ऊष्मागतिकी सीमान्त: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
[[सांख्यिकीय यांत्रिकी]] में, किसी प्रणाली की ऊष्मागतिकी सीमान्त या मैक्रोस्कोपिक सीमा,<ref>{{cite book |title=लघु प्रणालियों के ऊष्मप्रवैगिकी|last1=Hill |first1=Terrell L. |year=2002 |publisher=Courier Dover Publications |isbn=9780486495095 }}</ref> कणों की (जैसे, परमाणु या [[अणु]]) एक बहुत बड़ी संख्या N के लिए एक [[सीमा (गणित)|सीमा है]] जहां आयतन को कणों की संख्या के अनुपात में बढ़ने के लिए लिया जाता है।<ref name="blundell">S.J. Blundell and K.M. Blundell, "Concepts in Thermal Physics", Oxford University Press (2009)</ref>ऊष्मागतिकी सीमान्त को एक बड़े आयतन वाली प्रणाली की सीमा के रूप में परिभाषित किया जाता है, जिसमें कण [[घनत्व]] स्थिर होता है।<ref name="huang">{{cite book |title=सांख्यिकीय यांत्रिकी|last1=Huang |first1=Kerson |year=1987 |publisher=Wiley |isbn=0471815187 }}</ref> | |||
: <math>N \to \infty,\, V \to \infty,\, \frac N V =\text{constant}</math> | : <math>N \to \infty,\, V \to \infty,\, \frac N V =\text{constant}</math> | ||
इस सीमा में, मैक्रोस्कोपिक थर्मोडीनमिक्स मान्य है। वहां, वैश्विक राशियों में [[थर्मल उतार-चढ़ाव|ऊष्मीय उतार-चढ़ाव]] नगण्य हैं, और सभी थर्मोडायनामिक राशियाँ, जैसे दबाव और [[ऊर्जा]], [[तापमान]] और घनत्व जैसे थर्मोडायनामिक चर के फलन हैं। उदाहरण के लिए, [[गैस]] की एक बड़ी मात्रा के लिए, कुल [[आंतरिक ऊर्जा]] का [[थर्मल उतार-चढ़ाव|उतार-चढ़ाव]] नगण्य है और इसे अनदेखा किया जा सकता है, और गैस के दबाव और तापमान के ज्ञान से औसत आंतरिक ऊर्जा की भविष्यवाणी की जा सकती है। | इस सीमा में, मैक्रोस्कोपिक थर्मोडीनमिक्स मान्य है। वहां, वैश्विक राशियों में [[थर्मल उतार-चढ़ाव|ऊष्मीय उतार-चढ़ाव]] नगण्य हैं, और सभी थर्मोडायनामिक राशियाँ, जैसे दबाव और [[ऊर्जा]], [[तापमान]] और घनत्व जैसे थर्मोडायनामिक चर के फलन हैं। उदाहरण के लिए, [[गैस]] की एक बड़ी मात्रा के लिए, कुल [[आंतरिक ऊर्जा]] का [[थर्मल उतार-चढ़ाव|उतार-चढ़ाव]] नगण्य है और इसे अनदेखा किया जा सकता है, और गैस के दबाव और तापमान के ज्ञान से औसत आंतरिक ऊर्जा की भविष्यवाणी की जा सकती है। | ||
ध्यान दें कि | ध्यान दें कि ऊष्मागतिकी सीमान्त में सभी प्रकार के [[थर्मल उतार-चढ़ाव|ऊष्मीय उतार-चढ़ाव]] नगण्य नहीं होते हैं - केवल सिस्टम चर में [[थर्मल उतार-चढ़ाव|उतार-चढ़ाव]] को महत्वता नहीं दी जाती है। कुछ भौतिक रूप से देखने योग्य राशियाँ में अभी भी पता लगाने योग्य [[थर्मल उतार-चढ़ाव|उतार-चढ़ाव]] (सामान्यतः सूक्ष्म पैमाने पर) होंगे, जैसे | ||
* गैस स्कैटरिंग लाइट में सूक्ष्म स्थानिक घनत्व में उतार-चढ़ाव ([[रेले स्कैटरिंग]]) | * गैस स्कैटरिंग लाइट में सूक्ष्म स्थानिक घनत्व में उतार-चढ़ाव ([[रेले स्कैटरिंग]]) | ||
