अल्ट्राशॉर्ट पल्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 5 users not shown)
Line 1: Line 1:
{{Short description|Laser pulse with duration a picosecond (10^-12 s) or less}}
{{Short description|Laser pulse with duration a picosecond (10^-12 s) or less}}


[[प्रकाशिकी]] में, अतिलघु स्पंद, जिसे पराद्रुत घटना के रूप में भी जाना जाता है, एक [[ विद्युत चुम्बकीय नाड़ी |विद्युत चुम्बकीय स्पंद]] है, जिसकी समय अवधि [[पीकोसैकन्ड|पिकोसेकंड]] (10−12 सेकंड) या उससे कम के क्रम की होती है। इस तरह के स्पंदों में ब्रॉडबैंड [[ऑप्टिकल स्पेक्ट्रम|प्रकाशिकी स्पेक्ट्रम]] होता है, और इसे [[मोड-लॉकिंग|मोड-लॉक]] दोलकों द्वारा बनाया जा सकता है। प्रवर्धन के लाभ माध्यम को हानि से बचने के लिए, अतिलघु स्पंदों के प्रवर्धन को लगभग हमेशा चिरप्ड स्पंद प्रवर्धन की तकनीक की आवश्यकता होती है।  
[[प्रकाशिकी]] में, '''अल्ट्राशॉर्ट पल्स''' (अतिलघु स्पंद), जिसे पराद्रुत घटना के रूप में भी जाना जाता है, एक [[ विद्युत चुम्बकीय नाड़ी |विद्युत चुम्बकीय स्पंद]] है, जिसकी समय अवधि [[पीकोसैकन्ड|पिकोसेकंड]] (10<sup>−12</sup> सेकंड) या उससे कम के क्रम की होती है। इस तरह के स्पंदों में ब्रॉडबैंड [[ऑप्टिकल स्पेक्ट्रम|प्रकाशिकी स्पेक्ट्रम]] होता है, और इसे [[मोड-लॉकिंग|मोड-लॉक]] दोलकों द्वारा बनाया जा सकता है। प्रवर्धन के लाभ माध्यम को हानि से बचने के लिए, अल्ट्राशॉर्ट पल्सों के प्रवर्धन को लगभग हमेशा चिरप्ड स्पंद प्रवर्धन की तकनीक की आवश्यकता होती है।  


वे उच्च शिखर तीव्रता (या अधिक सही ढंग से,  [[विकिरण]]) की विशेषता है जो प्रायः वायु सहित विभिन्न पदार्थों में अरैखिक परस्पर क्रिया की ओर जाता है। इन प्रक्रियाओं का अध्ययन अरैखिक प्रकाशिकी के क्षेत्र में किया जाता है।  
वे उच्च शिखर तीव्रता (या अधिक सही ढंग से,  [[विकिरण]]) की विशेषता है जो प्रायः वायु सहित विभिन्न पदार्थों में अरैखिक परस्पर क्रिया की ओर जाता है। इन प्रक्रियाओं का अध्ययन अरैखिक प्रकाशिकी के क्षेत्र में किया जाता है।  
Line 7: Line 7:
विशेष साहित्य में, "अतिलघु" फेमटोसेकंड (एफएस) और पिकोसेकंड (पीएस) श्रेणी को संदर्भित करता है, हालांकि इस तरह की स्पंद अब कृत्रिम रूप से उत्पन्न सबसे छोटी स्पंदों के लिए रिकॉर्ड नहीं रखती हैं। वास्तव में, [[attosecond|एटोसेकंड]] समय पैमाने पर अवधियों के साथ एक्स-रे स्पंदों की सूचना दी गई है।  
विशेष साहित्य में, "अतिलघु" फेमटोसेकंड (एफएस) और पिकोसेकंड (पीएस) श्रेणी को संदर्भित करता है, हालांकि इस तरह की स्पंद अब कृत्रिम रूप से उत्पन्न सबसे छोटी स्पंदों के लिए रिकॉर्ड नहीं रखती हैं। वास्तव में, [[attosecond|एटोसेकंड]] समय पैमाने पर अवधियों के साथ एक्स-रे स्पंदों की सूचना दी गई है।  


1999 में [[रसायन विज्ञान में नोबेल पुरस्कार]] अहमद एच. ज़ेवैल को दिया गया, ताकि अतिलघु स्पंदों के उपयोग के लिए समय-समय पर [[रासायनिक प्रतिक्रिया|रासायनिक प्रतिक्रियाओं]] का निरीक्षण किया जा सके, जिस पर वे फेमटोकेमिस्ट्री के क्षेत्र को खोलते हैं।
1999 में [[रसायन विज्ञान में नोबेल पुरस्कार]] अहमद एच. ज़ेवैल को दिया गया, ताकि अल्ट्राशॉर्ट पल्सों के उपयोग के लिए समय-समय पर [[रासायनिक प्रतिक्रिया|रासायनिक प्रतिक्रियाओं]] का निरीक्षण किया जा सके, जिस पर वे फेमटोकेमिस्ट्री के क्षेत्र को खोलते हैं।


== परिभाषा ==
== परिभाषा ==
[[Image:Ultrashort pulse.svg|thumb|upright=1.5|समय क्षेत्र में प्रकाश की एक सकारात्मक चहकती अल्ट्राशॉर्ट पल्स।]]अल्ट्राशॉर्ट पल्स की कोई मानक परिभाषा नहीं है। आमतौर पर विशेषता 'अल्ट्राशॉर्ट' कुछ दसियों फेमटोसेकंड की अवधि वाली दालों पर लागू होती है, लेकिन बड़े अर्थ में कोई भी पल्स जो कुछ पिकोसेकंड से कम रहती है, उसे अल्ट्राशॉर्ट माना जा सकता है। अल्ट्राशॉर्ट और अल्ट्राफास्ट के बीच अंतर आवश्यक है क्योंकि पल्स जिस गति से फैलता है वह माध्यम के [[अपवर्तक सूचकांक]] का एक कार्य है जिसके माध्यम से यह यात्रा करता है, जबकि अल्ट्राशॉर्ट पल्स [[वेव पैकेट]] की अस्थायी चौड़ाई को संदर्भित करता है।<ref>{{cite web|url=https://www.rp-photonics.com/ultrashort_pulses.html|title=लेजर भौतिकी और प्रौद्योगिकी का विश्वकोश - अल्ट्राशॉर्ट पल्स, फेमटोसेकंड, लेजर|first= Rüdiger|last=Paschotta|website=www.rp-photonics.com}}</ref>
[[Image:Ultrashort pulse.svg|thumb|upright=1.5|समय क्षेत्र में प्रकाश की एक सकारात्मक चिरप्ड अल्ट्राशॉर्ट पल्स।]]अल्ट्राशॉर्ट पल्स की कोई मानक परिभाषा नहीं है। प्रायः विशेषता 'अतिलघु' कुछ दसियों फेमटोसेकंड की अवधि वाली स्पंदों पर लागू होती है, लेकिन बड़े अर्थ में कोई भी स्पंद जो कुछ पिकोसेकंड से कम समय तक चलती है, उसे अतिलघु माना जा सकता है। "अतिलघु" और "पराद्रुत" के बीच अंतर आवश्यक है क्योंकि जिस गति से स्पंद प्रसार करता है वह उस माध्यम के [[अपवर्तक सूचकांक|अपवर्तन के सूचकांक]] का फलन है जिसके माध्यम से यह यात्रा करता है, जबकि "अतिलघु" स्पंद [[वेव पैकेट|तरंगपैकेट]] की अस्थायी चौड़ाई को संदर्भित करता है।<ref>{{cite web|url=https://www.rp-photonics.com/ultrashort_pulses.html|title=लेजर भौतिकी और प्रौद्योगिकी का विश्वकोश - अल्ट्राशॉर्ट पल्स, फेमटोसेकंड, लेजर|first= Rüdiger|last=Paschotta|website=www.rp-photonics.com}}</ref>  
एक सामान्य उदाहरण एक चहकती हुई गाऊसी नाड़ी है, एक तरंग जिसका निरपेक्ष मान [[गाऊसी समारोह]] एनवेलप (तरंगों) का अनुसरण करता है और जिसका [[तात्कालिक चरण]] एक [[कलरव]] है।


सामान्य उदाहरण चिरप्ड गॉसियन स्पंद है, एक तरंग जिसका क्षेत्र आयाम [[गाऊसी समारोह|गॉसियन]] लिफाफे का अनुसरण करता है और जिसका [[तात्कालिक चरण]] आवृत्ति [[कलरव|स्वीप]] है।
=== पृष्ठभूमि ===
=== पृष्ठभूमि ===
अल्ट्राशॉर्ट पल्स के अनुरूप वास्तविक विद्युत क्षेत्र कोणीय आवृत्ति ω पर दोलन कर रहा है<sub>0</sub> नाड़ी के केंद्रीय तरंग दैर्ध्य के अनुरूप। गणना की सुविधा के लिए, एक जटिल क्षेत्र E(t) परिभाषित किया गया है। औपचारिक रूप से, इसे वास्तविक क्षेत्र के अनुरूप [[विश्लेषणात्मक संकेत]] के रूप में परिभाषित किया जाता है।
अल्ट्राशॉर्ट पल्स के अनुरूप वास्तविक विद्युत क्षेत्र स्पंद के केंद्रीय तरंग दैर्ध्य के अनुरूप कोणीय आवृत्ति ''ω''<sub>0</sub> पर दोलन कर रहा है। गणनाओं को सुविधाजनक बनाने के लिए, जटिल क्षेत्र ''E''(''t'') परिभाषित किया गया है। औपचारिक रूप से, इसे वास्तविक क्षेत्र के अनुरूप [[विश्लेषणात्मक संकेत]] के रूप में परिभाषित किया जाता है।  


केंद्रीय कोणीय आवृत्ति ω<sub>0</sub> आमतौर पर जटिल क्षेत्र में स्पष्ट रूप से लिखा जाता है, जिसे एक अस्थायी तीव्रता समारोह I(t) और एक अस्थायी चरण समारोह ψ(t) के रूप में अलग किया जा सकता है:
केंद्रीय कोणीय आवृत्ति ''ω''<sub>0</sub> प्रायः जटिल क्षेत्र में स्पष्ट रूप से लिखी जाती है, जिसे अस्थायी तीव्रता समारोह ''I''(''t'') और अस्थायी चरण फलन ''ψ''(''t'') के रूप में अलग किया जा सकता है-


: <math>E(t) = \sqrt{I(t)}e^{i\omega_0t}e^{i\psi(t)}</math>
: <math>E(t) = \sqrt{I(t)}e^{i\omega_0t}e^{i\psi(t)}</math>
आवृत्ति डोमेन में जटिल विद्युत क्षेत्र की अभिव्यक्ति (टी) के [[फूरियर रूपांतरण]] से प्राप्त की जाती है:
आवृत्ति क्षेत्र में जटिल विद्युत क्षेत्र की अभिव्यक्ति ''E''(''t'') के [[फूरियर रूपांतरण]] से प्राप्त की जाती है-


: <math>E(\omega) = \mathcal{F}(E(t))</math>
: <math>E(\omega) = \mathcal{F}(E(t))</math>
की उपस्थिति के कारण <math>e^{i\omega_0t}</math> अवधि, E(ω) ω के आसपास केंद्रित है<sub>0</sub>, और E(ω-ω<sub>0</sub>) सिर्फ E(ω) लिखकर, जो हम इस लेख के बाकी हिस्सों में करेंगे।
<math>e^{i\omega_0t}</math> शब्द की उपस्थिति के कारण, ''E''(''ω'') ''ω''<sub>0</sub> के आसपास केंद्रित है, और E(ω-ω<sub>0</sub>) को केवल E(ω) लिखकर संदर्भित करना एक सामान्य अभ्यास है, जो हम इस लेख के अन्य भागों में करेंगे।


जैसे ही समय डोमेन में, आवृत्ति डोमेन में तीव्रता और चरण फ़ंक्शन को परिभाषित किया जा सकता है:
जैसे ही समय क्षेत्र में, आवृत्ति क्षेत्र में तीव्रता और चरण फलन को परिभाषित किया जा सकता है-


