मैग्नेटोस्ट्रेटिग्राफी: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Method of dating sedimentary and volcanic rocks}} मैग्नेटोस्ट्रेटिग्राफी एक भूभौतिकी...")
 
No edit summary
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Short description|Method of dating sedimentary and volcanic rocks}}
{{Short description|Method of dating sedimentary and volcanic rocks}}
मैग्नेटोस्ट्रेटिग्राफी एक [[भूभौतिकी]] सहसंबंध तकनीक है जिसका उपयोग तलछटी और [[ज्वालामुखी]] अनुक्रमों के लिए किया जाता है। विधि पूरे खंड में मापा अंतराल पर उन्मुख नमूने एकत्र करके काम करती है। नमूनों का विश्लेषण उनके ''विशेषता विकट: [[थर्मोरेमनेंट मैग्नेटाइजेशन]]'' (सीएचआरएम) को निर्धारित करने के लिए किया जाता है, जो कि उस समय पृथ्वी के चुंबकीय क्षेत्र की ध्रुवीयता है जब एक स्तर जमा किया गया था। यह संभव है क्योंकि ज्वालामुखीय प्रवाह एक थर्मोरमेनेंट चुंबकत्व प्राप्त करते हैं और तलछट एक रॉक चुंबकत्व #Depositional remanent magnetization (डीआरएम) प्राप्त करते हैं, जो दोनों गठन के समय पृथ्वी के क्षेत्र की दिशा को दर्शाते हैं। इस तकनीक का उपयोग आमतौर पर उन अनुक्रमों के लिए किया जाता है जिनमें आम तौर पर जीवाश्म या इंटरबेडेड आग्नेय चट्टान की कमी होती है।
मैग्नेटोस्ट्रेटिग्राफी (चुंबकीय स्तरिका) [[भूभौतिकी]] सहसंबंध विधि है जिसका उपयोग तलछटी और [[ज्वालामुखी]] अनुक्रमों के लिए किया जाता है। इस विधि मे पूरे खंड को माप व अंतराल पर उन्मुख नमूने एकत्र करके काम करती है। नमूनों का विश्लेषण उनके ''विशेषता विकट: [[थर्मोरेमनेंट मैग्नेटाइजेशन]] (ऊष्मावशिष्ट चुंबकन)'' (सीएचआरएम) को निर्धारित करने के लिए किया जाता है, जो कि उस समय पृथ्वी के चुंबकीय क्षेत्र की ध्रुवीयता है जब एक स्तर जमा किया गया था। यह संभव है क्योंकि ज्वालामुखीय प्रवाह ''ऊष्मावशिष्ट'' चुंबकत्व प्राप्त करते हैं और तलछट चट्टान चुंबकत्व निक्षेपण अवशेष चुंबकीयकरण, (डीआरएम) प्राप्त करते हैं, जो दोनों गठन के समय पृथ्वी के क्षेत्र की दिशा को दर्शाते हैं। इस विधि का उपयोग सामान्यतः उन अनुक्रमों के लिए किया जाता है जिनमें सामान्यतः जीवाश्म या बीच में आग्नेय चट्टान की कमी होती है।


== तकनीक ==
== तकनीक ==
जब चट्टानों के मापने योग्य चुंबकीय गुण स्तरीकृत रूप से भिन्न होते हैं तो वे संबंधित लेकिन विभिन्न प्रकार की स्ट्रैटिग्राफिक इकाइयों का आधार हो सकते हैं जिन्हें सामूहिक रूप से मैग्नेटोस्ट्रेटिग्राफिक इकाइयों (मैग्नेटोज़ोन) के रूप में जाना जाता है।<ref name=Opdyke1996>{{harvnb|Opdyke|Channell|1996|loc=Chapter 5}}</ref> भू-चुंबकीय उत्क्रमण|पृथ्वी के चुंबकीय क्षेत्र की ध्रुवता में उत्क्रमण के कारण चट्टानों के अवशेष चुंबकीयकरण की दिशा में परिवर्तन, स्ट्रैटिग्राफिक कार्य में सबसे उपयोगी चुंबकीय संपत्ति है। स्ट्रैटिग्राफिक अनुक्रम में दर्ज अवशेष चुंबकीय ध्रुवीयता की दिशा अनुक्रम के उपखंड के आधार के रूप में उनके चुंबकीय ध्रुवीयता की विशेषता वाली इकाइयों में उपयोग की जा सकती है। ऐसी इकाइयों को मैग्नेटोस्ट्रेटीग्राफिक पोलरिटी यूनिट या क्रोन कहा जाता है।<ref name=Butler1992>{{harvnb|Butler|1992|loc=Chapter 9}}</ref>
जब चट्टानों के मापने योग्य चुंबकीय गुण स्तरीकृत रूप से भिन्न होते हैं तो वे संबंधित किन्तु विभिन्न प्रकार की स्तरीकृत इकाइयों का आधार हो सकते हैं जिन्हें सामूहिक रूप से चुंबकीय स्तरीकृत इकाइयों (मैग्नेटोज़ोन) के रूप में जाना जाता है।<ref name=Opdyke1996>{{harvnb|Opdyke|Channell|1996|loc=Chapter 5}}</ref> भू-चुंबकीय उत्क्रमण पृथ्वी के चुंबकीय क्षेत्र की ध्रुवता में उत्क्रमण के कारण चट्टानों के अवशेष चुंबकीयकरण की दिशा में परिवर्तन, स्तरीकृत कार्य में सबसे उपयोगी चुंबकीय संपत्ति है। स्तरीकृत अनुक्रम में अंकित अवशेष चुंबकीय ध्रुवीयता की दिशा अनुक्रम के उपखंड के आधार के रूप में उनके चुंबकीय ध्रुवीयता की विशेषता वाली इकाइयों में उपयोग की जा सकती है। ऐसी इकाइयों को चुंबकीय स्तरिका ध्रुवीयता इकाइयाँ या क्रोन (इति) कहा जाता है।<ref name=Butler1992>{{harvnb|Butler|1992|loc=Chapter 9}}</ref> यदि प्राचीन चुंबकीय क्षेत्र आज के क्षेत्र ([[उत्तरी ध्रुव]] के निकट [[उत्तरी चुंबकीय ध्रुव]]) के समान उन्मुख था, तब स्तर सामान्य ध्रुवीयता को बनाए रखता है, और यदि आंकड़े इंगित करता है कि उत्तरी चुंबकीय ध्रुव [[दक्षिणी ध्रुव]] के पास था, तो इससे स्तर उलटी ध्रुवीयता प्रदर्शित करता है।
यदि प्राचीन चुंबकीय क्षेत्र आज के क्षेत्र ([[उत्तरी ध्रुव]] के निकट [[उत्तरी चुंबकीय ध्रुव]]) के समान उन्मुख था, तब स्तर सामान्य ध्रुवीयता को बनाए रखता है। यदि डेटा इंगित करता है कि उत्तरी चुंबकीय ध्रुव [[दक्षिणी ध्रुव]] के पास था, तो स्तर उलटी ध्रुवीयता प्रदर्शित करता है।