* दृश्यमान कणों की गति ([[एक प्रकार कि गति|ब्रोनियन मोशन]]) | * दृश्यमान कणों की गति ([[एक प्रकार कि गति|ब्रोनियन मोशन]]) | ||
* [[विद्युत चुम्बकीय]] क्षेत्र में उतार-चढ़ाव, (मुक्त स्थान में कृष्णिका विकिरण, वायर्स में जॉनसन-निक्विस्ट शोर) | * [[विद्युत चुम्बकीय]] क्षेत्र में उतार-चढ़ाव, (मुक्त स्थान में कृष्णिका विकिरण, वायर्स में जॉनसन-निक्विस्ट शोर) | ||
ऊष्मागतिकी सीमान्त पर विचार करते समय गणितीय रूप से एक [[स्पर्शोन्मुख विश्लेषण]] किया जाता है। | |||
== | == ऊष्मागतिकी सीमान्त का कारण == | ||
ऊष्मागतिकी सीमान्त अनिवार्य रूप से संभाव्यता सिद्धांत के [[केंद्रीय सीमा प्रमेय]] का परिणाम है। N अणुओं की एक गैस की आंतरिक ऊर्जा, क्रमशः N अणुओं के योगदान का कुल योग है, जिनमें से प्रत्येक लगभग स्वतंत्र है, और इसलिए केंद्रीय सीमा प्रमेय भविष्यवाणी करता है कि उतार-चढ़ाव के आकार का अनुपात 1/N<sup>1/2</sup> के क्रम का होगा| इस प्रकार अणुओं की एवोगैड्रो संख्या के साथ एक मैक्रोस्कोपिक आयतन के लिए, उतार-चढ़ाव नगण्य हैं, और इसलिए थर्मोडीनमिक्स काम करती है। सामान्य तौर पर, गैसों, तरल पदार्थों और ठोस पदार्थों के लगभग सभी मैक्रोस्कोपिक आयतन को ऊष्मागतिकी सीमान्त में माना जा सकता है। | |||
अति सूक्ष्म प्रणालियों के लिए, अलग-अलग सांख्यिकीय एसेम्ब्लेंस ([[माइक्रोकैनोनिकल पहनावा|माइक्रोकैनोनिकल एसेम्ब्लेंस]], कैनोनिकल एसेम्ब्लेंस, ग्रैंड कैनोनिकल एसेम्ब्लेंस) अलग-अलग व्यवहारों की अनुमति देता है। उदाहरण के लिए, [[विहित पहनावा|कैनोनिकल एसेम्ब्लेंस]] में प्रणाली के अंदर को स्थिर रखा जाता है, जबकि [[भव्य विहित पहनावा|ग्रैंड कैनोनिकल एसेम्ब्लेंस]] में कणों की संख्या में उतार-चढ़ाव हो सकता है। | अति सूक्ष्म प्रणालियों के लिए, अलग-अलग सांख्यिकीय एसेम्ब्लेंस ([[माइक्रोकैनोनिकल पहनावा|माइक्रोकैनोनिकल एसेम्ब्लेंस]], कैनोनिकल एसेम्ब्लेंस, ग्रैंड कैनोनिकल एसेम्ब्लेंस) अलग-अलग व्यवहारों की अनुमति देता है। उदाहरण के लिए, [[विहित पहनावा|कैनोनिकल एसेम्ब्लेंस]] में प्रणाली के अंदर को स्थिर रखा जाता है, जबकि [[भव्य विहित पहनावा|ग्रैंड कैनोनिकल एसेम्ब्लेंस]] में कणों की संख्या में उतार-चढ़ाव हो सकता है। ऊष्मागतिकी सीमान्त में, ये वैश्विक उतार-चढ़ाव महत्वपूर्ण नहीं रह जाते हैं।<ref name="huang"/> | ||
यह | यह ऊष्मागतिकी सीमान्त है जिसके कारण मैक्रोस्कोपिक व्यापक चरों की योज्यता गुण का पालन किया जाता है। इसीलिए, दो प्रणालियों या वस्तुओं की एक साथ ली गई एंट्रॉपी (उनकी ऊर्जा और मात्रा के अतिरिक्त) दोनों के अलग-अलग मानों का योग है। सांख्यिकीय यांत्रिकी के कुछ मॉडलों में, ऊष्मागतिकी सीमान्त मौजूद है, लेकिन सीमा स्थितियों पर निर्भर करती है। उदाहरण के लिए, यह [[छह शीर्ष मॉडल]] में होता है: थोक मुक्त ऊर्जा आवधिक सीमा स्थितियों और डोमेन वॉल सीमा स्थितियों के लिए अलग-अलग होती है। | ||