: <math>E(\omega) = \sqrt{S(\omega)}e^{i\phi(\omega)}</math>
: <math>E(\omega) = \sqrt{S(\omega)}e^{i\phi(\omega)}</math>


{{anchor|Spectral phase}}मात्रा <math>S(\omega)</math> नाड़ी की शक्ति वर्णक्रमीय घनत्व (या बस, स्पेक्ट्रम) है, और <math>\phi(\omega) </math> [[चरण वर्णक्रमीय घनत्व]] (या केवल वर्णक्रमीय चरण) है। स्पेक्ट्रल चरण कार्यों के उदाहरण में वह मामला शामिल है जहां <math>\phi(\omega) </math> एक स्थिर है, जिस स्थिति में पल्स को [[बैंडविड्थ-सीमित पल्स]] कहा जाता है, या जहां <math>\phi(\omega) </math> एक द्विघात फलन है, जिस स्थिति में तात्क्षणिक आवृत्ति स्वीप की उपस्थिति के कारण स्पंद को चिरप्ड स्पंद कहा जाता है। इस तरह की आवाज को सामग्री (कांच की तरह) के माध्यम से एक नाड़ी के प्रसार के रूप में प्राप्त किया जा सकता है और यह उनके फैलाव (ऑप्टिक्स) के कारण होता है। इसके परिणामस्वरूप नाड़ी का एक अस्थायी विस्तार होता है।
मात्रा <math>S(\omega)</math> स्पंद की शक्ति वर्णक्रमीय घनत्व (या केवल, स्पेक्ट्रम) है, और <math>\phi(\omega) </math> [[चरण वर्णक्रमीय घनत्व]] (या केवल वर्णक्रमीय चरण) है। वर्णक्रमीय चरण फलनों के उदाहरण में वह स्थिति सम्मिलित है जहां <math>\phi(\omega) </math> स्थिर है, जिस स्थिति में स्पंद को [[बैंडविड्थ-सीमित पल्स|बैंडविड्थ-सीमित स्पंद]] कहा जाता है, या जहां <math>\phi(\omega) </math> द्विघात फलन है, उस स्थिति में तात्क्षणिक आवृति स्वीप की उपस्थिति के कारण स्पंद को चिरप्ड स्पंद कहा जाता है। इस तरह की चिरप को पदार्थ (जैसे कांच) के माध्यम से स्पंद के प्रसार के रूप में प्राप्त किया जा सकता है और यह उनके प्रसार के कारण होता है। इसके परिणामस्वरूप स्पंद का अस्थायी विस्तार होता है।


तीव्रता कार्य-लौकिक <math> I(t) </math> और वर्णक्रमीय <math>S(\omega)</math> - नाड़ी की समय अवधि और स्पेक्ट्रम बैंडविड्थ निर्धारित करें। जैसा कि अनिश्चितता सिद्धांत द्वारा कहा गया है, उनके उत्पाद (कभी-कभी समय-बैंडविड्थ उत्पाद कहा जाता है) की सीमा कम होती है। यह न्यूनतम मान अवधि के लिए प्रयुक्त परिभाषा और नाड़ी के आकार पर निर्भर करता है। किसी दिए गए स्पेक्ट्रम के लिए, न्यूनतम समय-बैंडविड्थ उत्पाद, और इसलिए सबसे छोटी पल्स, ट्रांसफ़ॉर्म-लिमिटेड पल्स द्वारा प्राप्त की जाती है, अर्थात, एक निरंतर वर्णक्रमीय चरण के लिए <math>\phi(\omega) </math>. दूसरी ओर, समय-बैंडविड्थ उत्पाद के उच्च मान एक अधिक जटिल स्पंद का संकेत देते हैं।
तीव्रता फलन-अस्थायी <math> I(t) </math> और वर्णक्रमीय <math>S(\omega)</math>-स्पंद की समय अवधि और स्पेक्ट्रम बैंडविड्थ निर्धारित करते हैं। जैसा कि अनिश्चितता सिद्धांत द्वारा कहा गया है, उनके उत्पाद (कभी-कभी समय-बैंडविड्थ उत्पाद कहा जाता है) की एक निचली सीमा होती है। यह न्यूनतम मान अवधि के लिए प्रयुक्त परिभाषा और स्पंद के आकार पर निर्भर करता है। किसी दिए गए स्पेक्ट्रम के लिए, न्यूनतम समय-बैंडविड्थ उत्पाद, और इसलिए सबसे छोटी स्पंंद, रूपांतर-सीमित स्पंद द्वारा प्राप्त की जाती है, अर्थात, स्थिर वर्णक्रमीय चरण <math>\phi(\omega) </math> के लिए। दूसरी ओर, समय-बैंडविड्थ उत्पाद के उच्च मान एक अधिक जटिल स्पंद का संकेत देते हैं।


== पल्स शेप कंट्रोल ==
== स्पंद आकार नियंत्रण ==
हालांकि प्रकाशिक उपकरणों का उपयोग निरंतर प्रकाश के लिए भी किया जाता है, जैसे बीम विस्तारक और स्थानिक फिल्टर, अल्ट्राशॉर्ट दालों के लिए उपयोग किए जा सकते हैं, कई ऑप्टिकल उपकरणों को विशेष रूप से अल्ट्राशॉर्ट दालों के लिए डिज़ाइन किया गया है। उनमें से एक [[प्रिज्म कंप्रेसर]] है,<ref>J. C. Diels, Femtosecond dye lasers, in ''Dye Laser Principles'', [[F. J. Duarte]] and L. W. Hillman (Eds.) (Academic, New York, 1990) Chapter 3.</ref> एक उपकरण जिसका उपयोग अल्ट्राशॉर्ट दालों के वर्णक्रमीय चरण को नियंत्रित करने के लिए किया जा सकता है। यह प्रिज्म या झंझरी के अनुक्रम से बना है। जब ठीक से समायोजित किया जाता है तो यह इनपुट पल्स के स्पेक्ट्रल चरण φ(ω) को बदल सकता है ताकि आउटपुट पल्स कम से कम संभव अवधि के साथ बैंडविड्थ-सीमित पल्स हो। [[फेमटोसेकंड पल्स शेपिंग]] का उपयोग चरण और अल्ट्राशॉर्ट दालों के आयाम दोनों पर अधिक जटिल परिवर्तन करने के लिए किया जा सकता है।
हालांकि प्रकाशिक उपकरणों का उपयोग निरंतर प्रकाश के लिए भी किया जाता है, जैसे कि किरण विस्तारक और स्थानिक फिल्टर, अल्ट्राशॉर्ट पल्सों के लिए उपयोग किए जा सकते हैं, कई प्रकाशिक उपकरणों को विशेष रूप से अल्ट्राशॉर्ट पल्सों के लिए डिज़ाइन किया गया है। उनमें से [[प्रिज्म कंप्रेसर|स्पंद सम्पीडक]] है,<ref>J. C. Diels, Femtosecond dye lasers, in ''Dye Laser Principles'', [[F. J. Duarte]] and L. W. Hillman (Eds.) (Academic, New York, 1990) Chapter 3.</ref> एक उपकरण जिसका उपयोग अल्ट्राशॉर्ट पल्सों के वर्णक्रमीय चरण को नियंत्रित करने के लिए किया जा सकता है। यह प्रिज्म या ग्रेटिंग के अनुक्रम से बना है। जब ठीक से समायोजित किया जाता है तो यह इनपुट स्पंद के वर्णक्रमीय चरण φ(ω) को बदल सकता है ताकि आउटपुट स्पंद कम से कम संभव अवधि के साथ बैंडविड्थ-सीमित स्पंद हो। [[फेमटोसेकंड पल्स शेपिंग|स्पंद संरूपित्र]] का उपयोग चरण और अल्ट्राशॉर्ट पल्सों के आयाम दोनों में अधिक जटिल परिवर्तन करने के लिए किया जा सकता है।  
 
पल्स को सटीक रूप से नियंत्रित करने के लिए, पल्स स्पेक्ट्रल चरण का पूर्ण लक्षण वर्णन निश्चित पल्स स्पेक्ट्रल चरण (जैसे बैंडविड्थ-सीमित पल्स | ट्रांसफॉर्म-सीमित) प्राप्त करने के लिए जरूरी है। फिर, नाड़ी को नियंत्रित करने के लिए 4f विमान में एक [[स्थानिक प्रकाश न्यूनाधिक]] का उपयोग किया जा सकता है। [[मल्टीफोटोन इंट्रापल्स इंटरफेरेंस फेज स्कैन]] (MIIPS) इस अवधारणा पर आधारित एक तकनीक है। स्थानिक प्रकाश न्यूनाधिक के चरण स्कैन के माध्यम से, MIIPS न केवल लक्ष्य स्थान पर आवश्यक पल्स आकार प्राप्त करने के लिए अल्ट्राशॉर्ट पल्स को चिह्नित कर सकता है, बल्कि हेरफेर भी कर सकता है (जैसे बैंडविड्थ-सीमित पल्स। ऑप्टिमाइज्ड पीक पावर के लिए ट्रांसफॉर्म-लिमिटेड पल्स, और अन्य विशिष्ट नाड़ी आकार)। यदि पल्स शेपर पूरी तरह से कैलिब्रेट किया गया है, तो यह तकनीक अल्ट्राशॉर्ट दालों के वर्णक्रमीय चरण को नियंत्रित करने की अनुमति देती है, जिसमें एक साधारण ऑप्टिकल सेटअप होता है जिसमें कोई हिलता हुआ भाग नहीं होता है। हालाँकि MIIPS की सटीकता अन्य तकनीकों के संबंध में कुछ हद तक सीमित है, जैसे कि [[आवृत्ति-समाधान ऑप्टिकल गेटिंग]] (FROG)।<ref name="CominRhodes2015">{{cite book|last1=Comin|first1=Alberto|last2=Rhodes|first2=Michelle|last3=Ciesielski|first3=Richard|last4=Trebino|first4=Rick|last5=Hartschuh|first5=Achim|title=Cleo: 2015|chapter=Pulse Characterization in Ultrafast Microscopy: a Comparison of FROG, MIIPS and G-MIIPS|year=2015|pages=SW1H.5|doi=10.1364/CLEO_SI.2015.SW1H.5|isbn=978-1-55752-968-8|s2cid=23655339}}</ref>


स्पंद को सटीक रूप से नियंत्रित करने के लिए, निश्चित स्पंद वर्णक्रमीय चरण (जैसे रूपांतर-सीमित) प्राप्त करने के लिए स्पंद वर्णक्रमीय चरण का पूर्ण लक्षण वर्णन आवश्यक है। फिर, स्पंद को नियंत्रित करने के लिए 4f समतल में [[स्थानिक प्रकाश न्यूनाधिक]] का उपयोग किया जा सकता है। [[मल्टीफोटोन इंट्रापल्स इंटरफेरेंस फेज स्कैन|मल्टीफोटोन अंतःस्पंद अंतःक्षेप चरण स्कैन]] (एमआईआईपीएस) इस अवधारणा पर आधारित एक तकनीक है। स्थानिक प्रकाश न्यूनाधिक के चरण स्कैन के माध्यम से, एमआईआईपीएस (MIIPS) न केवल लक्षण वर्णन कर सकता है, बल्कि लक्ष्य स्थान (जैसे कि अनुकूलित शीर्ष शक्ति के लिए रूपांतर-सीमित स्पंद, और अन्य विशिष्ट स्पंद आकार) पर आवश्यक स्पंद आकार प्राप्त करने के लिए अल्ट्राशॉर्ट पल्स में हेरफेर भी कर सकता है। यदि स्पंद संरूपित्र पूरी तरह से व्यवस्थित किया गया है, तो यह तकनीक अल्ट्राशॉर्ट पल्सों के वर्णक्रमीय चरण को नियंत्रित करने की अनुमति देती है, जिसमें साधारण प्रकाशिक व्यवस्था का उपयोग किया जाता है, जिसमें कोई गतिमान भाग नहीं होता है। हालाँकि एमआईआईपीएस (MIIPS) की सटीकता अन्य तकनीकों के संबंध में कुछ हद तक सीमित है, जैसे [[आवृत्ति-समाधान ऑप्टिकल गेटिंग|आवृत्ति-समाधित प्रकाशिक अवरोधन]] (FROG)।<ref name="CominRhodes2015">{{cite book|last1=Comin|first1=Alberto|last2=Rhodes|first2=Michelle|last3=Ciesielski|first3=Richard|last4=Trebino|first4=Rick|last5=Hartschuh|first5=Achim|title=Cleo: 2015|chapter=Pulse Characterization in Ultrafast Microscopy: a Comparison of FROG, MIIPS and G-MIIPS|year=2015|pages=SW1H.5|doi=10.1364/CLEO_SI.2015.SW1H.5|isbn=978-1-55752-968-8|s2cid=23655339}}</ref>
== माप तकनीक ==
अतिलघु प्रकाशिक स्पंद को मापने के लिए कई तकनीकें उपलब्ध हैं।