=== क्रोन ===
=== क्रोन ===
{{Geology to Paleobiology}}
{{Geology to Paleobiology}}
एक ध्रुवीय कालक्रम, या क्रोन, पृथ्वी के चुंबकीय क्षेत्र के ध्रुवीय उत्क्रमण के बीच का समय अंतराल है।<ref name=EG>Marshak, Stephen, 2009, ''Essentials of Geology,'' W. W. Norton & Company, 3rd ed. {{ISBN|978-0393196566}}</ref> यह एक मैग्नेटोस्ट्रेटीग्राफिक पोलरिटी यूनिट द्वारा दर्शाया गया समय अंतराल है। यह पृथ्वी के भूवैज्ञानिक इतिहास में एक निश्चित समय अवधि का प्रतिनिधित्व करता है जहां पृथ्वी का [[चुंबकीय क्षेत्र]] मुख्य रूप से सामान्य या उलटी स्थिति में था। क्रोन आज से शुरू होने वाले क्रम में गिने जाते हैं और अतीत में संख्या में वृद्धि करते हैं। साथ ही साथ एक संख्या, प्रत्येक क्रोन को दो भागों में बांटा गया है, जिसे एन और आर लेबल किया गया है, जिससे क्षेत्र की ध्रुवता की स्थिति दिखाई दे रही है। एक क्रोन एक [[क्रोनोज़ोन]] या ध्रुवीयता क्षेत्र के बराबर समय है।
एक ध्रुवीय कालक्रम, या क्रोन (इति), पृथ्वी के चुंबकीय क्षेत्र के ध्रुवीय उत्क्रमण के बीच का समय अंतराल है।<ref name=EG>Marshak, Stephen, 2009, ''Essentials of Geology,'' W. W. Norton & Company, 3rd ed. {{ISBN|978-0393196566}}</ref> यह एक चुंबकीय स्तरिका ध्रुवीयता इकाइयाँ द्वारा दर्शाया गया समय अंतराल है। यह पृथ्वी के भूवैज्ञानिक इतिहास में निश्चित समय अवधि का प्रतिनिधित्व करता है, जहां पृथ्वी का [[चुंबकीय क्षेत्र]] मुख्य रूप से सामान्य या उलटी स्थिति में था। क्रोन (इति) आज से प्रारंभ होने वाले क्रम में गिने जाते हैं और अतीत में संख्या में वृद्धि करते हैं। साथ ही साथ संख्या, प्रत्येक क्रोन (इति) को दो भागों में बांटा गया है, जिसे एन और आर लेबल किया गया है, जिससे क्षेत्र की ध्रुवता की स्थिति दिखाई दे रही है। एक क्रोन (इति) एक [[क्रोनोज़ोन]] (समकालिक क्षेत्र) या ध्रुवीयता क्षेत्र के बराबर समय है।
 
जब अंतराल 200,000 वर्ष से कम लंबा होता है, तो इसे ध्रुवीयता उपसमुच्चय कहा जाता है।<ref name=EG/>


जब अंतराल 200,000 (दो लाख) वर्ष से कम लंबा होता है, तो इसे ध्रुवीयता उपसमुच्चय कहा जाता है।<ref name=EG/>