== ऐसे मामले जहां कोई | == ऐसे मामले जहां कोई ऊष्मागतिकी सीमान्त नहीं है == | ||
ऊष्मागतिकी सीमान्त सभी मामलों में मौजूद नहीं है। सामान्यतः, एक मॉडल को [[कण संख्या]] घनत्व स्थिर रखते हुए कण संख्या के साथ मात्रा बढ़ाकर ऊष्मागतिकी सीमान्त तक ले जाया जाता है। दो सामान्य नियमितीकरण हैं, बॉक्स नियमितीकरण, जहां विषय एक ज्यामितीय बॉक्स तक ही सीमित रहता है, और आवधिक नियमितीकरण, जहां विषय एक सपाट टोरस की सतह पर रखा जाता है (यानी आवधिक सीमा शर्तों के साथ बॉक्स)। यदपि, निम्नलिखित तीन उदाहरण उन मामलों को प्रदर्शित करते हैं जहाँ ये दृष्टिकोण ऊष्मागतिकी सीमान्त तक नहीं ले जाते हैं: | |||
* आकर्षक क्षमता वाले कण जो (अणुओं के बीच वान डेर वाल्स बल के विपरीत) घूमते नहीं हैं और बहुत कम दूरी पर भी प्रतिकारक बन जाते हैं: ऐसे सन्दर्भ में स्थान उपलब्ध होने पर भी समान रूप से फैलने के बजाय, पदार्थ आपस में चिपक जाते हैं। यह गुरुत्वाकर्षण प्रणालियों का विषय है, जहां पदार्थ फिलामेंट्स, गैलेक्टिक सुपरक्लस्टर्स, आकाशगंगाओं, तारकीय समूहों और सितारों में चिपकने का प्रयास करता है। | * आकर्षक क्षमता वाले कण जो (अणुओं के बीच वान डेर वाल्स बल के विपरीत) घूमते नहीं हैं और बहुत कम दूरी पर भी प्रतिकारक बन जाते हैं: ऐसे सन्दर्भ में स्थान उपलब्ध होने पर भी समान रूप से फैलने के बजाय, पदार्थ आपस में चिपक जाते हैं। यह गुरुत्वाकर्षण प्रणालियों का विषय है, जहां पदार्थ फिलामेंट्स, गैलेक्टिक सुपरक्लस्टर्स, आकाशगंगाओं, तारकीय समूहों और सितारों में चिपकने का प्रयास करता है। | ||
Line 29: | Line 29: | ||
{{Reflist}} | {{Reflist}} | ||
{{DEFAULTSORT:Thermodynamic Limit}} | {{DEFAULTSORT:Thermodynamic Limit}} | ||
[[Category:All articles with unsourced statements|Thermodynamic Limit]] | |||
[[Category:Articles with unsourced statements from June 2013|Thermodynamic Limit]] | |||
[[Category: | [[Category:Created On 31/03/2023|Thermodynamic Limit]] | ||
[[Category:Created On 31/03/2023]] | [[Category:Lua-based templates|Thermodynamic Limit]] | ||
[[Category:Vigyan Ready]] | [[Category:Machine Translated Page|Thermodynamic Limit]] | ||
[[Category:Pages with script errors|Thermodynamic Limit]] | |||
[[Category:Templates Vigyan Ready|Thermodynamic Limit]] | |||
[[Category:Templates that add a tracking category|Thermodynamic Limit]] | |||
[[Category:Templates that generate short descriptions|Thermodynamic Limit]] | |||
[[Category:Templates using TemplateData|Thermodynamic Limit]] | |||