== माप तकनीक ==
जब किसी विशेष स्पंद के आकार को ग्रहण किया जाता है तो तीव्रता [[ऑप्टिकल ऑटोकॉर्पोरेशन|स्वतःसंबंध]] स्पंद चौड़ाई देती है।
अल्ट्राशॉर्ट ऑप्टिकल पल्स को मापने के लिए कई तकनीकें उपलब्ध हैं।


तीव्रता [[ऑप्टिकल ऑटोकॉर्पोरेशन]] पल्स चौड़ाई देता है जब एक विशेष पल्स आकार ग्रहण किया जाता है।
[[स्पेक्ट्रल इंटरफेरोमेट्री|स्पेक्ट्रल व्यतिकरणमिति]] (एसआई) एक रेखीय तकनीक है जिसका उपयोग तब किया जा सकता है जब पूर्व-विशेषता वाले संदर्भ स्पंद उपलब्ध हो। यह तीव्रता और चरण देता है। एल्गोरिथ्म जो एसआई (SI) संकेत से तीव्रता और चरण को निकालता है वह प्रत्यक्ष है। प्रत्यक्ष विद्युत-क्षेत्र पुनर्निर्माण (स्पाइडर) के लिए स्पेक्ट्रल चरण व्यतिकरणमिति स्पेक्ट्रल अपरुपण व्यतिकरणमिति पर आधारित गैर-रैखिक स्व-संदर्भ तकनीक है। विधि एसआई (SI) के समान है, सिवाय इसके कि संदर्भ स्पंद स्वयं की स्पेक्ट्रल रूप से स्थानांतरित प्रतिकृति है, जो एसआई (SI) के समान [[फास्ट फूरियर ट्रांसफॉर्म|प्रत्यक्ष एफएफटी (FFT)]] फ़िल्टरिंग दिनचर्या के माध्यम से वर्णक्रमीय तीव्रता और जांच स्पंद के चरण को प्राप्त करने की अनुमति देता है। लेकिन जिसके लिए जांच स्पंद चरण प्राप्त करने के लिए व्यतिकरणमिति से निकाले गए चरण के एकीकरण की आवश्यकता होती है।  


[[स्पेक्ट्रल इंटरफेरोमेट्री]] (एसआई) एक रेखीय तकनीक है जिसका उपयोग तब किया जा सकता है जब एक पूर्व-विशेषता संदर्भ पल्स उपलब्ध हो। यह तीव्रता और चरण देता है। एल्गोरिथ्म जो एसआई सिग्नल से तीव्रता और चरण को निकालता है वह प्रत्यक्ष है। डायरेक्ट इलेक्ट्रिक-फील्ड पुनर्निर्माण (स्पाइडर) के लिए स्पेक्ट्रल चरण इंटरफेरोमेट्री स्पेक्ट्रल शीयरिंग इंटरफेरोमेट्री पर आधारित एक गैर-रैखिक स्व-संदर्भ तकनीक है। विधि एसआई के समान है, सिवाय इसके कि संदर्भ पल्स स्वयं की एक स्पेक्ट्रल रूप से स्थानांतरित प्रतिकृति है, जो एसआई के समान प्रत्यक्ष [[फास्ट फूरियर ट्रांसफॉर्म]] फ़िल्टरिंग रूटीन के माध्यम से वर्णक्रमीय तीव्रता और जांच पल्स के चरण को प्राप्त करने की अनुमति देता है, लेकिन जिसके लिए एकीकरण की आवश्यकता होती है जांच पल्स चरण प्राप्त करने के लिए इंटरफेरोग्राम से निकाला गया चरण।
आवृत्ति-समाधान प्रकाशिक गेटिंग (FROG) एक अरेखीय तकनीक है जो स्पंद की तीव्रता और चरण का उत्पादन करती है। यह वर्णक्रमीय रूप से हल किया गया स्वसंबंध है। एल्गोरिदम जो एफआरओजी (FROG) अवशेष से तीव्रता और चरण को निकालता है, पुनरावृत्त होता है। पराद्रुत घटना लेजर प्रकाश ई-क्षेत्रों (ग्रेनौइल) का ग्रेटिंग-निष्कासित व्यावहारिक अवलोकन एफआरओजी (FROG) का सरलीकृत संस्करण है। (ग्रेनौली "[[मेंढक]]" के लिए फ्रेंच है।)


फ़्रिक्वेंसी-रिज़ॉल्यूशन ऑप्टिकल गेटिंग (FROG) एक नॉनलाइनियर तकनीक है जो एक पल्स की तीव्रता और चरण का उत्पादन करती है। यह एक वर्णक्रमीय रूप से हल किया गया स्वसंबंध है। एल्गोरिथम जो FROG ट्रेस से तीव्रता और चरण को निकालता है, पुनरावृत्त है। अल्ट्राफास्ट घटना लेजर लाइट ई-फील्ड्स (ग्रेनौइल) का ग्रेटिंग-एलिमिनेटेड नो-नॉनसेंस अवलोकन FROG का एक सरलीकृत संस्करण है। (ग्रेनोई [[[[मेंढक]]]] के लिए फ्रेंच है।)
चिरप स्कैन एमआईआईपीएस (MIIPS) के समान तकनीक है जो द्विघात स्पेक्ट्रल चरणों के रैंप को लागू करके और दूसरे हार्मोनिक स्पेक्ट्रा को मापने के द्वारा स्पंद के वर्णक्रमीय चरण को मापता है। [[MIIPS|एमआईआईपीएस (MIIPS)]] के संबंध में, जिसके लिए वर्णक्रमीय चरण को मापने के लिए कई पुनरावृत्तियों की आवश्यकता होती है, आयाम और स्पंद के चरण दोनों को पुनः प्राप्त करने के लिए केवल दो चिरप स्कैन की आवश्यकता होती है।<ref name="LoriotGitzinger2013">{{cite journal|last1=Loriot|first1=Vincent|last2=Gitzinger|first2=Gregory|last3=Forget|first3=Nicolas|title=चिरप स्कैन द्वारा फेमटोसेकंड लेजर दालों का स्व-संदर्भित लक्षण वर्णन|journal=Optics Express|volume=21|issue=21|year=2013|pages=24879–93|issn=1094-4087|doi=10.1364/OE.21.024879|pmid=24150331|bibcode = 2013OExpr..2124879L |doi-access=free}}</ref>


चिरप स्कैन एमआईआईपीएस के समान एक तकनीक है जो क्वाड्रैटिक स्पेक्ट्रल चरणों के रैंप को लागू करके और दूसरे हार्मोनिक स्पेक्ट्रा को मापने के द्वारा नाड़ी के स्पेक्ट्रल चरण को मापता है। [[MIIPS]] के संबंध में, जिसे वर्णक्रमीय चरण को मापने के लिए कई पुनरावृत्तियों की आवश्यकता होती है, आयाम और नाड़ी के चरण दोनों को पुनः प्राप्त करने के लिए केवल दो चिरप स्कैन की आवश्यकता होती है।<ref name="LoriotGitzinger2013">{{cite journal|last1=Loriot|first1=Vincent|last2=Gitzinger|first2=Gregory|last3=Forget|first3=Nicolas|title=चिरप स्कैन द्वारा फेमटोसेकंड लेजर दालों का स्व-संदर्भित लक्षण वर्णन|journal=Optics Express|volume=21|issue=21|year=2013|pages=24879–93|issn=1094-4087|doi=10.1364/OE.21.024879|pmid=24150331|bibcode = 2013OExpr..2124879L |doi-access=free}}</ref>
मल्टीफोटोन अंतःस्पंद व्यतिकरण चरण स्कैन (एमआईआईपीएस) अल्ट्राशॉर्ट पल्स की विशेषता और कुशलतापूर्वक प्रयोग करने की एक विधि है।
मल्टीफोटोन इंट्रापल्स इंटरफेरेंस फेज स्कैन (MIIPS) अल्ट्राशॉर्ट पल्स को चिह्नित करने और हेरफेर करने की एक विधि है।


