सिगस्पेक: Difference between revisions

From Vigyanwiki
m (7 revisions imported from alpha:सिगस्पेक)
No edit summary
 
Line 143: Line 143:
== बाहरी संबंध ==
== बाहरी संबंध ==
* [https://web.archive.org/web/20110208132943/http://www.sigspec.org/ Website with further information on SigSpec calculation, etc.]
* [https://web.archive.org/web/20110208132943/http://www.sigspec.org/ Website with further information on SigSpec calculation, etc.]
[[Category: सांख्यिकीय संकेत प्रसंस्करण]] [[Category: फूरियर विश्लेषण]] [[Category: अंकीय संकेत प्रक्रिया]]


[[Category: Machine Translated Page]]
[[Category:Created On 23/03/2023]]
[[Category:Created On 23/03/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:अंकीय संकेत प्रक्रिया]]
[[Category:फूरियर विश्लेषण]]
[[Category:सांख्यिकीय संकेत प्रसंस्करण]]

Latest revision as of 16:51, 27 April 2023

सिगस्पेक (सिग्निफिकेंस स्पेकट्रम का संक्षिप्त रूप) एक परिमाण (ध्वनि और आवश्यक रूप से समान दूरी पर नहीं) समय श्रृंखला में आवधिकता की विश्वसनीयता प्रदान करने के लिए एक सांख्यिकीय विधि है।[1] यह डिस्क्रीट फूरियर ट्रांसफॉर्म (डीएफटी) द्वारा प्राप्त आयाम वर्णक्रमीय घनत्व पर निर्भर करता है और प्रत्येक आयाम को वर्णक्रमीय महत्व (अधिकांशतः "सिग" द्वारा संक्षिप्त) कहा जाता है। यह मात्रा एक प्रकार की त्रुटि के अर्थ में श्वेत रव में दिए गए आयाम स्तर की संभावना का लघुगणकीय माप है। यह प्रश्न के उत्तर का प्रतिनिधित्व करता है, "यदि विश्लेषण की गई समय श्रृंखला यादृच्छिक थी, तो मापा गया एक या उच्चतर जैसा आयाम प्राप्त करने का उपयुक्त समय क्या होगा?"

सिगस्पेक को लोम्ब-स्कार्गल पीरियडोग्राम का एक औपचारिक विस्तार माना जा सकता है,[2][3] डीएफटी को क्रियान्वित करने से पहले एक समय श्रृंखला को उचित रूप से शून्य पर औसत करने के लिए सम्मिलित करना, जो कई व्यावहारिक अनुप्रयोगों में किया जाता है। जब एक शून्य-माध्य उचित डेटासमूह को एक यादृच्छिक प्रतिकृति की तुलना में सांख्यिकीय रूप से करना होता है, तो प्रतिकृति माध्य और प्रतिकृति सहप्रसरण (केवल माध्य के अतिरिक्त) शून्य होना चाहिए।

फूरियर अंतरिक्ष में श्वेत रव की संभावना घनत्व कार्यक्रम (पीडीएफ)

के एक समूह द्वारा प्रतिनिधित्व की जाने वाली समय श्रृंखला को ध्यान में रखते हुए जोड़े , आवृत्ति और चरण (तरंगों) कोण के आधार पर फूरियर अंतरिक्ष में श्वेत रव के आयाम संभाव्यता घनत्व कार्यक्रम को तीन मापदंडों के संदर्भ में वर्णित किया जा सकता है, , , , "प्रतिकृति रूपरेखा" को परिभाषित करते हुए, के अनुसार

फूरियर अंतरिक्ष में चरण कोण के संदर्भ में, , साथ

आयामों की संभाव्यता घनत्व द्वारा दिया गया है

जहां सॉक क्रियाविधि द्वारा परिभाषित किया गया है

और निर्भर और स्वतंत्र चर के विचरण को दर्शाता है .

भ्रामक-अलार्म संभाव्यता और वर्णक्रमीय महत्व

पीडीएफ के एकीकरण से भ्रामक-अलार्म की संभावना उत्पन होती है कि समय श्रंखला में श्वेत रव कम से कम एक आयाम उत्पन करता है ,

सिग को भ्रामक-अलार्म संभावना के नकारात्मक लघुगणक के रूप में परिभाषित किया गया है और इसका मूल्यांकन करता है

यह यादृच्छिक समय श्रृंखला की संख्या लौटाता है जिसे एक आयाम से अधिक प्राप्त करने के लिए परीक्षण होगा दी गई आवृत्ति और चरण पर।

अनुप्रयोग

सिगस्पेक मुख्य रूप से नक्षत्रीय सितारों की पहचान करने और नक्षत्रीय स्पंदन को वर्गीकृत करने के लिए खगोलीय विज्ञान में उपयोग किया जाता है (नीचे संदर्भ देखें)। तथ्य यह है कि इस पद्धति में समय-क्षेत्र के प्रतिकृतियों के गुणों को उचित रूप से सम्मिलित किया गया है, यह विशिष्ट खगोलीय मापन के लिए डेटा अंतराल वाले एक महत्वपूर्ण उपकरण बनाता है।

यह भी देखें

  • वर्णक्रमीय घनत्व आकलन

संदर्भ

  1. P. Reegen (2007). "सिगस्पेक - I. आवृत्ति- और फूरियर अंतरिक्ष में चरण-समाधान महत्व". Astronomy and Astrophysics. 467: 1353–1371. arXiv:physics/0703160. Bibcode:2007A&A...467.1353R. doi:10.1051/0004-6361:20066597.
  2. N. R. Lomb (1976). "असमान स्थान वाले डेटा का कम से कम वर्ग आवृत्ति विश्लेषण". Astrophysics and Space Science. 39: 447–462. Bibcode:1976Ap&SS..39..447L. doi:10.1007/BF00648343.
  3. J. D. Scargle (1982). "खगोलीय समय श्रृंखला विश्लेषण में अध्ययन। द्वितीय। असमान स्थान वाले डेटा के वर्णक्रमीय विश्लेषण के सांख्यिकीय पहलू". The Astrophysical Journal. 263: 835–853. Bibcode:1982ApJ...263..835S. doi:10.1086/160554.


बाहरी संबंध