=== नमूना प्रक्रिया ===
=== नमूना प्रक्रिया ===
ओरिएंटेड पेलोमैग्नेटिक नमूने एक रॉक कोर ड्रिल का उपयोग करके या हाथ के नमूने के रूप में क्षेत्र में एकत्र किए जाते हैं (रॉक फेस से टूटे हुए टुकड़े)। नमूना त्रुटियों को औसत करने के लिए, प्रत्येक नमूना स्थल से कम से कम तीन नमूने लिए जाते हैं।<ref name=Tauxe1998>{{harvnb|Tauxe|1998|loc=Chapter 3}}</ref> एक स्तरीकृत खंड के भीतर नमूना स्थलों की दूरी जमाव की दर और अनुभाग की आयु पर निर्भर करती है। तलछटी परतों में, पसंदीदा [[लिथोलॉजी]] [[कीचड़]], [[क्लेस्टोन]] और बहुत महीन दाने वाले [[सिल्टस्टोन]] हैं क्योंकि चुंबकीय अनाज महीन होते हैं और जमाव के दौरान परिवेश क्षेत्र के साथ उन्मुख होने की अधिक संभावना होती है।<ref name=Butler1992/>
ओरिएंटेड पेलोमैग्नेटिक ( उन्मुखी पुराचुंबकीय) नमूने रॉक कोर ड्रिल ( चट्टान मुख्य मे छेद करके) का उपयोग करके या हाथ के नमूने के रूप में क्षेत्र में से एकत्र किए जाते हैं (मुख्य चट्टान से टूटे हुए टुकड़े)। नमूना त्रुटियों को औसत करने के लिए, प्रत्येक नमूना स्थल से कम से कम तीन नमूने लिए जाते हैं।<ref name=Tauxe1998>{{harvnb|Tauxe|1998|loc=Chapter 3}}</ref> एक स्तरीकृत खंड के अंदर नमूना स्थलों की दूरी जमाव की दर और अनुभाग की आयु पर निर्भर करती है। तलछटी परतों में, पसंदीदा [[लिथोलॉजी]] (चट्टानों की रचना) [[कीचड़]], [[क्लेस्टोन]] (मिट्टी के पत्थर,) और बहुत महीन दाने वाले [[सिल्टस्टोन]] हैं क्योंकि चुंबकीय कण महीन होते हैं और जमाव के दौरान परिवेश क्षेत्र के साथ उन्मुख होने की अधिक संभावना होती है।<ref name=Butler1992/>




=== विश्लेषणात्मक प्रक्रियाएं ===
=== विश्लेषणात्मक प्रक्रियाएं ===
नमूनों का पहले उनकी प्राकृतिक अवस्था में विश्लेषण किया जाता है ताकि उनका प्राकृतिक अवशेष चुंबकीयकरण (NRM) प्राप्त किया जा सके। NRM को स्थिर चुंबकीय घटक को प्रकट करने के लिए थर्मल या अल्टरनेटिंग फील्ड डिमैग्नेटाइजेशन तकनीकों का उपयोग करके चरणबद्ध तरीके से हटा दिया जाता है।
नमूनों का पहले उनकी प्राकृतिक अवस्था में विश्लेषण किया जाता है जिससे उनका प्राकृतिक अवशेष चुंबकीयकरण (एनआरएम) प्राप्त किया जा सके। एनआरएम को स्थिर चुंबकीय घटक को प्रकट करने के लिए उष्णता या वैकल्पिक क्षेत्र विमुद्रीकरण तकनीकों का उपयोग करके चरणबद्ध तरीके से हटा दिया जाता है।


किसी साइट से सभी नमूनों के चुंबकीय झुकाव की तुलना की जाती है और उनकी औसत चुंबकीय ध्रुवीयता दिशात्मक आंकड़ों के साथ निर्धारित की जाती है, आमतौर पर फिशर आंकड़े या [[बूटस्ट्रैपिंग (सांख्यिकी)]]।<ref name=Tauxe1998/>प्रत्येक औसत के सांख्यिकीय महत्व का मूल्यांकन किया जाता है। सांख्यिकीय रूप से महत्वपूर्ण होने के लिए निर्धारित उन साइटों से आभासी भू-चुंबकीय ध्रुवों के अक्षांशों को उस स्ट्रैटिग्राफिक स्तर के विरुद्ध प्लॉट किया जाता है जिस पर उन्हें एकत्र किया गया था। इन आंकड़ों को तब मानक काले और सफेद मैग्नेटोस्ट्रेटिग्राफिक कॉलम में सारगर्भित किया जाता है जिसमें काला सामान्य ध्रुवीयता को इंगित करता है और सफेद विपरीत ध्रुवता को दर्शाता है।
किसी स्थल से सभी नमूनों के चुंबकीय झुकाव की तुलना की जाती है और उनकी औसत चुंबकीय ध्रुवीयता दिशात्मक आंकड़ों के साथ निर्धारित की जाती है, सामान्यतः फिशर सांख्यिकी या [[बूटस्ट्रैपिंग (सांख्यिकी)]]।<ref name=Tauxe1998/> प्रत्येक औसत के सांख्यिकीय महत्व का मूल्यांकन किया जाता है। सांख्यिकीय रूप से महत्वपूर्ण होने के लिए निर्धारित उन स्थलों से आभासी भू-चुंबकीय ध्रुवों के अक्षांशों को उस स्तरीकृत स्तर के विरुद्ध आलेखित किया जाता है, जिस पर उन्हें एकत्र किया गया था। इन आंकड़ों को तब मानक काले और सफेद चुंबकीय स्तरिका स्तम्भ में सारगर्भित किया जाता है जिसमें काला सामान्य ध्रुवीयता को इंगित करता है और सफेद विपरीत ध्रुवता को दर्शाता है।