== नॉन आइसोट्रोपिक मीडिया में वेव पैकेट प्रसार ==
== गैर समदैशिक माध्यम में तरंग पैकेट प्रसार ==
उपरोक्त चर्चा को आंशिक रूप से दोहराने के लिए, केंद्रीय तरंग वेक्टर के साथ एक तरंग के विद्युत क्षेत्र के धीरे-धीरे बदलते लिफाफे सन्निकटन (SVEA) <math> \textbf{K}_0 </math> और केंद्रीय आवृत्ति <math> \omega_0 </math> नाड़ी के द्वारा दिया जाता है:
ऊपर की चर्चा को आंशिक रूप से दोहराने के लिए, केंद्रीय तरंग सदिश <math> \textbf{K}_0 </math> और स्पंद की केंद्रीय आवृत्ति <math> \omega_0 </math> के साथ एक तरंग के विद्युत क्षेत्र का धीरे-धीरे परिवर्ती आवरण सन्निकटन (SVEA) इस प्रकार दिया गया है-
:<math>
:<math>
\textbf{E} ( \textbf{x} , t) = \textbf{ A } ( \textbf{x} , t) \exp ( i \textbf{K}_0 \textbf{x} - i \omega_0 t )
\textbf{E} ( \textbf{x} , t) = \textbf{ A } ( \textbf{x} , t) \exp ( i \textbf{K}_0 \textbf{x} - i \omega_0 t )
</math>
</math>
हम विद्युत क्षेत्र के SVEA के लिए एक सजातीय फैलाव वाले गैर-समदैशिक माध्यम में प्रसार पर विचार करते हैं। यह मानते हुए कि नाड़ी z- अक्ष की दिशा में फैल रही है, यह लिफाफा दिखाया जा सकता है <math> \textbf{A} </math> सबसे सामान्य मामलों में से एक के लिए, अर्थात् एक द्विअक्षीय क्रिस्टल, आंशिक अंतर समीकरण द्वारा शासित होता है:<ref>{{Cite journal | doi=10.1103/PhysRevLett.76.1457| pmid=10061728| bibcode=1996PhRvL..76.1457B| title=नॉनिसोट्रोपिक मीडिया में ऑप्टिकल वेव-पैकेट प्रसार| year=1996| last1=Band| first1=Y. B.| last2=Trippenbach| first2=Marek| journal=Physical Review Letters| volume=76| issue=9| pages=1457–1460}}</ref>
हम विद्युत क्षेत्र के एसवीईए (SVEA) के लिए सजातीय प्रसार वाले गैर-समदैशिक माध्यम में प्रसार पर विचार करते हैं। यह मानते हुए कि पल्स z- अक्ष की दिशा में फैल रही है, यह दिखाया जा सकता है कि सबसे सामान्य स्थितियों में से एक के लिए आवरण <math> \textbf{A} </math>, अर्थात् द्विअक्षीय क्रिस्टल, पीडीई (PDE) द्वारा नियंत्रित होता है-<ref>{{Cite journal | doi=10.1103/PhysRevLett.76.1457| pmid=10061728| bibcode=1996PhRvL..76.1457B| title=नॉनिसोट्रोपिक मीडिया में ऑप्टिकल वेव-पैकेट प्रसार| year=1996| last1=Band| first1=Y. B.| last2=Trippenbach| first2=Marek| journal=Physical Review Letters| volume=76| issue=9| pages=1457–1460}}</ref>
:<math>
:<math>
\frac{\partial \textbf{A} }{\partial z } =
\frac{\partial \textbf{A} }{\partial z } =
Line 72: Line 71:
~+~ i \gamma_{xy} \frac{\partial^2 \textbf{A} }{ \partial x \partial y} + \cdots
~+~ i \gamma_{xy} \frac{\partial^2 \textbf{A} }{ \partial x \partial y} + \cdots
</math>
</math>
जहां गुणांक में विवर्तन और फैलाव प्रभाव होते हैं जो [[कंप्यूटर बीजगणित]] के साथ विश्लेषणात्मक रूप से निर्धारित किए गए हैं और संख्यात्मक रूप से आइसोट्रोपिक और गैर-आइसोट्रोपिक मीडिया दोनों के लिए तीसरे क्रम के भीतर सत्यापित किए गए हैं, जो निकट-क्षेत्र और दूर-क्षेत्र में मान्य हैं।
जहां गुणांक में विवर्तन और प्रसार प्रभाव होते हैं जो [[कंप्यूटर बीजगणित]] के साथ विश्लेषणात्मक रूप से निर्धारित किए गए हैं और संख्यात्मक रूप से समदैशिक और गैर-समदैशिक माध्यम दोनों के लिए तीसरे क्रम के भीतर सत्यापित किए गए हैं, जो निकट-क्षेत्र और दूर-क्षेत्र में मान्य हैं। <math> \beta_1 </math> समूह वेग प्रक्षेपण का व्युत्क्रम है। <math> \beta_2 </math> में शब्द समूह वेग प्रसार (जीवीडी) या द्वितीय क्रम प्रसार है यह स्पंद की अवधि को बढ़ाता है और स्पंद को चिरप करता है क्योंकि यह माध्यम से प्रसार करता है। <math> \beta_3 </math> में शब्द एक तीसरे क्रम का प्रसार शब्द है जो स्पंद अवधि को और बढ़ा सकता है, भले ही <math> \beta_2 </math> नष्ट हो जाए। <math> \gamma_x </math> और <math> \gamma_y </math> में शब्द स्पंद के चलने का वर्णन करते हैं; गुणांक <math> \gamma_x ~ (\gamma_y ) </math> समूह वेग <math> x ~ (y) </math> के घटक और स्पंद (z-अक्ष) के प्रसार की दिशा में इकाई सदिश का अनुपात है। <math>\gamma_{xx}</math> और <math> \gamma_{yy} </math> में शब्द प्रसार के अक्ष के लम्बवत् दिशा में प्रकाशीय तरंग पैकेट के विवर्तन का वर्णन करते हैं। <math> \gamma_{tx} </math> और <math> \gamma_{ty} </math> में समय और स्थान में मिश्रित व्युत्पन्न वाले शब्द क्रमशः <math>y</math> और <math>x</math> अक्षों के बारे में तरंग पैकेट को घुमाते हैं, तरंग पैकेट (जीवीडी (GVD) के कारण वृद्धि के अलावा) की अस्थायी चौड़ाई बढ़ाते हैं क्रमशः <math>x</math> और <math>y</math> दिशाओं में प्रसार बढ़ाएं, और चिरप बढ़ाएं (इसके अतिरिक्त <math> \beta_2 </math> के कारण) जब बाद वाला और/या <math> \gamma_{xx} </math> और <math> \gamma_{yy} </math> गैर-लुप्त हो रहा है। शब्द <math> \gamma_{xy} </math> तरंग पैकेट को <math> x-y </math> तल में घुमाता है।आश्चर्यजनक रूप से पर्याप्त है, पहले अपूर्ण विस्तार के कारण, स्पंद के इस घूर्णन को 1990 के दशक के अंत तक अनुभव नहीं किया गया था, लेकिन प्रयोगात्मक रूप से इसकी पुष्टि की गई है।<ref>{{cite journal |doi=10.1364/JOSAB.14.000420|bibcode=1997JOSAB..14..420R|title=रूटाइल क्रिस्टल में फेमटोसेकंड वेव-पैकेट टिल्टिंग का इंटरफेरोमेट्रिक माप|year=1997|last1=Radzewicz|first1=C.|last2=Krasinski|first2=J. S.|last3=La Grone|first3=M. J.|last4=Trippenbach|first4=M.|last5=Band|first5=Y. B.|journal=Journal of the Optical Society of America B|volume=14|issue=2|pages=420}}</ref> तीसरे क्रम में, उपरोक्त समीकरण के आरएचएस (RHS) में एक अक्षीय क्रिस्टल स्थिति के लिए ये अतिरिक्त शर्तें पाई जाती हैं-<ref>{{cite journal |doi = 10.1364/OL.22.000579|pmid = 18185596|bibcode = 1997OptL...22..579T|title = फैलाने वाले मीडिया में बीम और दालों के निकट-क्षेत्र और दूर-क्षेत्र प्रसार|year = 1997|last1 = Trippenbach|first1 = Marek|last2 = Scott|first2 = T. C.|last3 = Band|first3 = Y. B.|journal = Optics Letters|volume = 22|issue = 9|pages = 579–81 |url=http://www.bgu.ac.il/%7Eband/Tripp.OptLet22.579.97.pdf}}</ref>
<math> \beta_1 </math> समूह वेग प्रक्षेपण का व्युत्क्रम है। में पद <math> \beta_2 </math> समूह वेग फैलाव (ऑप्टिक्स) (जीवीडी) या दूसरे क्रम का फैलाव है; यह नाड़ी की अवधि को बढ़ाता है और नाड़ी को चीरता है क्योंकि यह माध्यम से फैलता है। में पद <math> \beta_3 </math> एक तीसरे क्रम का फैलाव शब्द है जो नाड़ी की अवधि को और बढ़ा सकता है, भले ही <math> \beta_2 </math> गायब हो जाता है। में शर्तें <math> \gamma_x </math> और <math> \gamma_y </math> पल्स के वॉक-ऑफ का वर्णन करें; गुणांक <math> \gamma_x ~ (\gamma_y ) </math> समूह वेग के घटक का अनुपात है <math> x ~ (y) </math> और पल्स (z-अक्ष) के प्रसार की दिशा में इकाई वेक्टर। में शर्तें <math>\gamma_{xx}</math> और <math> \gamma_{yy} </math> प्रसार के अक्ष के लंबवत दिशाओं में ऑप्टिकल तरंग पैकेट के विवर्तन का वर्णन करें। में शर्तें <math> \gamma_{tx} </math> और <math> \gamma_{ty} </math> समय और स्थान में मिश्रित डेरिवेटिव युक्त वेव पैकेट को घुमाते हैं <math>y</math> और <math>x</math> कुल्हाड़ियों, क्रमशः, तरंग पैकेट की अस्थायी चौड़ाई में वृद्धि (जीवीडी के कारण वृद्धि के अलावा), फैलाव में वृद्धि <math>x</math> और <math>y</math> दिशाएँ, क्रमशः, और चिरप बढ़ाएँ (इसके अलावा इसके कारण <math> \beta_2 </math>) जब बाद वाला और/या <math> \gamma_{xx} </math> और <math> \gamma_{yy} </math> न मिटने वाले हैं। शब्द <math> \gamma_{xy} </math> तरंग पैकेट को घुमाता है <math> x-y </math> विमान। अजीब तरह से पर्याप्त है, पहले अधूरे विस्तार के कारण, पल्स के इस रोटेशन को 1990 के दशक के अंत तक महसूस नहीं किया गया था, लेकिन प्रयोगात्मक रूप से इसकी पुष्टि की गई है।<ref>{{cite journal |doi=10.1364/JOSAB.14.000420|bibcode=1997JOSAB..14..420R|title=रूटाइल क्रिस्टल में फेमटोसेकंड वेव-पैकेट टिल्टिंग का इंटरफेरोमेट्रिक माप|year=1997|last1=Radzewicz|first1=C.|last2=Krasinski|first2=J. S.|last3=La Grone|first3=M. J.|last4=Trippenbach|first4=M.|last5=Band|first5=Y. B.|journal=Journal of the Optical Society of America B|volume=14|issue=2|pages=420}}</ref> तीसरे क्रम में, उपरोक्त समीकरण के RHS में एक अक्षीय क्रिस्टल केस के लिए ये अतिरिक्त शर्तें पाई जाती हैं:<ref>{{cite journal |doi = 10.1364/OL.22.000579|pmid = 18185596|bibcode = 1997OptL...22..579T|title = फैलाने वाले मीडिया में बीम और दालों के निकट-क्षेत्र और दूर-क्षेत्र प्रसार|year = 1997|last1 = Trippenbach|first1 = Marek|last2 = Scott|first2 = T. C.|last3 = Band|first3 = Y. B.|journal = Optics Letters|volume = 22|issue = 9|pages = 579–81 |url=http://www.bgu.ac.il/%7Eband/Tripp.OptLet22.579.97.pdf}}</ref>
::<math>
::<math>
\cdots
\cdots
Line 80: Line 78:
~+~ \frac{1}{3} \gamma_{t t x } \frac{\partial^3 \textbf{A} }{ \partial t^2 \partial x} + \cdots
~+~ \frac{1}{3} \gamma_{t t x } \frac{\partial^3 \textbf{A} }{ \partial t^2 \partial x} + \cdots
</math>
</math>
नाड़ी के प्रसार के सामने की वक्रता के लिए पहली और दूसरी शर्तें जिम्मेदार हैं। इन शर्तों, में शब्द सहित <math>\beta_3</math> एक आइसोट्रोपिक माध्यम में मौजूद हैं और एक बिंदु स्रोत से उत्पन्न होने वाले प्रसार के सामने की गोलाकार सतह के लिए खाते हैं। शब्द <math> \gamma_{txx} </math> अपवर्तन के सूचकांक, आवृत्ति के संदर्भ में व्यक्त किया जा सकता है <math> \omega </math> और उसके डेरिवेटिव और शब्द <math> \gamma_{ttx} </math> नाड़ी को भी विकृत करता है लेकिन इस तरह से जो भूमिकाओं को उलट देता है <math> t </math> और <math> x </math> (विवरण के लिए ट्रिपपेनबैक, स्कॉट और बैंड का संदर्भ देखें)
स्पंद के प्रसार के सामने की वक्रता के लिए पहली और दूसरी शर्तें जिम्मेदार हैं। <math>\beta_3</math> में शब्द सहित ये शब्द एक समदैशिक माध्यम में उपस्थित हैं और बिंदु स्रोत से उत्पन्न होने वाले प्रसार के सामने की गोलाकार सतह के लिए उत्तरदायी हैं। शब्द <math> \gamma_{txx} </math> को अपवर्तन के सूचकांक, आवृत्ति <math> \omega </math> और उसके व्युत्पन्न के संदर्भ में व्यक्त किया जा सकता है और शब्द <math> \gamma_{ttx} </math> भी स्पंद को विकृत करता है लेकिन ऐसे फैशन में जो <math> t </math> और <math> x </math> (विवरण के लिए ट्रिपपेनबैक, स्कॉट और बैंड का संदर्भ देखें) की भूमिकाओं को विपरीत कर देता है। अब तक, यहाँ उपचार रेखीय है, लेकिन गैर-रैखिक प्रसार वाले शब्द प्रकृति के लिए सर्वव्यापी हैं। एक अतिरिक्त अरैखिक शब्द <math> \gamma_{nl} |A|^2 A </math> से जुड़े अध्ययनों से पता चला है कि इस तरह के शब्दों का तरंग पैकेट पर गहरा प्रभाव पड़ता है, जिसमें अन्य बातों के अलावा, तरंग पैकेट का स्वयं-खड़ा होना भी सम्मिलित है।<ref>{{Cite journal | doi=10.1103/PhysRevA.56.4242| bibcode=1997PhRvA..56.4242T| title=फैलाने वाले नॉनलाइनियर मीडिया में शॉर्ट-पल्स स्प्लिटिंग की गतिशीलता| year=1997| last1=Trippenbach| first1=Marek| last2=Band| first2=Y. B.| journal=Physical Review A| volume=56| issue=5| pages=4242–4253}}</ref> गैर-रैखिक पहलू अंततः प्रकाशीय [[सॉलिटॉन (ऑप्टिक्स)|सॉलिटॉन]] की ओर ले जाते हैं।
अब तक, यहाँ उपचार रेखीय है, लेकिन अरैखिक फैलाव शब्द प्रकृति के लिए सर्वव्यापी हैं। अध्ययन में एक अतिरिक्त अरैखिक शब्द शामिल है <math> \gamma_{nl} |A|^2 A </math> ने दिखाया है कि इस तरह के शब्दों का तरंग पैकेट पर गहरा प्रभाव पड़ता है, जिसमें अन्य बातों के अलावा, तरंग पैकेट का स्वयं-खड़ा होना शामिल है।<ref>{{Cite journal | doi=10.1103/PhysRevA.56.4242| bibcode=1997PhRvA..56.4242T| title=फैलाने वाले नॉनलाइनियर मीडिया में शॉर्ट-पल्स स्प्लिटिंग की गतिशीलता| year=1997| last1=Trippenbach| first1=Marek| last2=Band| first2=Y. B.| journal=Physical Review A| volume=56| issue=5| pages=4242–4253}}</ref> गैर-रैखिक पहलू अंततः [[सॉलिटॉन (ऑप्टिक्स)]] की ओर ले जाते हैं।