[[Category:ऊष्मप्रवैगिकी|Thermodynamic Limit]] | |||
[[Category:भौतिकी में अवधारणाएँ|Thermodynamic Limit]] | |||
[[Category:सांख्यिकीय यांत्रिकी|Thermodynamic Limit]] |
Latest revision as of 16:58, 11 September 2023
सांख्यिकीय यांत्रिकी में, किसी प्रणाली की ऊष्मागतिकी सीमान्त या मैक्रोस्कोपिक सीमा,[1] कणों की (जैसे, परमाणु या अणु) एक बहुत बड़ी संख्या N के लिए एक सीमा है जहां आयतन को कणों की संख्या के अनुपात में बढ़ने के लिए लिया जाता है।[2]ऊष्मागतिकी सीमान्त को एक बड़े आयतन वाली प्रणाली की सीमा के रूप में परिभाषित किया जाता है, जिसमें कण घनत्व स्थिर होता है।[3]
इस सीमा में, मैक्रोस्कोपिक थर्मोडीनमिक्स मान्य है। वहां, वैश्विक राशियों में ऊष्मीय उतार-चढ़ाव नगण्य हैं, और सभी थर्मोडायनामिक राशियाँ, जैसे दबाव और ऊर्जा, तापमान और घनत्व जैसे थर्मोडायनामिक चर के फलन हैं। उदाहरण के लिए, गैस की एक बड़ी मात्रा के लिए, कुल आंतरिक ऊर्जा का उतार-चढ़ाव नगण्य है और इसे अनदेखा किया जा सकता है, और गैस के दबाव और तापमान के ज्ञान से औसत आंतरिक ऊर्जा की भविष्यवाणी की जा सकती है।
ध्यान दें कि ऊष्मागतिकी सीमान्त में सभी प्रकार के ऊष्मीय उतार-चढ़ाव नगण्य नहीं होते हैं - केवल सिस्टम चर में उतार-चढ़ाव को महत्वता नहीं दी जाती है। कुछ भौतिक रूप से देखने योग्य राशियाँ में अभी भी पता लगाने योग्य उतार-चढ़ाव (सामान्यतः सूक्ष्म पैमाने पर) होंगे, जैसे
- गैस स्कैटरिंग लाइट में सूक्ष्म स्थानिक घनत्व में उतार-चढ़ाव (रेले स्कैटरिंग)
- दृश्यमान कणों की गति (ब्रोनियन मोशन)
- विद्युत चुम्बकीय क्षेत्र में उतार-चढ़ाव, (मुक्त स्थान में कृष्णिका विकिरण, वायर्स में जॉनसन-निक्विस्ट शोर)
ऊष्मागतिकी सीमान्त पर विचार करते समय गणितीय रूप से एक स्पर्शोन्मुख विश्लेषण किया जाता है।
ऊष्मागतिकी सीमान्त का कारण
ऊष्मागतिकी सीमान्त अनिवार्य रूप से संभाव्यता सिद्धांत के केंद्रीय सीमा प्रमेय का परिणाम है। N अणुओं की एक गैस की आंतरिक ऊर्जा, क्रमशः N अणुओं के योगदान का कुल योग है, जिनमें से प्रत्येक लगभग स्वतंत्र है, और इसलिए केंद्रीय सीमा प्रमेय भविष्यवाणी करता है कि उतार-चढ़ाव के आकार का अनुपात 1/N1/2 के क्रम का होगा| इस प्रकार अणुओं की एवोगैड्रो संख्या के साथ एक मैक्रोस्कोपिक आयतन के लिए, उतार-चढ़ाव नगण्य हैं, और इसलिए थर्मोडीनमिक्स काम करती है। सामान्य तौर पर, गैसों, तरल पदार्थों और ठोस पदार्थों के लगभग सभी मैक्रोस्कोपिक आयतन को ऊष्मागतिकी सीमान्त में माना जा सकता है।
अति सूक्ष्म प्रणालियों के लिए, अलग-अलग सांख्यिकीय एसेम्ब्लेंस (माइक्रोकैनोनिकल एसेम्ब्लेंस, कैनोनिकल एसेम्ब्लेंस, ग्रैंड कैनोनिकल एसेम्ब्लेंस) अलग-अलग व्यवहारों की अनुमति देता है। उदाहरण के लिए, कैनोनिकल एसेम्ब्लेंस में प्रणाली के अंदर को स्थिर रखा जाता है, जबकि ग्रैंड कैनोनिकल एसेम्ब्लेंस में कणों की संख्या में उतार-चढ़ाव हो सकता है। ऊष्मागतिकी सीमान्त में, ये वैश्विक उतार-चढ़ाव महत्वपूर्ण नहीं रह जाते हैं।[3]