=== सहसंबंध और उम्र ===
=== सहसंबंध और उम्र ===
[[File:Geomagnetic polarity late Cenozoic.svg|thumb|180px|[[ सेनोज़ोइक ]] के अंत में भूचुंबकीय ध्रुवीयता{{legend|#000000|normal polarity (black)}}{{legend|#FFFFFF|reverse polarity (white)}}]]क्योंकि एक स्तर की ध्रुवता केवल सामान्य या उलट हो सकती है, जिस दर पर तलछट जमा हो जाती है, उसमें भिन्नता किसी दिए गए ध्रुवीयता क्षेत्र की मोटाई को एक क्षेत्र से दूसरे क्षेत्र में भिन्न कर सकती है। यह इस समस्या को प्रस्तुत करता है कि विभिन्न स्तरीकृत वर्गों के बीच समान ध्रुवों के क्षेत्रों को कैसे सहसंबंधित किया जाए। भ्रम से बचने के लिए प्रत्येक अनुभाग से कम से कम एक [[समस्थानिक डेटिंग]] एकत्र करने की आवश्यकता है। तलछट में, यह अक्सर ज्वालामुखीय राख की परतों से प्राप्त होता है। ऐसा न करने पर, एक ध्रुवीयता को [[बायोस्ट्रेटिग्राफी]] घटना से जोड़ा जा सकता है जिसे समस्थानिक युगों के साथ कहीं और सहसंबद्ध किया गया है। स्वतंत्र समस्थानिक आयु या आयु की सहायता से, स्थानीय मैग्नेटोस्ट्रेटिग्राफिक कॉलम को ग्लोबल मैग्नेटिक पोलारिटी टाइम स्केल (GMPTS) के साथ सहसंबद्ध किया जाता है।<ref name=Opdyke1996/>
[[File:Geomagnetic polarity late Cenozoic.svg|thumb|180px|[[ सेनोज़ोइक ]] के अंत में भूचुंबकीय ध्रुवीयता{{legend|#000000|normal polarity (black)}}{{legend|#FFFFFF|reverse polarity (white)}}]]क्योंकि एक स्तर की ध्रुवता केवल सामान्य या उलट हो सकती है, जिस दर पर तलछट जमा हो जाती है, उसमें भिन्नता किसी दिए गए ध्रुवीयता क्षेत्र की मोटाई को एक क्षेत्र से दूसरे क्षेत्र में भिन्न कर सकती है। यह इस समस्या को प्रस्तुत करता है कि विभिन्न स्तरीकृत वर्गों के बीच समान ध्रुवों के क्षेत्रों को कैसे सहसंबंधित किया जाए। भ्रम से बचने के लिए प्रत्येक अनुभाग से कम से कम एक [[समस्थानिक आयु]] एकत्र करने की आवश्यकता है। तलछट में, यह अधिकांशतः ज्वालामुखीय राख की परतों से प्राप्त होता है। ऐसा न करने पर, एक ध्रुवीयता को [[बायोस्ट्रेटिग्राफी]] (जैवस्तरिकी) घटना से जोड़ा जा सकता है जिसे समस्थानिक युगों के साथ कहीं और सहसंबद्ध किया गया है। स्वतंत्र समस्थानिक आयु या आयु की सहायता से, स्थानीय चुंबकीय स्तरिका स्तंभ को चुंबकीय ध्रुवीयता समय स्केल (जीएमपीटीएस) के साथ सहसंबद्ध किया जाता है।<ref name=Opdyke1996/>


क्योंकि जीएमपीटीएस पर दिखाए गए प्रत्येक उत्क्रमण की आयु अपेक्षाकृत अच्छी तरह से ज्ञात है, सहसंबंध स्ट्रैटिग्राफिक सेक्शन के माध्यम से कई समय रेखाएँ स्थापित करता है। ये युग चट्टानों में सुविधाओं के लिए अपेक्षाकृत सटीक तिथियां प्रदान करते हैं जैसे कि [[जीवाश्म]], तलछटी चट्टान संरचना में परिवर्तन, निक्षेपण वातावरण में परिवर्तन, आदि। वे फाल्ट (भूविज्ञान), [[डाइक (भूविज्ञान)]], और असंबद्धता।
क्योंकि चुंबकीय ध्रुवीयता समय स्केल पर दिखाए गए प्रत्येक उत्क्रमण की आयु अपेक्षाकृत अच्छी तरह से ज्ञात होती है, सहसंबंध स्तरीकृत अनुभाग के माध्यम से कई समय रेखाएँ स्थापित करता है। ये युग चट्टानों में सुविधाओं के लिए अपेक्षाकृत स्पष्ट तिथियां प्रदान करते हैं जैसे कि [[जीवाश्म]], तलछटी चट्टान संरचना में परिवर्तन, निक्षेपण वातावरण में परिवर्तन आदि है। वे क्रॉस-कटिंग सुविधाओं जैसे अभाव, [[डाइक (भूविज्ञान)]] (बांध) और असंगति की उम्र को भी बाधित करते हैं।