बल्कि सामान्य होने के बावजूद, SVEA को ऑप्टिकल दालों के प्रसार का वर्णन करने वाली एक साधारण तरंग समीकरण तैयार करने की आवश्यकता नहीं है।
बल्कि सामान्य होने के बावजूद, प्रकाशीय स्पंद के प्रसार का वर्णन करने के लिए एसवीईए (SVEA) को एक सरल तरंग समीकरण तैयार करने की आवश्यकता नहीं होती है। वास्तव में, जैसा कि दिखाया गया है,<ref name="kinsler2010">{{cite journal|last1=Kinsler|first1=Paul|title=न्यूनतम सन्निकटन के साथ ऑप्टिकल पल्स प्रसार|journal=Physical Review A|volume=81|issue=1|pages=013819|year=2010|issn=1050-2947|doi=10.1103/PhysRevA.81.013819|arxiv=0810.5689|bibcode=2010PhRvA..81a3819K}}</ref> यहां तक कि विद्युत चुम्बकीय द्वितीय क्रम तरंग समीकरण का बहुत ही सामान्य रूप दिशात्मक घटकों में खंड किया जा सकता है, जो आवरण के स्थान पर क्षेत्र के लिए प्रथम क्रम तरंग समीकरण तक पहुंच प्रदान करता है। इसके लिए केवल एक धारणा की आवश्यकता होती है कि तरंग दैर्ध्य के पैमाने पर क्षेत्र का विकास धीमा है, और स्पंद की बैंडविड्थ को बिल्कुल भी प्रतिबंधित नहीं करता है - जैसा कि विशद रूप से प्रदर्शित किया गया है।<ref name="genty2007">{{cite journal|last1=Genty|first1=G.|last2=Kinsler|first2=P.|last3=Kibler|first3=B.|last4=Dudley|first4=J. M.|title=नॉनलाइनियर वेवगाइड्स में उप-चक्र गतिकी और हार्मोनिक जनरेशन का नॉनलाइनियर लिफाफा समीकरण मॉडलिंग|journal=Optics Express|volume=15|issue=9|year=2007|pages=5382–7|issn=1094-4087|doi=10.1364/OE.15.005382|pmid=19532792|bibcode=2007OExpr..15.5382G|doi-access=free}}</ref>
वास्तव में, जैसा कि दिखाया गया है,<ref name=kinsler2010>{{cite journal|last1=Kinsler|first1=Paul|title=न्यूनतम सन्निकटन के साथ ऑप्टिकल पल्स प्रसार|journal=Physical Review A|volume=81|issue=1|pages=013819|year=2010|issn=1050-2947|doi=10.1103/PhysRevA.81.013819|arxiv=0810.5689|bibcode=2010PhRvA..81a3819K}}</ref> यहां तक ​​कि इलेक्ट्रोमैग्नेटिक सेकंड ऑर्डर वेव समीकरण का एक बहुत ही सामान्य रूप दिशात्मक घटकों में फ़ैक्टराइज़ किया जा सकता है, जो एक लिफाफे के बजाय फ़ील्ड के लिए पहले ऑर्डर वेव समीकरण तक पहुंच प्रदान करता है। इसके लिए केवल एक धारणा की आवश्यकता है कि तरंग दैर्ध्य के पैमाने पर क्षेत्र का विकास धीमा है, और नाड़ी की बैंडविड्थ को बिल्कुल भी प्रतिबंधित नहीं करता है - जैसा कि विशद रूप से दिखाया गया है।<ref name=genty2007>{{cite journal|last1=Genty|first1=G.|last2=Kinsler|first2=P.|last3=Kibler|first3=B.|last4=Dudley|first4=J. M.|title=नॉनलाइनियर वेवगाइड्स में उप-चक्र गतिकी और हार्मोनिक जनरेशन का नॉनलाइनियर लिफाफा समीकरण मॉडलिंग|journal=Optics Express|volume=15|issue=9|year=2007|pages=5382–7|issn=1094-4087|doi=10.1364/OE.15.005382|pmid=19532792|bibcode=2007OExpr..15.5382G|doi-access=free}}</ref>
== उच्च [[ लयबद्ध |हार्मोनिक्स]] ==
 
[[उच्च हार्मोनिक पीढ़ी|उच्च हार्मोनिक उत्पादन]] के माध्यम से गैर-रैखिक माध्यम में उच्च ऊर्जा अल्ट्राशॉर्ट पल्सों को उत्पन्न किया जा सकता है। उच्च तीव्रता वाली अल्ट्राशॉर्ट पल्स माध्यम में हार्मोनिक्स की एक सरणी उत्पन्न करेगी इसके बाद एक [[मोनोक्रोमेटर|एकवर्णक]] के साथ रुचि के विशेष हार्मोनिक का चयन किया जाता है। इस तकनीक का उपयोग निकट अवरक्त टी-[[नीलम लेजर]] स्पंदो से [[अत्यधिक पराबैंगनी]] और [[ मुलायम एक्स-रे |सॉफ्ट-एक्स-रे]] प्रणालियों में अल्ट्राशॉर्ट पल्सों का उत्पादन करने के लिए किया गया है।
 
== उच्च [[ लयबद्ध ]]्स ==
एक अरेखीय प्रकाशिकी में [[उच्च हार्मोनिक पीढ़ी]] के माध्यम से उच्च ऊर्जा अल्ट्राशॉर्ट दालों को उत्पन्न किया जा सकता है। एक उच्च तीव्रता अल्ट्राशॉर्ट पल्स माध्यम में हार्मोनिक्स की एक सरणी उत्पन्न करेगा; रुचि के एक विशेष हार्मोनिक को फिर एक [[मोनोक्रोमेटर]] के साथ चुना जाता है। इस तकनीक का उपयोग निकट अवरक्त टी-[[नीलम लेजर]] दालों से [[अत्यधिक पराबैंगनी]] और [[ मुलायम एक्स-रे ]] व्यवस्थाओं में अल्ट्राशॉर्ट दालों का उत्पादन करने के लिए किया गया है।


== अनुप्रयोग ==
== अनुप्रयोग ==


===उन्नत सामग्री 3डी माइक्रो-/नैनो-प्रोसेसिंग===
===उन्नत पदार्थ 3डी माइक्रो-/नैनो-प्रसंस्करण===
पिछले दशक के दौरान विभिन्न प्रकार के अनुप्रयोगों के लिए जटिल संरचनाओं और उपकरणों को कुशलतापूर्वक बनाने के लिए फेमटोसेकंड लेजर की क्षमता का बड़े पैमाने पर अध्ययन किया गया है। अल्ट्राशॉर्ट लाइट पल्स के साथ अत्याधुनिक लेजर प्रोसेसिंग तकनीकों का उपयोग सब-माइक्रोमीटर रिज़ॉल्यूशन वाली सामग्री को स्ट्रक्चर करने के लिए किया जा सकता है। उपयुक्त फोटोरेसिस्ट और अन्य पारदर्शी मीडिया के प्रत्यक्ष लेजर लेखन (DLW) जटिल त्रि-आयामी फोटोनिक क्रिस्टल (PhC), माइक्रो-ऑप्टिकल घटक, झंझरी, ऊतक इंजीनियरिंग (TE) मचान और ऑप्टिकल वेवगाइड बना सकते हैं। ऐसी संरचनाएं दूरसंचार और बायोइंजीनियरिंग में अगली पीढ़ी के अनुप्रयोगों को सशक्त बनाने के लिए संभावित रूप से उपयोगी हैं जो तेजी से परिष्कृत लघु भागों के निर्माण पर निर्भर हैं। अल्ट्राफास्ट लेजर प्रोसेसिंग की सटीकता, निर्माण की गति और बहुमुखी प्रतिभा इसे विनिर्माण के लिए एक महत्वपूर्ण औद्योगिक उपकरण बनने के लिए अच्छी तरह से तैयार करती है।
पिछले दशक के दौरान विभिन्न प्रकार के अनुप्रयोगों के लिए जटिल संरचनाओं और उपकरणों को कुशलतापूर्वक बनाने के लिए फेमटोसेकेंड लेजर की क्षमता का व्यापक अध्ययन किया गया है। अतिलघु प्रकाश स्पंद के साथ अत्याधुनिक लेजर प्रोसेसिंग तकनीकों का उपयोग उप-माइक्रोमीटर विश्लेषण वाले पदार्थ को निर्माण करने के लिए किया जा सकता है। उपयुक्त प्रकाश प्रतिरोध और अन्य पारदर्शी माध्यम के प्रत्यक्ष लेजर लेखन (DLW) जटिल त्रि-आयामी फोटोनिक क्रिस्टल (PhC), माइक्रो-प्रकाशीय घटक, ग्रेटिंग्स, ऊतक अभियांत्रिकी (TE) स्कैफोल्ड और प्रकाशीय तरंगपथक बना सकते हैं। दूरसंचार और जैव अभियांत्रिकी में अगली पीढ़ी के अनुप्रयोगों को सशक्त बनाने के लिए ऐसी संरचनाएं संभावित रूप से उपयोगी हैं जो तेजी से परिष्कृत लघु भागों के निर्माण पर निर्भर हैं। पराद्रुत लेजर प्रसंस्करण की सटीकता, निर्माण की गति और बहुमुखी प्रतिभा इसे विनिर्माण के लिए एक महत्वपूर्ण औद्योगिक उपकरण बनने के लिए अच्छी तरह से स्थापित करती है।<ref name="MalinauskasŽukauskas2016">{{cite journal|last1=Malinauskas|first1=Mangirdas|last2=Žukauskas|first2=Albertas|last3=Hasegawa|first3=Satoshi|last4=Hayasaki|first4=Yoshio|last5=Mizeikis|first5=Vygantas|last6=Buividas|first6=Ričardas|last7=Juodkazis|first7=Saulius|title=सामग्री का अल्ट्राफास्ट लेजर प्रसंस्करण: विज्ञान से उद्योग तक|journal=Light: Science & Applications|volume=5|issue=8|year=2016|pages=e16133|issn=2047-7538|doi=10.1038/lsa.2016.133|bibcode=2016LSA.....5E6133M|pmc=5987357|pmid=30167182}}</ref>  
<ref name="MalinauskasŽukauskas2016">{{cite journal|last1=Malinauskas|first1=Mangirdas|last2=Žukauskas|first2=Albertas|last3=Hasegawa|first3=Satoshi|last4=Hayasaki|first4=Yoshio|last5=Mizeikis|first5=Vygantas|last6=Buividas|first6=Ričardas|last7=Juodkazis|first7=Saulius|title=सामग्री का अल्ट्राफास्ट लेजर प्रसंस्करण: विज्ञान से उद्योग तक|journal=Light: Science & Applications|volume=5|issue=8|year=2016|pages=e16133|issn=2047-7538|doi=10.1038/lsa.2016.133|bibcode=2016LSA.....5E6133M|pmc=5987357|pmid=30167182}}</ref>
 
