≠ c.

यदि हम इसी प्रकार से दिखाते हैं कि सभी विकल्प विरोधाभासों की ओर ले जाते हैं। तो हमें यह निष्कर्ष निकालना चाहिए कि क्रम 6 का कोई भी समूह उस पहचान ढांचे के साथ उपस्थित नहीं है। जिसके साथ हमने प्रारम्भ किया था।

ab = d

बारी-बारी से बाईं ओर और दाईं ओर गुणा करके एक समीकरण को समीकरणों के एक पाश में विस्तारित करना संभव है। जहां कोई भी अन्य सभी को दर्शाता है:

  • बाईं ओर ab = d को a से गुणा करने पर b = ad मिलता है।
  • दाईं ओर दिए गए b = ad को f से गुणा करने पर bf = a मिलता है।
  • बाईं ओर bf = a को b से गुणा करने पर f = ba प्राप्त होता है।
  • दाईं ओर f = ba को a से गुणा करने पर fa = b मिलता है।
  • बाईं ओर के fa = b को d से गुणा करने पर a = db प्राप्त होता है।
  • दाईं ओर a = db को b से गुणा करने पर ab = d प्राप्त होता है।

इन सभी उत्पादों को भरने पर केली सारणी अब इस प्रकार दिखती है (लाल रंग में नए तत्व):

e a b c d f
e e a b c d f
a a e d b
b b f e a
c c e
d d a e
f f b e

नीले रंग में दिखाए गए a के शेष उत्पाद अब लैटिन वर्ग गुण का उपयोग करके भरे जा सकते हैं। उदाहरण के लिए c पंक्ति a से विलुप्त है और कॉलम c में दो बार नहीं हो सकता है। इसलिए ac = f।

e a b c d f
e e a b c d f
a a e d f b c
b b f e a
c c d e
d d c a e
f f b e

इसी प्रकार हरे रंग में दिखाए गए बी के शेष उत्पाद फिर से भरे किए जा सकते हैं:

e a b c d f
e e a b c d f
a a e d f b c
b b f e d c a
c c d f e a
d d c a e
f f b c a e

शेष उत्पाद, जिनमें से प्रत्येक पंक्ति या स्तंभ में केवल विलुप्त मान है। अब नारंगी में दिखाए गए लैटिन वर्ग गुण का उपयोग करके भरा जा सकता है:

e a b c d f
e e a b c d f
a a e d f b c
b b f e d c a
c c d f e a b
d d c a b f e
f f b c a e d

जैसा कि हम एक विरोधाभास प्राप्त किए बिना पूरी सारणी भरने में सफल रहे हैं। हमें क्रम 6 का एक समूह मिला है और निरीक्षण से पता चलता है कि यह गैर-अबेलियन है। यह समूह वास्तव में सबसे छोटा गैर-अबेलियन समूह डायहेड्रल समूह D3 है।


उपरोक्त विधि का उपयोग करके निर्मित अर्धसमूह का उदाहरण

केली सारणी जो आगे आती है, एक पहचान कंकाल भरे करके, पहली पंक्ति और स्तंभ में भरकर और फिर उस ab = c को अभिगृहीत करके निर्मित की जा सकती है। वैकल्पिक मान्यता ab = d का परिणाम समाकारिता है। शेष सारणी एक लैटिन वर्ग के रूप में अनुसरण करती है। चूंकि सारणी के संदर्भ में (ac)b = db = a, जबकि (cb) = ad = b। इसलिए यह सहयोगीता सिद्धांत को विफल करता है और एक समूह के अतिरिक्त एक अर्धसमूह का प्रतिनिधित्व करता है।

e a b c d
e e a b c d
a a e c d b
b b d e a c
c c b d e a
d d c a b e


क्रमपरिवर्तन मैट्रिक्स पीढ़ी

केली सारणी के मानक रूप में पंक्तियों में तत्वों का क्रम स्तंभों में क्रम के समान होता है। अन्य रूप स्तंभों के तत्वों को व्यवस्थित करना है। जिससे nth स्तंभ nth पंक्ति में तत्व के व्युत्क्रम से मिलता हो। हमारे उदाहरण में D3 हमें केवल अंतिम दो स्तंभों को स्विच करने की आवश्यकता है क्योंकि f और d केवल ऐसे तत्व हैं। जो अपने स्वयं के व्युत्क्रम नहीं हैं। किन्तु एक दूसरे के व्युत्क्रम हैं।

e a b c f=d−1 d=f−1
e e a b c f d
a a e d f c b
b b f e d a c
c c d f e b a
d d c a b e f
f f b c a d e

यह विशेष उदाहरण हमें छह क्रमपरिवर्तन मैट्रिक्स (सभी तत्व 1 या 0, प्रत्येक पंक्ति और स्तंभ में ठीक एक 1) बनाने देता है। एक तत्व का प्रतिनिधित्व करने वाले 6x6 मैट्रिक्स में प्रत्येक स्थिति में 1 होगा जिसमें केली टेबल में तत्व का अक्षर होगा और हर दूसरी स्थिति में शून्य होगा। उस प्रतीक के लिए क्रोनकर डेल्टा फलन (ध्यान दें कि ई मुख्य विकर्ण के नीचे हर स्थिति में है। जो हमें इस स्थिति में 6x6 मैट्रिक्स के लिए पहचान मैट्रिक्स देता है, जैसा कि हम उम्मीद करेंगे।) यहां वह मैट्रिक्स है, जो हमारे तत्व a का प्रतिनिधित्व करता है। उदाहरण के लिए-

e a b c f d
e 0 1 0 0 0 0
a 1 0 0 0 0 0
b 0 0 0 0 1 0
c 0 0 0 0 0 1
d 0 0 1 0 0 0
f 0 0 0 1 0 0

यह हमें सीधे प्रदर्शित करता है कि क्रम n का कोई भी समूह क्रमचय समूह Sn का एक उपसमूह है और आदेश n! क्रमांक है।

सामान्यीकरण

उपरोक्त गुण समूहों के लिए मान्य कुछ अभिगृहीतों पर निर्भर करते हैं। अन्य बीजगणितीय संरचनाओं के लिए केली सारणियों पर विचार करना स्वाभाविक है। जैसे कि सेमीग्रुप्स, क्वासिग्रुप्स और मैग्मा (बीजगणित)। किन्तु ऊपर दिए गए कुछ गुण धारण नहीं करते हैं।

यह भी देखें

  • लैटिन वर्ग

संदर्भ