====तलछट संचय दर====
====तलछट संचय दर====
शायद इन आंकड़ों का सबसे शक्तिशाली अनुप्रयोग तलछट जमा होने की दर निर्धारित करना है। यह प्रत्येक उत्क्रमण की आयु (लाखों वर्ष पूर्व में) बनाम स्तरीकरण स्तर जिस पर उत्क्रमण (मीटर में) पाया जाता है, की साजिश रचकर पूरा किया जाता है। यह मीटर प्रति मिलियन वर्ष में दर प्रदान करता है जिसे आम तौर पर प्रति वर्ष मिलीमीटर के रूप में फिर से लिखा जाता है (जो किलोमीटर प्रति मिलियन वर्ष के समान है)।<ref name=Butler1992/>
संभवतः इन आंकड़ों का सबसे शक्तिशाली अनुप्रयोग तलछट जमा होने की दर निर्धारित करना है। यह प्रत्येक उत्क्रमण की आयु (लाखों वर्ष पूर्व में) स्तरीकरण स्तर जिस पर उत्क्रमण (मीटर या पैमाना में) पाया जाता है, की आलेखन रचकर पूरा किया जाता है। यह मीटर (पैमाना) प्रति मिलियन वर्ष में दर प्रदान करता है जिसे सामान्यतः प्रति वर्ष मिलीमीटर (एक मीटर का एक हजारवां हिस्सा) के रूप में फिर से लिखा जाता है (जो किलोमीटर (एक हजार मीटर के बराबर) प्रति दस लाख वर्ष के समान है)।<ref name=Butler1992/>


इन आंकड़ों का उपयोग [[तलछटी बेसिन विश्लेषण]] के मॉडल के लिए भी किया जाता है। बेसिन भरने वाले स्तर के नीचे एक [[पेट्रोलियम जलाशय]] की गहराई को जानने से उस उम्र की गणना करने की अनुमति मिलती है जिस पर स्रोत चट्टान पीढ़ी की खिड़की से गुजरती है और हाइड्रोकार्बन प्रवासन शुरू होता है। क्योंकि क्रॉस-कटिंग ट्रैपिंग संरचनाओं की आयु आमतौर पर मैग्नेटोस्ट्रेटिग्राफिक डेटा से निर्धारित की जा सकती है, इन युगों की तुलना जलाशय भूवैज्ञानिकों को उनके निर्धारण में सहायता करेगी कि किसी दिए गए जाल में नाटक की संभावना है या नहीं।<ref>{{harvnb|Reynolds|2002}}</ref>
इन आंकड़ों का उपयोग [[तलछटी घाटी विश्लेषण]] के नमूनाें के लिए भी किया जाता है। घाटी भरने वाले स्तर के नीचे एक [[पेट्रोलियम जलाशय]] (शिलातैल जलाशय) की गहराई को जानने से उस उम्र की गणना करने की अनुमति मिलती है जिस पर स्रोत चट्टान पीढ़ी दर पीढ़ी से होकर गुजरती है और हाइड्रोकार्बन प्रवासन प्रारंभ होता है। क्योंकि क्रॉस-कटिंग ट्रैपिंग (आड़ा तिरछा काटने और फसाने से) संरचनाओं की आयु सामान्यतः चुंबकीय स्तरिका आंकड़े से निर्धारित की जा सकती है, इन युगों की तुलना जलाशय भूवैज्ञानिकों को उनके निर्धारण में सहायता करेगी कि किसी दिए गए संघ में क्रियाशीलता की संभावना है या नहीं।<ref>{{harvnb|Reynolds|2002}}</ref> मैग्नेटोस्ट्रेटिग्राफी (चुंबकीय स्तरिका) द्वारा प्रकट अवसादन दर में परिवर्तन अधिकांशतः या तो जलवायु कारकों से संबंधित होते हैं या निकट या दूर पर्वत श्रृंखलाओं में विवर्तनिक विकास से संबंधित होते हैं। खंड में चट्टानों की संरचना में सूक्ष्म परिवर्तनों की तलाश करके इस व्याख्या को शक्तिशाली करने के साक्ष्य अधिकांशतः मिल सकते हैं। इस प्रकार की व्याख्या के लिए अधिकांशतः बलुआ पत्थर की संरचना में परिवर्तन का उपयोग किया जाता है।
मैग्नेटोस्ट्रेटिग्राफी द्वारा प्रकट अवसादन दर में परिवर्तन अक्सर या तो जलवायु कारकों से संबंधित होते हैं या निकट या दूर पर्वत श्रृंखलाओं में विवर्तनिक विकास से संबंधित होते हैं। खंड में चट्टानों की संरचना में सूक्ष्म परिवर्तनों की तलाश करके इस व्याख्या को मजबूत करने के साक्ष्य अक्सर मिल सकते हैं। इस प्रकार की व्याख्या के लिए अक्सर बलुआ पत्थर की संरचना में परिवर्तन का उपयोग किया जाता है।