=== माइक्रो-मशीनिंग ===
फेमटोसेकंड लेजर के अनुप्रयोगों के बीच, जिरकोनिया दंत प्रत्यारोपण के आसपास हड्डी के गठन को बढ़ाने के लिए प्रत्यारोपण सतहों के माइक्रोटेक्स्चराइजेशन का प्रयोग किया गया है। तकनीक ने बहुत कम तापीय क्षति के साथ और सतह के दूषित पदार्थों को कम करने के साथ सटीक होने का प्रदर्शन किया। पश्च पशु अध्ययनों ने प्रदर्शित किया कि ऑक्सीजन परत में वृद्धि और फेमटोसेकंड लेजर के साथ माइक्रोटेक्स्चरिंग द्वारा बनाई गई सूक्ष्म और नैनोफीचर्स के परिणामस्वरूप हड्डी निर्माण की उच्च दर, उच्च हड्डी घनत्व और बेहतर यांत्रिक स्थिरता हुई।<ref name="Delgado-RuízCalvo-Guirado2011">{{cite journal|last1=Delgado-Ruíz|first1=R. A.|last2=Calvo-Guirado|first2=J. L.|last3=Moreno|first3=P.|last4=Guardia|first4=J.|last5=Gomez-Moreno|first5=G.|last6=Mate-Sánchez|first6=J. E.|last7=Ramirez-Fernández|first7=P.|last8=Chiva|first8=F.|title=जिरकोनिया दंत प्रत्यारोपण की फेमटोसेकंड लेजर माइक्रोस्ट्रक्चरिंग|journal=Journal of Biomedical Materials Research Part B: Applied Biomaterials|volume=96B|issue=1|year=2011|pages=91–100|issn=1552-4973|doi=10.1002/jbm.b.31743|pmid=21061361}}</ref><ref>Calvo Guirado et al, 2013 and 2014</ref><ref>Delgado-Ruiz et al, 2014)</ref>
 


=== सूक्ष्म-मशीनिंग ===
फेमटोसेकंड लेजर के अनुप्रयोगों के बीच, जिरकोनिया दंत प्रत्यारोपण के आसपास हड्डी के निर्माण को बढ़ाने के लिए प्रत्यारोपण सतहों के माइक्रोटेक्स्चराइजेशन का प्रयोग किया गया है। तकनीक ने बहुत कम तापीय क्षति के साथ और सतह के दूषित पदार्थों को कम करने के साथ सटीक होने का प्रदर्शन किया। पश्च पशु अध्ययनों ने प्रदर्शित किया कि ऑक्सीजन परत में वृद्धि और फेमटोसेकंड लेजर के साथ माइक्रोटेक्स्चरिंग द्वारा बनाई गई सूक्ष्म और नैनोफीचर्स के परिणामस्वरूप हड्डियों के निर्माण की उच्च दर, उच्च अस्थि घनत्व और बेहतर यांत्रिक स्थिरता हुई है।<ref name="Delgado-RuízCalvo-Guirado2011">{{cite journal|last1=Delgado-Ruíz|first1=R. A.|last2=Calvo-Guirado|first2=J. L.|last3=Moreno|first3=P.|last4=Guardia|first4=J.|last5=Gomez-Moreno|first5=G.|last6=Mate-Sánchez|first6=J. E.|last7=Ramirez-Fernández|first7=P.|last8=Chiva|first8=F.|title=जिरकोनिया दंत प्रत्यारोपण की फेमटोसेकंड लेजर माइक्रोस्ट्रक्चरिंग|journal=Journal of Biomedical Materials Research Part B: Applied Biomaterials|volume=96B|issue=1|year=2011|pages=91–100|issn=1552-4973|doi=10.1002/jbm.b.31743|pmid=21061361}}</ref><ref>Calvo Guirado et al, 2013 and 2014</ref><ref>Delgado-Ruiz et al, 2014)</ref>
== यह भी देखें ==
== यह भी देखें ==
* [[एटोसेकंड क्रोनोस्कोपी]]
* [[एटोसेकंड क्रोनोस्कोपी]]
* बैंडविड्थ-सीमित पल्स
* बैंडविड्थ-सीमित स्पंद
*फेमटोकैमिस्ट्री
*फेमटोकेमिस्ट्री
*[[आवृत्ति कंघी]]
*[[आवृत्ति कंघी]]
*[[मेडिकल इमेजिंग]]: मल्टीफोटोन [[प्रतिदीप्ति माइक्रोस्कोप]] में अल्ट्राशॉर्ट लेजर पल्स का उपयोग किया जाता है
*[[मेडिकल इमेजिंग|चिकित्सीय प्रतिबिंबन]]- अतिलघु लेजर स्पंदों का उपयोग मल्टीफोटोन [[प्रतिदीप्ति माइक्रोस्कोप|प्रतिदीप्ति सूक्ष्मदर्शी]] में किया जाता है
*[[ऑप्टिकल संचार]] (अल्ट्राशॉर्ट पल्स) फ़िल्टरिंग और पल्स शेपिंग।
*[[ऑप्टिकल संचार|प्रकाशीय संचार]] (अल्ट्राशॉर्ट पल्स) फ़िल्टरिंग और स्पंद संरूपण
* [[टेराहर्ट्ज़ विकिरण]] (टी-रे) उत्पादन और पहचान।
* [[टेराहर्ट्ज़ विकिरण|टेराहर्ट्ज़ (टी-रे)]] उत्पादन और पहचान।
* [[अल्ट्राफास्ट लेजर स्पेक्ट्रोस्कोपी]]
* [[अल्ट्राफास्ट लेजर स्पेक्ट्रोस्कोपी|पराद्रुत लेजर स्पेक्ट्रोस्कोपी]]
* वेव पैकेट
* तरंग पैकेट


==संदर्भ==
==संदर्भ==
{{reflist}}
{{reflist}}
==अग्रिम पठन==
==अग्रिम पठन==
{{further cleanup|date=October 2014}}
*{{cite book|first = C.|last = Hirlimann|year = 2004|title = Femtosecond Laser Pulses: Principles and Experiments|chapter=Pulsed Optics|editor = Rullière, Claude|edition = 2nd| publisher = Springer |location = New York| isbn=0-387-01769-0}}
*{{cite book|first = C.|last = Hirlimann|year = 2004|title = Femtosecond Laser Pulses: Principles and Experiments|chapter=Pulsed Optics|editor = Rullière, Claude|edition = 2nd| publisher = Springer |location = New York| isbn=0-387-01769-0}}
*{{cite book |title=Ultrafast Optics |author=Andrew M. Weiner |url=http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471415391.html |isbn=978-0-471-41539-8 |year=2009 |publisher=Hoboken, NJ: Wiley}}
*{{cite book |title=Ultrafast Optics |author=Andrew M. Weiner |url=http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471415391.html |isbn=978-0-471-41539-8 |year=2009 |publisher=Hoboken, NJ: Wiley}}
*{{cite book |title=Ultrashort Laser Pulse phenomena |author=J. C. Diels and W. Rudolph |isbn=978-0-12-215493-5 |year=2006 |publisher=New York, Academic}}
*{{cite book |title=Ultrashort Laser Pulse phenomena |author=J. C. Diels and W. Rudolph |isbn=978-0-12-215493-5 |year=2006 |publisher=New York, Academic}}
==बाहरी संबंध==
==बाहरी संबंध==
*The virtual femtosecond laboratory [http://www.lab2.de/ Lab2]
*The virtual femtosecond laboratory [http://www.lab2.de/ Lab2]
Line 127: Line 113:
*Ultrafast Lasers: [http://people.bath.ac.uk/vkv23/English/UltrafastLasers.htm An animated guide to the functioning of Ti:Sapphire lasers and amplifiers.]
*Ultrafast Lasers: [http://people.bath.ac.uk/vkv23/English/UltrafastLasers.htm An animated guide to the functioning of Ti:Sapphire lasers and amplifiers.]


{{DEFAULTSORT:Ultrashort Pulse}}[[Category: नॉनलाइनियर ऑप्टिक्स]] [[Category: लेजर विज्ञान]]
{{DEFAULTSORT:Ultrashort Pulse}}
 
 


[[Category: Machine Translated Page]]
[[Category:Created On 29/03/2023|Ultrashort Pulse]]
[[Category:Created On 29/03/2023]]
[[Category:Lua-based templates|Ultrashort Pulse]]
[[Category:Machine Translated Page|Ultrashort Pulse]]
[[Category:Pages with script errors|Ultrashort Pulse]]
[[Category:Short description with empty Wikidata description|Ultrashort Pulse]]
[[Category:Templates Vigyan Ready|Ultrashort Pulse]]
[[Category:Templates that add a tracking category|Ultrashort Pulse]]
[[Category:Templates that generate short descriptions|Ultrashort Pulse]]
[[Category:Templates using TemplateData|Ultrashort Pulse]]
[[Category:नॉनलाइनियर ऑप्टिक्स|Ultrashort Pulse]]
[[Category:लेजर विज्ञान|Ultrashort Pulse]]

Latest revision as of 10:04, 29 August 2023

प्रकाशिकी में, अल्ट्राशॉर्ट पल्स (अतिलघु स्पंद), जिसे पराद्रुत घटना के रूप में भी जाना जाता है, एक विद्युत चुम्बकीय स्पंद है, जिसकी समय अवधि पिकोसेकंड (10−12 सेकंड) या उससे कम के क्रम की होती है। इस तरह के स्पंदों में ब्रॉडबैंड प्रकाशिकी स्पेक्ट्रम होता है, और इसे मोड-लॉक दोलकों द्वारा बनाया जा सकता है। प्रवर्धन के लाभ माध्यम को हानि से बचने के लिए, अल्ट्राशॉर्ट पल्सों के प्रवर्धन को लगभग हमेशा चिरप्ड स्पंद प्रवर्धन की तकनीक की आवश्यकता होती है।

वे उच्च शिखर तीव्रता (या अधिक सही ढंग से, विकिरण) की विशेषता है जो प्रायः वायु सहित विभिन्न पदार्थों में अरैखिक परस्पर क्रिया की ओर जाता है। इन प्रक्रियाओं का अध्ययन अरैखिक प्रकाशिकी के क्षेत्र में किया जाता है।

विशेष साहित्य में, "अतिलघु" फेमटोसेकंड (एफएस) और पिकोसेकंड (पीएस) श्रेणी को संदर्भित करता है, हालांकि इस तरह की स्पंद अब कृत्रिम रूप से उत्पन्न सबसे छोटी स्पंदों के लिए रिकॉर्ड नहीं रखती हैं। वास्तव में, एटोसेकंड समय पैमाने पर अवधियों के साथ एक्स-रे स्पंदों की सूचना दी गई है।

1999 में रसायन विज्ञान में नोबेल पुरस्कार अहमद एच. ज़ेवैल को दिया गया, ताकि अल्ट्राशॉर्ट पल्सों के उपयोग के लिए समय-समय पर रासायनिक प्रतिक्रियाओं का निरीक्षण किया जा सके, जिस पर वे फेमटोकेमिस्ट्री के क्षेत्र को खोलते हैं।

परिभाषा

समय क्षेत्र में प्रकाश की एक सकारात्मक चिरप्ड अल्ट्राशॉर्ट पल्स।

अल्ट्राशॉर्ट पल्स की कोई मानक परिभाषा नहीं है। प्रायः विशेषता 'अतिलघु' कुछ दसियों फेमटोसेकंड की अवधि वाली स्पंदों पर लागू होती है, लेकिन बड़े अर्थ में कोई भी स्पंद जो कुछ पिकोसेकंड से कम समय तक चलती है, उसे अतिलघु माना जा सकता है। "अतिलघु" और "पराद्रुत" के बीच अंतर आवश्यक है क्योंकि जिस गति से स्पंद प्रसार करता है वह उस माध्यम के अपवर्तन के सूचकांक का फलन है जिसके माध्यम से यह यात्रा करता है, जबकि "अतिलघु" स्पंद तरंगपैकेट की अस्थायी चौड़ाई को संदर्भित करता है।[1]