यह ऊष्मागतिकी सीमान्त है जिसके कारण मैक्रोस्कोपिक व्यापक चरों की योज्यता गुण का पालन किया जाता है। इसीलिए, दो प्रणालियों या वस्तुओं की एक साथ ली गई एंट्रॉपी (उनकी ऊर्जा और मात्रा के अतिरिक्त) दोनों के अलग-अलग मानों का योग है। सांख्यिकीय यांत्रिकी के कुछ मॉडलों में, ऊष्मागतिकी सीमान्त मौजूद है, लेकिन सीमा स्थितियों पर निर्भर करती है। उदाहरण के लिए, यह छह शीर्ष मॉडल में होता है: थोक मुक्त ऊर्जा आवधिक सीमा स्थितियों और डोमेन वॉल सीमा स्थितियों के लिए अलग-अलग होती है।
ऐसे मामले जहां कोई ऊष्मागतिकी सीमान्त नहीं है
ऊष्मागतिकी सीमान्त सभी मामलों में मौजूद नहीं है। सामान्यतः, एक मॉडल को कण संख्या घनत्व स्थिर रखते हुए कण संख्या के साथ मात्रा बढ़ाकर ऊष्मागतिकी सीमान्त तक ले जाया जाता है। दो सामान्य नियमितीकरण हैं, बॉक्स नियमितीकरण, जहां विषय एक ज्यामितीय बॉक्स तक ही सीमित रहता है, और आवधिक नियमितीकरण, जहां विषय एक सपाट टोरस की सतह पर रखा जाता है (यानी आवधिक सीमा शर्तों के साथ बॉक्स)। यदपि, निम्नलिखित तीन उदाहरण उन मामलों को प्रदर्शित करते हैं जहाँ ये दृष्टिकोण ऊष्मागतिकी सीमान्त तक नहीं ले जाते हैं:
- आकर्षक क्षमता वाले कण जो (अणुओं के बीच वान डेर वाल्स बल के विपरीत) घूमते नहीं हैं और बहुत कम दूरी पर भी प्रतिकारक बन जाते हैं: ऐसे सन्दर्भ में स्थान उपलब्ध होने पर भी समान रूप से फैलने के बजाय, पदार्थ आपस में चिपक जाते हैं। यह गुरुत्वाकर्षण प्रणालियों का विषय है, जहां पदार्थ फिलामेंट्स, गैलेक्टिक सुपरक्लस्टर्स, आकाशगंगाओं, तारकीय समूहों और सितारों में चिपकने का प्रयास करता है।
- शून्येतर औसत आवेश घनत्व वाली प्रणाली: इस सन्दर्भ में, आवधिक सीमा स्थितियों का उपयोग नहीं किया जा सकता है क्योंकि विद्युत प्रवाह के लिए कोई संगत मान नहीं है। दूसरी ओर, बॉक्स नियमितीकरण के साथ, पदार्थ केवल मामूली फ्रिंज प्रभावों के साथ कम या ज्यादा समान रूप से फैलने के बजाय बॉक्स की सीमा के साथ एकत्र होने प्रयास करता है।
- पूर्ण शून्य तापमान के पास कुछ क्वांटम यांत्रिकी घटनाएं विसंगतियाँ दिखाती हैं; उदाहरण., बोस-आइंस्टीन संघनन, अतिचालकता और अतिप्रवाहिता।[citation needed]
- कोई भी प्रणाली जो H-स्थिर नहीं है; इस विषय को आपत्तिजनक भी कहा जाता है।
संदर्भ
- ↑ Hill, Terrell L. (2002). लघु प्रणालियों के ऊष्मप्रवैगिकी. Courier Dover Publications. ISBN 9780486495095.
- ↑ S.J. Blundell and K.M. Blundell, "Concepts in Thermal Physics", Oxford University Press (2009)
- ↑ 3.0 3.1 Huang, Kerson (1987). सांख्यिकीय यांत्रिकी. Wiley. ISBN 0471815187.