=== सिवालिक मैग्नेटोस्ट्रेटिग्राफी ===
=== सिवालिक मैग्नेटोस्ट्रेटिग्राफी (चुंबकीय स्तरिका) ===


सिवालिक नदी अनुक्रम (~6000 मीटर मोटा, ~20 से 0.5 Ma) महाद्वीपीय अभिलेखों में मैग्नेटोस्ट्रेटिग्राफी अनुप्रयोग के सर्वोत्तम उदाहरणों में से एक का प्रतिनिधित्व करता है।{{citation needed|date=March 2021}}
सिवालिक नदी अनुक्रम (~6000 मीटर मोटा, ~20 से 0.5 Ma) महाद्वीपीय अभिलेखों में मैग्नेटोस्ट्रेटिग्राफी (चुंबकीय स्तरिका)अनुप्रयोग के सर्वोत्तम उदाहरणों में से एक का प्रतिनिधित्व करता है।


== यह भी देखें ==
== यह भी देखें ==
Line 100: Line 97:


{{Authority control}}
{{Authority control}}
[[Category: स्ट्रेटीग्राफी]] [[Category: पुराचुम्बकत्व]]


[[Category: Machine Translated Page]]
[[Category:Created On 21/03/2023]]
[[Category:Created On 21/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:पुराचुम्बकत्व]]
[[Category:स्ट्रेटीग्राफी]]

Latest revision as of 09:54, 19 April 2023

मैग्नेटोस्ट्रेटिग्राफी (चुंबकीय स्तरिका) भूभौतिकी सहसंबंध विधि है जिसका उपयोग तलछटी और ज्वालामुखी अनुक्रमों के लिए किया जाता है। इस विधि मे पूरे खंड को माप व अंतराल पर उन्मुख नमूने एकत्र करके काम करती है। नमूनों का विश्लेषण उनके विशेषता विकट: थर्मोरेमनेंट मैग्नेटाइजेशन (ऊष्मावशिष्ट चुंबकन) (सीएचआरएम) को निर्धारित करने के लिए किया जाता है, जो कि उस समय पृथ्वी के चुंबकीय क्षेत्र की ध्रुवीयता है जब एक स्तर जमा किया गया था। यह संभव है क्योंकि ज्वालामुखीय प्रवाह ऊष्मावशिष्ट चुंबकत्व प्राप्त करते हैं और तलछट चट्टान चुंबकत्व निक्षेपण अवशेष चुंबकीयकरण, (डीआरएम) प्राप्त करते हैं, जो दोनों गठन के समय पृथ्वी के क्षेत्र की दिशा को दर्शाते हैं। इस विधि का उपयोग सामान्यतः उन अनुक्रमों के लिए किया जाता है जिनमें सामान्यतः जीवाश्म या बीच में आग्नेय चट्टान की कमी होती है।

तकनीक

जब चट्टानों के मापने योग्य चुंबकीय गुण स्तरीकृत रूप से भिन्न होते हैं तो वे संबंधित किन्तु विभिन्न प्रकार की स्तरीकृत इकाइयों का आधार हो सकते हैं जिन्हें सामूहिक रूप से चुंबकीय स्तरीकृत इकाइयों (मैग्नेटोज़ोन) के रूप में जाना जाता है।[1] भू-चुंबकीय उत्क्रमण पृथ्वी के चुंबकीय क्षेत्र की ध्रुवता में उत्क्रमण के कारण चट्टानों के अवशेष चुंबकीयकरण की दिशा में परिवर्तन, स्तरीकृत कार्य में सबसे उपयोगी चुंबकीय संपत्ति है। स्तरीकृत अनुक्रम में अंकित अवशेष चुंबकीय ध्रुवीयता की दिशा अनुक्रम के उपखंड के आधार के रूप में उनके चुंबकीय ध्रुवीयता की विशेषता वाली इकाइयों में उपयोग की जा सकती है। ऐसी इकाइयों को चुंबकीय स्तरिका ध्रुवीयता इकाइयाँ या क्रोन (इति) कहा जाता है।[2] यदि प्राचीन चुंबकीय क्षेत्र आज के क्षेत्र (उत्तरी ध्रुव के निकट उत्तरी चुंबकीय ध्रुव) के समान उन्मुख था, तब स्तर सामान्य ध्रुवीयता को बनाए रखता है, और यदि आंकड़े इंगित करता है कि उत्तरी चुंबकीय ध्रुव दक्षिणी ध्रुव के पास था, तो इससे स्तर उलटी ध्रुवीयता प्रदर्शित करता है।

क्रोन

Units in geochronology and stratigraphy[3]
Segments of rock (strata) in chronostratigraphy Time spans in geochronology Notes to
geochronological units
Eonothem Eon 4 total, half a billion years or more
Erathem Era 10 defined, several hundred million years
System Period 22 defined, tens to ~one hundred million years
Series Epoch 34 defined, tens of millions of years
Stage Age 99 defined, millions of years
Chronozone Chron subdivision of an age, not used by the ICS timescale