सामान्य उदाहरण चिरप्ड गॉसियन स्पंद है, एक तरंग जिसका क्षेत्र आयाम गॉसियन लिफाफे का अनुसरण करता है और जिसका तात्कालिक चरण आवृत्ति स्वीप है।

पृष्ठभूमि

अल्ट्राशॉर्ट पल्स के अनुरूप वास्तविक विद्युत क्षेत्र स्पंद के केंद्रीय तरंग दैर्ध्य के अनुरूप कोणीय आवृत्ति ω0 पर दोलन कर रहा है। गणनाओं को सुविधाजनक बनाने के लिए, जटिल क्षेत्र E(t) परिभाषित किया गया है। औपचारिक रूप से, इसे वास्तविक क्षेत्र के अनुरूप विश्लेषणात्मक संकेत के रूप में परिभाषित किया जाता है।

केंद्रीय कोणीय आवृत्ति ω0 प्रायः जटिल क्षेत्र में स्पष्ट रूप से लिखी जाती है, जिसे अस्थायी तीव्रता समारोह I(t) और अस्थायी चरण फलन ψ(t) के रूप में अलग किया जा सकता है-

आवृत्ति क्षेत्र में जटिल विद्युत क्षेत्र की अभिव्यक्ति E(t) के फूरियर रूपांतरण से प्राप्त की जाती है-

शब्द की उपस्थिति के कारण, E(ω) ω0 के आसपास केंद्रित है, और E(ω-ω0) को केवल E(ω) लिखकर संदर्भित करना एक सामान्य अभ्यास है, जो हम इस लेख के अन्य भागों में करेंगे।

जैसे ही समय क्षेत्र में, आवृत्ति क्षेत्र में तीव्रता और चरण फलन को परिभाषित किया जा सकता है-

मात्रा स्पंद की शक्ति वर्णक्रमीय घनत्व (या केवल, स्पेक्ट्रम) है, और चरण वर्णक्रमीय घनत्व (या केवल वर्णक्रमीय चरण) है। वर्णक्रमीय चरण फलनों के उदाहरण में वह स्थिति सम्मिलित है जहां स्थिर है, जिस स्थिति में स्पंद को बैंडविड्थ-सीमित स्पंद कहा जाता है, या जहां द्विघात फलन है, उस स्थिति में तात्क्षणिक आवृति स्वीप की उपस्थिति के कारण स्पंद को चिरप्ड स्पंद कहा जाता है। इस तरह की चिरप को पदार्थ (जैसे कांच) के माध्यम से स्पंद के प्रसार के रूप में प्राप्त किया जा सकता है और यह उनके प्रसार के कारण होता है। इसके परिणामस्वरूप स्पंद का अस्थायी विस्तार होता है।

तीव्रता फलन-अस्थायी और वर्णक्रमीय -स्पंद की समय अवधि और स्पेक्ट्रम बैंडविड्थ निर्धारित करते हैं। जैसा कि अनिश्चितता सिद्धांत द्वारा कहा गया है, उनके उत्पाद (कभी-कभी समय-बैंडविड्थ उत्पाद कहा जाता है) की एक निचली सीमा होती है। यह न्यूनतम मान अवधि के लिए प्रयुक्त परिभाषा और स्पंद के आकार पर निर्भर करता है। किसी दिए गए स्पेक्ट्रम के लिए, न्यूनतम समय-बैंडविड्थ उत्पाद, और इसलिए सबसे छोटी स्पंंद, रूपांतर-सीमित स्पंद द्वारा प्राप्त की जाती है, अर्थात, स्थिर वर्णक्रमीय चरण के लिए। दूसरी ओर, समय-बैंडविड्थ उत्पाद के उच्च मान एक अधिक जटिल स्पंद का संकेत देते हैं।

स्पंद आकार नियंत्रण

हालांकि प्रकाशिक उपकरणों का उपयोग निरंतर प्रकाश के लिए भी किया जाता है, जैसे कि किरण विस्तारक और स्थानिक फिल्टर, अल्ट्राशॉर्ट पल्सों के लिए उपयोग किए जा सकते हैं, कई प्रकाशिक उपकरणों को विशेष रूप से अल्ट्राशॉर्ट पल्सों के लिए डिज़ाइन किया गया है। उनमें से स्पंद सम्पीडक है,[2] एक उपकरण जिसका उपयोग अल्ट्राशॉर्ट पल्सों के वर्णक्रमीय चरण को नियंत्रित करने के लिए किया जा सकता है। यह प्रिज्म या ग्रेटिंग के अनुक्रम से बना है। जब ठीक से समायोजित किया जाता है तो यह इनपुट स्पंद के वर्णक्रमीय चरण φ(ω) को बदल सकता है ताकि आउटपुट स्पंद कम से कम संभव अवधि के साथ बैंडविड्थ-सीमित स्पंद हो। स्पंद संरूपित्र का उपयोग चरण और अल्ट्राशॉर्ट पल्सों के आयाम दोनों में अधिक जटिल परिवर्तन करने के लिए किया जा सकता है।

स्पंद को सटीक रूप से नियंत्रित करने के लिए, निश्चित स्पंद वर्णक्रमीय चरण (जैसे रूपांतर-सीमित) प्राप्त करने के लिए स्पंद वर्णक्रमीय चरण का पूर्ण लक्षण वर्णन आवश्यक है। फिर, स्पंद को नियंत्रित करने के लिए 4f समतल में स्थानिक प्रकाश न्यूनाधिक का उपयोग किया जा सकता है। मल्टीफोटोन अंतःस्पंद अंतःक्षेप चरण स्कैन (एमआईआईपीएस) इस अवधारणा पर आधारित एक तकनीक है। स्थानिक प्रकाश न्यूनाधिक के चरण स्कैन के माध्यम से, एमआईआईपीएस (MIIPS) न केवल लक्षण वर्णन कर सकता है, बल्कि लक्ष्य स्थान (जैसे कि अनुकूलित शीर्ष शक्ति के लिए रूपांतर-सीमित स्पंद, और अन्य विशिष्ट स्पंद आकार) पर आवश्यक स्पंद आकार प्राप्त करने के लिए अल्ट्राशॉर्ट पल्स में हेरफेर भी कर सकता है। यदि स्पंद संरूपित्र पूरी तरह से व्यवस्थित किया गया है, तो यह तकनीक अल्ट्राशॉर्ट पल्सों के वर्णक्रमीय चरण को नियंत्रित करने की अनुमति देती है, जिसमें साधारण प्रकाशिक व्यवस्था का उपयोग किया जाता है, जिसमें कोई गतिमान भाग नहीं होता है। हालाँकि एमआईआईपीएस (MIIPS) की सटीकता अन्य तकनीकों के संबंध में कुछ हद तक सीमित है, जैसे आवृत्ति-समाधित प्रकाशिक अवरोधन (FROG)।[3]

माप तकनीक

अतिलघु प्रकाशिक स्पंद को मापने के लिए कई तकनीकें उपलब्ध हैं।

जब किसी विशेष स्पंद के आकार को ग्रहण किया जाता है तो तीव्रता स्वतःसंबंध स्पंद चौड़ाई देती है।

स्पेक्ट्रल व्यतिकरणमिति (एसआई) एक रेखीय तकनीक है जिसका उपयोग तब किया जा सकता है जब पूर्व-विशेषता वाले संदर्भ स्पंद उपलब्ध हो। यह तीव्रता और चरण देता है। एल्गोरिथ्म जो एसआई (SI) संकेत से तीव्रता और चरण को निकालता है वह प्रत्यक्ष है। प्रत्यक्ष विद्युत-क्षेत्र पुनर्निर्माण (स्पाइडर) के लिए स्पेक्ट्रल चरण व्यतिकरणमिति स्पेक्ट्रल अपरुपण व्यतिकरणमिति पर आधारित गैर-रैखिक स्व-संदर्भ तकनीक है। विधि एसआई (SI) के समान है, सिवाय इसके कि संदर्भ स्पंद स्वयं की स्पेक्ट्रल रूप से स्थानांतरित प्रतिकृति है, जो एसआई (SI) के समान प्रत्यक्ष एफएफटी (FFT) फ़िल्टरिंग दिनचर्या के माध्यम से वर्णक्रमीय तीव्रता और जांच स्पंद के चरण को प्राप्त करने की अनुमति देता है। लेकिन जिसके लिए जांच स्पंद चरण प्राप्त करने के लिए व्यतिकरणमिति से निकाले गए चरण के एकीकरण की आवश्यकता होती है।

आवृत्ति-समाधान प्रकाशिक गेटिंग (FROG) एक अरेखीय तकनीक है जो स्पंद की तीव्रता और चरण का उत्पादन करती है। यह वर्णक्रमीय रूप से हल किया गया स्वसंबंध है। एल्गोरिदम जो एफआरओजी (FROG) अवशेष से तीव्रता और चरण को निकालता है, पुनरावृत्त होता है। पराद्रुत घटना लेजर प्रकाश ई-क्षेत्रों (ग्रेनौइल) का ग्रेटिंग-निष्कासित व्यावहारिक अवलोकन एफआरओजी (FROG) का सरलीकृत संस्करण है। (ग्रेनौली "मेंढक" के लिए फ्रेंच है।)

चिरप स्कैन एमआईआईपीएस (MIIPS) के समान तकनीक है जो द्विघात स्पेक्ट्रल चरणों के रैंप को लागू करके और दूसरे हार्मोनिक स्पेक्ट्रा को मापने के द्वारा स्पंद के वर्णक्रमीय चरण को मापता है। एमआईआईपीएस (MIIPS) के संबंध में, जिसके लिए वर्णक्रमीय चरण को मापने के लिए कई पुनरावृत्तियों की आवश्यकता होती है, आयाम और स्पंद के चरण दोनों को पुनः प्राप्त करने के लिए केवल दो चिरप स्कैन की आवश्यकता होती है।[4]

मल्टीफोटोन अंतःस्पंद व्यतिकरण चरण स्कैन (एमआईआईपीएस) अल्ट्राशॉर्ट पल्स की विशेषता और कुशलतापूर्वक प्रयोग करने की एक विधि है।

गैर समदैशिक माध्यम में तरंग पैकेट प्रसार

ऊपर की चर्चा को आंशिक रूप से दोहराने के लिए, केंद्रीय तरंग सदिश और स्पंद की केंद्रीय आवृत्ति के साथ एक तरंग के विद्युत क्षेत्र का धीरे-धीरे परिवर्ती आवरण सन्निकटन (SVEA) इस प्रकार दिया गया है-

हम विद्युत क्षेत्र के एसवीईए (SVEA) के लिए सजातीय प्रसार वाले गैर-समदैशिक माध्यम में प्रसार पर विचार करते हैं। यह मानते हुए कि पल्स z- अक्ष की दिशा में फैल रही है, यह दिखाया जा सकता है कि सबसे सामान्य स्थितियों में से एक के लिए आवरण , अर्थात् द्विअक्षीय क्रिस्टल, पीडीई (PDE) द्वारा नियंत्रित होता है-[5]