एक ध्रुवीय कालक्रम, या क्रोन (इति), पृथ्वी के चुंबकीय क्षेत्र के ध्रुवीय उत्क्रमण के बीच का समय अंतराल है।[4] यह एक चुंबकीय स्तरिका ध्रुवीयता इकाइयाँ द्वारा दर्शाया गया समय अंतराल है। यह पृथ्वी के भूवैज्ञानिक इतिहास में निश्चित समय अवधि का प्रतिनिधित्व करता है, जहां पृथ्वी का चुंबकीय क्षेत्र मुख्य रूप से सामान्य या उलटी स्थिति में था। क्रोन (इति) आज से प्रारंभ होने वाले क्रम में गिने जाते हैं और अतीत में संख्या में वृद्धि करते हैं। साथ ही साथ संख्या, प्रत्येक क्रोन (इति) को दो भागों में बांटा गया है, जिसे एन और आर लेबल किया गया है, जिससे क्षेत्र की ध्रुवता की स्थिति दिखाई दे रही है। एक क्रोन (इति) एक क्रोनोज़ोन (समकालिक क्षेत्र) या ध्रुवीयता क्षेत्र के बराबर समय है।

जब अंतराल 200,000 (दो लाख) वर्ष से कम लंबा होता है, तो इसे ध्रुवीयता उपसमुच्चय कहा जाता है।[4]

नमूना प्रक्रिया

ओरिएंटेड पेलोमैग्नेटिक ( उन्मुखी पुराचुंबकीय) नमूने रॉक कोर ड्रिल ( चट्टान मुख्य मे छेद करके) का उपयोग करके या हाथ के नमूने के रूप में क्षेत्र में से एकत्र किए जाते हैं (मुख्य चट्टान से टूटे हुए टुकड़े)। नमूना त्रुटियों को औसत करने के लिए, प्रत्येक नमूना स्थल से कम से कम तीन नमूने लिए जाते हैं।[5] एक स्तरीकृत खंड के अंदर नमूना स्थलों की दूरी जमाव की दर और अनुभाग की आयु पर निर्भर करती है। तलछटी परतों में, पसंदीदा लिथोलॉजी (चट्टानों की रचना) कीचड़, क्लेस्टोन (मिट्टी के पत्थर,) और बहुत महीन दाने वाले सिल्टस्टोन हैं क्योंकि चुंबकीय कण महीन होते हैं और जमाव के दौरान परिवेश क्षेत्र के साथ उन्मुख होने की अधिक संभावना होती है।[2]


विश्लेषणात्मक प्रक्रियाएं

नमूनों का पहले उनकी प्राकृतिक अवस्था में विश्लेषण किया जाता है जिससे उनका प्राकृतिक अवशेष चुंबकीयकरण (एनआरएम) प्राप्त किया जा सके। एनआरएम को स्थिर चुंबकीय घटक को प्रकट करने के लिए उष्णता या वैकल्पिक क्षेत्र विमुद्रीकरण तकनीकों का उपयोग करके चरणबद्ध तरीके से हटा दिया जाता है।

किसी स्थल से सभी नमूनों के चुंबकीय झुकाव की तुलना की जाती है और उनकी औसत चुंबकीय ध्रुवीयता दिशात्मक आंकड़ों के साथ निर्धारित की जाती है, सामान्यतः फिशर सांख्यिकी या बूटस्ट्रैपिंग (सांख्यिकी)[5] प्रत्येक औसत के सांख्यिकीय महत्व का मूल्यांकन किया जाता है। सांख्यिकीय रूप से महत्वपूर्ण होने के लिए निर्धारित उन स्थलों से आभासी भू-चुंबकीय ध्रुवों के अक्षांशों को उस स्तरीकृत स्तर के विरुद्ध आलेखित किया जाता है, जिस पर उन्हें एकत्र किया गया था। इन आंकड़ों को तब मानक काले और सफेद चुंबकीय स्तरिका स्तम्भ में सारगर्भित किया जाता है जिसमें काला सामान्य ध्रुवीयता को इंगित करता है और सफेद विपरीत ध्रुवता को दर्शाता है।

सहसंबंध और उम्र

सेनोज़ोइक के अंत में भूचुंबकीय ध्रुवीयता
  normal polarity (black)
  reverse polarity (white)

क्योंकि एक स्तर की ध्रुवता केवल सामान्य या उलट हो सकती है, जिस दर पर तलछट जमा हो जाती है, उसमें भिन्नता किसी दिए गए ध्रुवीयता क्षेत्र की मोटाई को एक क्षेत्र से दूसरे क्षेत्र में भिन्न कर सकती है। यह इस समस्या को प्रस्तुत करता है कि विभिन्न स्तरीकृत वर्गों के बीच समान ध्रुवों के क्षेत्रों को कैसे सहसंबंधित किया जाए। भ्रम से बचने के लिए प्रत्येक अनुभाग से कम से कम एक समस्थानिक आयु एकत्र करने की आवश्यकता है। तलछट में, यह अधिकांशतः ज्वालामुखीय राख की परतों से प्राप्त होता है। ऐसा न करने पर, एक ध्रुवीयता को बायोस्ट्रेटिग्राफी (जैवस्तरिकी) घटना से जोड़ा जा सकता है जिसे समस्थानिक युगों के साथ कहीं और सहसंबद्ध किया गया है। स्वतंत्र समस्थानिक आयु या आयु की सहायता से, स्थानीय चुंबकीय स्तरिका स्तंभ को चुंबकीय ध्रुवीयता समय स्केल (जीएमपीटीएस) के साथ सहसंबद्ध किया जाता है।[1]

क्योंकि चुंबकीय ध्रुवीयता समय स्केल पर दिखाए गए प्रत्येक उत्क्रमण की आयु अपेक्षाकृत अच्छी तरह से ज्ञात होती है, सहसंबंध स्तरीकृत अनुभाग के माध्यम से कई समय रेखाएँ स्थापित करता है। ये युग चट्टानों में सुविधाओं के लिए अपेक्षाकृत स्पष्ट तिथियां प्रदान करते हैं जैसे कि जीवाश्म, तलछटी चट्टान संरचना में परिवर्तन, निक्षेपण वातावरण में परिवर्तन आदि है। वे क्रॉस-कटिंग सुविधाओं जैसे अभाव, डाइक (भूविज्ञान) (बांध) और असंगति की उम्र को भी बाधित करते हैं।

तलछट संचय दर

संभवतः इन आंकड़ों का सबसे शक्तिशाली अनुप्रयोग तलछट जमा होने की दर निर्धारित करना है। यह प्रत्येक उत्क्रमण की आयु (लाखों वर्ष पूर्व में) स्तरीकरण स्तर जिस पर उत्क्रमण (मीटर या पैमाना में) पाया जाता है, की आलेखन रचकर पूरा किया जाता है। यह मीटर (पैमाना) प्रति मिलियन वर्ष में दर प्रदान करता है जिसे सामान्यतः प्रति वर्ष मिलीमीटर (एक मीटर का एक हजारवां हिस्सा) के रूप में फिर से लिखा जाता है (जो किलोमीटर (एक हजार मीटर के बराबर) प्रति दस लाख वर्ष के समान है)।[2]

इन आंकड़ों का उपयोग तलछटी घाटी विश्लेषण के नमूनाें के लिए भी किया जाता है। घाटी भरने वाले स्तर के नीचे एक पेट्रोलियम जलाशय (शिलातैल जलाशय) की गहराई को जानने से उस उम्र की गणना करने की अनुमति मिलती है जिस पर स्रोत चट्टान पीढ़ी दर पीढ़ी से होकर गुजरती है और हाइड्रोकार्बन प्रवासन प्रारंभ होता है। क्योंकि क्रॉस-कटिंग ट्रैपिंग (आड़ा तिरछा काटने और फसाने से) संरचनाओं की आयु सामान्यतः चुंबकीय स्तरिका आंकड़े से निर्धारित की जा सकती है, इन युगों की तुलना जलाशय भूवैज्ञानिकों को उनके निर्धारण में सहायता करेगी कि किसी दिए गए संघ में क्रियाशीलता की संभावना है या नहीं।[6] मैग्नेटोस्ट्रेटिग्राफी (चुंबकीय स्तरिका) द्वारा प्रकट अवसादन दर में परिवर्तन अधिकांशतः या तो जलवायु कारकों से संबंधित होते हैं या निकट या दूर पर्वत श्रृंखलाओं में विवर्तनिक विकास से संबंधित होते हैं। खंड में चट्टानों की संरचना में सूक्ष्म परिवर्तनों की तलाश करके इस व्याख्या को शक्तिशाली करने के साक्ष्य अधिकांशतः मिल सकते हैं। इस प्रकार की व्याख्या के लिए अधिकांशतः बलुआ पत्थर की संरचना में परिवर्तन का उपयोग किया जाता है।

सिवालिक मैग्नेटोस्ट्रेटिग्राफी (चुंबकीय स्तरिका)

सिवालिक नदी अनुक्रम (~6000 मीटर मोटा, ~20 से 0.5 Ma) महाद्वीपीय अभिलेखों में मैग्नेटोस्ट्रेटिग्राफी (चुंबकीय स्तरिका)अनुप्रयोग के सर्वोत्तम उदाहरणों में से एक का प्रतिनिधित्व करता है।

यह भी देखें

टिप्पणियाँ

  1. 1.0 1.1 Opdyke & Channell 1996, Chapter 5
  2. 2.0 2.1 2.2 Butler 1992, Chapter 9
  3. Cohen, K.M.; Finney, S.; Gibbard, P.L. (2015), International Chronostratigraphic Chart (PDF), International Commission on Stratigraphy.
  4. 4.0 4.1 Marshak, Stephen, 2009, Essentials of Geology, W. W. Norton & Company, 3rd ed. ISBN 978-0393196566
  5. 5.0 5.1 Tauxe 1998, Chapter 3
  6. Reynolds 2002


संदर्भ


बाहरी संबंध