जहां गुणांक में विवर्तन और प्रसार प्रभाव होते हैं जो कंप्यूटर बीजगणित के साथ विश्लेषणात्मक रूप से निर्धारित किए गए हैं और संख्यात्मक रूप से समदैशिक और गैर-समदैशिक माध्यम दोनों के लिए तीसरे क्रम के भीतर सत्यापित किए गए हैं, जो निकट-क्षेत्र और दूर-क्षेत्र में मान्य हैं। समूह वेग प्रक्षेपण का व्युत्क्रम है। में शब्द समूह वेग प्रसार (जीवीडी) या द्वितीय क्रम प्रसार है यह स्पंद की अवधि को बढ़ाता है और स्पंद को चिरप करता है क्योंकि यह माध्यम से प्रसार करता है। में शब्द एक तीसरे क्रम का प्रसार शब्द है जो स्पंद अवधि को और बढ़ा सकता है, भले ही नष्ट हो जाए। और में शब्द स्पंद के चलने का वर्णन करते हैं; गुणांक समूह वेग के घटक और स्पंद (z-अक्ष) के प्रसार की दिशा में इकाई सदिश का अनुपात है। और में शब्द प्रसार के अक्ष के लम्बवत् दिशा में प्रकाशीय तरंग पैकेट के विवर्तन का वर्णन करते हैं। और में समय और स्थान में मिश्रित व्युत्पन्न वाले शब्द क्रमशः और अक्षों के बारे में तरंग पैकेट को घुमाते हैं, तरंग पैकेट (जीवीडी (GVD) के कारण वृद्धि के अलावा) की अस्थायी चौड़ाई बढ़ाते हैं क्रमशः और दिशाओं में प्रसार बढ़ाएं, और चिरप बढ़ाएं (इसके अतिरिक्त के कारण) जब बाद वाला और/या और गैर-लुप्त हो रहा है। शब्द तरंग पैकेट को तल में घुमाता है।आश्चर्यजनक रूप से पर्याप्त है, पहले अपूर्ण विस्तार के कारण, स्पंद के इस घूर्णन को 1990 के दशक के अंत तक अनुभव नहीं किया गया था, लेकिन प्रयोगात्मक रूप से इसकी पुष्टि की गई है।[6] तीसरे क्रम में, उपरोक्त समीकरण के आरएचएस (RHS) में एक अक्षीय क्रिस्टल स्थिति के लिए ये अतिरिक्त शर्तें पाई जाती हैं-[7]

स्पंद के प्रसार के सामने की वक्रता के लिए पहली और दूसरी शर्तें जिम्मेदार हैं। में शब्द सहित ये शब्द एक समदैशिक माध्यम में उपस्थित हैं और बिंदु स्रोत से उत्पन्न होने वाले प्रसार के सामने की गोलाकार सतह के लिए उत्तरदायी हैं। शब्द को अपवर्तन के सूचकांक, आवृत्ति और उसके व्युत्पन्न के संदर्भ में व्यक्त किया जा सकता है और शब्द भी स्पंद को विकृत करता है लेकिन ऐसे फैशन में जो और (विवरण के लिए ट्रिपपेनबैक, स्कॉट और बैंड का संदर्भ देखें) की भूमिकाओं को विपरीत कर देता है। अब तक, यहाँ उपचार रेखीय है, लेकिन गैर-रैखिक प्रसार वाले शब्द प्रकृति के लिए सर्वव्यापी हैं। एक अतिरिक्त अरैखिक शब्द से जुड़े अध्ययनों से पता चला है कि इस तरह के शब्दों का तरंग पैकेट पर गहरा प्रभाव पड़ता है, जिसमें अन्य बातों के अलावा, तरंग पैकेट का स्वयं-खड़ा होना भी सम्मिलित है।[8] गैर-रैखिक पहलू अंततः प्रकाशीय सॉलिटॉन की ओर ले जाते हैं।

बल्कि सामान्य होने के बावजूद, प्रकाशीय स्पंद के प्रसार का वर्णन करने के लिए एसवीईए (SVEA) को एक सरल तरंग समीकरण तैयार करने की आवश्यकता नहीं होती है। वास्तव में, जैसा कि दिखाया गया है,[9] यहां तक कि विद्युत चुम्बकीय द्वितीय क्रम तरंग समीकरण का बहुत ही सामान्य रूप दिशात्मक घटकों में खंड किया जा सकता है, जो आवरण के स्थान पर क्षेत्र के लिए प्रथम क्रम तरंग समीकरण तक पहुंच प्रदान करता है। इसके लिए केवल एक धारणा की आवश्यकता होती है कि तरंग दैर्ध्य के पैमाने पर क्षेत्र का विकास धीमा है, और स्पंद की बैंडविड्थ को बिल्कुल भी प्रतिबंधित नहीं करता है - जैसा कि विशद रूप से प्रदर्शित किया गया है।[10]

उच्च हार्मोनिक्स

उच्च हार्मोनिक उत्पादन के माध्यम से गैर-रैखिक माध्यम में उच्च ऊर्जा अल्ट्राशॉर्ट पल्सों को उत्पन्न किया जा सकता है। उच्च तीव्रता वाली अल्ट्राशॉर्ट पल्स माध्यम में हार्मोनिक्स की एक सरणी उत्पन्न करेगी इसके बाद एक एकवर्णक के साथ रुचि के विशेष हार्मोनिक का चयन किया जाता है। इस तकनीक का उपयोग निकट अवरक्त टी-नीलम लेजर स्पंदो से अत्यधिक पराबैंगनी और सॉफ्ट-एक्स-रे प्रणालियों में अल्ट्राशॉर्ट पल्सों का उत्पादन करने के लिए किया गया है।

अनुप्रयोग

उन्नत पदार्थ 3डी माइक्रो-/नैनो-प्रसंस्करण

पिछले दशक के दौरान विभिन्न प्रकार के अनुप्रयोगों के लिए जटिल संरचनाओं और उपकरणों को कुशलतापूर्वक बनाने के लिए फेमटोसेकेंड लेजर की क्षमता का व्यापक अध्ययन किया गया है। अतिलघु प्रकाश स्पंद के साथ अत्याधुनिक लेजर प्रोसेसिंग तकनीकों का उपयोग उप-माइक्रोमीटर विश्लेषण वाले पदार्थ को निर्माण करने के लिए किया जा सकता है। उपयुक्त प्रकाश प्रतिरोध और अन्य पारदर्शी माध्यम के प्रत्यक्ष लेजर लेखन (DLW) जटिल त्रि-आयामी फोटोनिक क्रिस्टल (PhC), माइक्रो-प्रकाशीय घटक, ग्रेटिंग्स, ऊतक अभियांत्रिकी (TE) स्कैफोल्ड और प्रकाशीय तरंगपथक बना सकते हैं। दूरसंचार और जैव अभियांत्रिकी में अगली पीढ़ी के अनुप्रयोगों को सशक्त बनाने के लिए ऐसी संरचनाएं संभावित रूप से उपयोगी हैं जो तेजी से परिष्कृत लघु भागों के निर्माण पर निर्भर हैं। पराद्रुत लेजर प्रसंस्करण की सटीकता, निर्माण की गति और बहुमुखी प्रतिभा इसे विनिर्माण के लिए एक महत्वपूर्ण औद्योगिक उपकरण बनने के लिए अच्छी तरह से स्थापित करती है।[11]

सूक्ष्म-मशीनिंग

फेमटोसेकंड लेजर के अनुप्रयोगों के बीच, जिरकोनिया दंत प्रत्यारोपण के आसपास हड्डी के निर्माण को बढ़ाने के लिए प्रत्यारोपण सतहों के माइक्रोटेक्स्चराइजेशन का प्रयोग किया गया है। तकनीक ने बहुत कम तापीय क्षति के साथ और सतह के दूषित पदार्थों को कम करने के साथ सटीक होने का प्रदर्शन किया। पश्च पशु अध्ययनों ने प्रदर्शित किया कि ऑक्सीजन परत में वृद्धि और फेमटोसेकंड लेजर के साथ माइक्रोटेक्स्चरिंग द्वारा बनाई गई सूक्ष्म और नैनोफीचर्स के परिणामस्वरूप हड्डियों के निर्माण की उच्च दर, उच्च अस्थि घनत्व और बेहतर यांत्रिक स्थिरता हुई है।[12][13][14]

यह भी देखें

संदर्भ

  1. Paschotta, Rüdiger. "लेजर भौतिकी और प्रौद्योगिकी का विश्वकोश - अल्ट्राशॉर्ट पल्स, फेमटोसेकंड, लेजर". www.rp-photonics.com.
  2. J. C. Diels, Femtosecond dye lasers, in Dye Laser Principles, F. J. Duarte and L. W. Hillman (Eds.) (Academic, New York, 1990) Chapter 3.
  3. Comin, Alberto; Rhodes, Michelle; Ciesielski, Richard; Trebino, Rick; Hartschuh, Achim (2015). "Pulse Characterization in Ultrafast Microscopy: a Comparison of FROG, MIIPS and G-MIIPS". Cleo: 2015. pp. SW1H.5. doi:10.1364/CLEO_SI.2015.SW1H.5. ISBN 978-1-55752-968-8. S2CID 23655339.
  4. Loriot, Vincent; Gitzinger, Gregory; Forget, Nicolas (2013). "चिरप स्कैन द्वारा फेमटोसेकंड लेजर दालों का स्व-संदर्भित लक्षण वर्णन". Optics Express. 21 (21): 24879–93. Bibcode:2013OExpr..2124879L. doi:10.1364/OE.21.024879. ISSN 1094-4087. PMID 24150331.
  5. Band, Y. B.; Trippenbach, Marek (1996). "नॉनिसोट्रोपिक मीडिया में ऑप्टिकल वेव-पैकेट प्रसार". Physical Review Letters. 76 (9): 1457–1460. Bibcode:1996PhRvL..76.1457B. doi:10.1103/PhysRevLett.76.1457. PMID 10061728.
  6. Radzewicz, C.; Krasinski, J. S.; La Grone, M. J.; Trippenbach, M.; Band, Y. B. (1997). "रूटाइल क्रिस्टल में फेमटोसेकंड वेव-पैकेट टिल्टिंग का इंटरफेरोमेट्रिक माप". Journal of the Optical Society of America B. 14 (2): 420. Bibcode:1997JOSAB..14..420R. doi:10.1364/JOSAB.14.000420.
  7. Trippenbach, Marek; Scott, T. C.; Band, Y. B. (1997). "फैलाने वाले मीडिया में बीम और दालों के निकट-क्षेत्र और दूर-क्षेत्र प्रसार" (PDF). Optics Letters. 22 (9): 579–81. Bibcode:1997OptL...22..579T. doi:10.1364/OL.22.000579. PMID 18185596.
  8. Trippenbach, Marek; Band, Y. B. (1997). "फैलाने वाले नॉनलाइनियर मीडिया में शॉर्ट-पल्स स्प्लिटिंग की गतिशीलता". Physical Review A. 56 (5): 4242–4253. Bibcode:1997PhRvA..56.4242T. doi:10.1103/PhysRevA.56.4242.
  9. Kinsler, Paul (2010). "न्यूनतम सन्निकटन के साथ ऑप्टिकल पल्स प्रसार". Physical Review A. 81 (1): 013819. arXiv:0810.5689. Bibcode:2010PhRvA..81a3819K. doi:10.1103/PhysRevA.81.013819. ISSN 1050-2947.
  10. Genty, G.; Kinsler, P.; Kibler, B.; Dudley, J. M. (2007). "नॉनलाइनियर वेवगाइड्स में उप-चक्र गतिकी और हार्मोनिक जनरेशन का नॉनलाइनियर लिफाफा समीकरण मॉडलिंग". Optics Express. 15 (9): 5382–7. Bibcode:2007OExpr..15.5382G. doi:10.1364/OE.15.005382. ISSN 1094-4087. PMID 19532792.
  11. Malinauskas, Mangirdas; Žukauskas, Albertas; Hasegawa, Satoshi; Hayasaki, Yoshio; Mizeikis, Vygantas; Buividas, Ričardas; Juodkazis, Saulius (2016). "सामग्री का अल्ट्राफास्ट लेजर प्रसंस्करण: विज्ञान से उद्योग तक". Light: Science & Applications. 5 (8): e16133. Bibcode:2016LSA.....5E6133M. doi:10.1038/lsa.2016.133. ISSN 2047-7538. PMC 5987357. PMID 30167182.
  12. Delgado-Ruíz, R. A.; Calvo-Guirado, J. L.; Moreno, P.; Guardia, J.; Gomez-Moreno, G.; Mate-Sánchez, J. E.; Ramirez-Fernández, P.; Chiva, F. (2011). "जिरकोनिया दंत प्रत्यारोपण की फेमटोसेकंड लेजर माइक्रोस्ट्रक्चरिंग". Journal of Biomedical Materials Research Part B: Applied Biomaterials. 96B (1): 91–100. doi:10.1002/jbm.b.31743. ISSN 1552-4973. PMID 21061361.
  13. Calvo Guirado et al, 2013 and 2014
  14. Delgado-Ruiz et al, 2014)

अग्रिम पठन

बाहरी संबंध