तो यह वास्तव में हेल्महोल्ट्ज़ अपघटन होते है।<ref>[http://bohr.physics.berkeley.edu/classes/221/1112/notes/hamclassemf.pdf Online lecture notes by Robert Littlejohn]</ref>
तो यह वास्तव में हेल्महोल्ट्ज़ अपघटन होते है।<ref>[http://bohr.physics.berkeley.edu/classes/221/1112/notes/hamclassemf.pdf Online lecture notes by Robert Littlejohn]</ref>
== यह भी देखें ==
== यह भी देखें ==
* सदिश क्षेत्रों के संबंधित अपघटन के लिए क्लेबश प्रतिनिधित्व
* सदिश क्षेत्रों के संबंधित अपघटन के लिए क्लेबश प्रतिनिधित्व
Line 296:
Line 294:
{{Authority control}}
{{Authority control}}
{{DEFAULTSORT:Helmholtz Decomposition}}[[Category: वेक्टर पथरी]] [[Category: विश्लेषण में प्रमेय]] [[Category: विश्लेषणात्मक ज्यामिति]] [[Category: हरमन वॉन हेल्महोल्ट्ज़]] [[Category: पथरी में प्रमेय]]
{{DEFAULTSORT:Helmholtz Decomposition}}
[[Category: Machine Translated Page]]
[[Category:Created On 24/03/2023|Helmholtz Decomposition]]
भौतिकी और गणित में, वेक्टर कैलकुलस के क्षेत्र में, हेल्महोल्ट्ज़ सिद्धांत,[1][2] जिसे वेक्टर कैलकुलस के मौलिक सिद्धांत के रूप में भी जाना जाता है,[3][4][5][6][7][8][9] यह बताता है कि किसी भी पर्याप्त रूप से समतल, तेजी से क्षय करने वाले वेक्टर क्षेत्र को तीन आयामों में एक अघूर्णनी (कर्ल-मुफ्त) सदिश क्षेत्र और परिनालिकीय क्षेत्र (विचलन-मुफ्त) सदिश क्षेत्र के योग में हल किया जा सकता है, इसे हेल्महोल्ट्ज़ अपघटन या हेल्महोल्ट्ज़ प्रतिनिधित्व के रूप में जाना जाता है। इसका नाम हरमन वॉन हेल्महोल्ट्ज़ के नाम पर रखा गया है।[10]
जैसा कि एक अघूर्णी सदिश क्षेत्र में एक अदिश क्षमता होती है और एक परिनालिकीय सदिश क्षेत्र में सदिश क्षमता होती है, हेल्महोल्ट्ज़ अपघटन बताता है कि सदिश क्षेत्र (उचित समतल और क्षय की स्थिति को संतुष्ट करते हुए) को योग के रूप में विघटित किया जा सकता है ,
जहाँ अदिश क्षेत्र होते है उसे अदिश विभव कहा जाता है, और A एक सदिश क्षेत्र है, जिसे सदिश विभव कहा जाता है।
एक बंधे हुए डोमेन पर एक सदिश क्षेत्र पर , जो अंदर से दो बार लगातार भिन्न होता है , और जाने वह सतह हो जो डोमेन को घेरती है . तब कर्ल-मुक्त घटक और विचलन-मुक्त घटक में विघटित किया जा सकता है:[11]
जहाँ
और के संबंध में संचालिका होता है , नहीं .
अगर और इसलिए असीमित है, और कम से कम उतनी ही तेजी से लुप्त हो जाता है जैसा , तो एक है[12]
यह विशेष रूप से अगर है में दो बार लगातार अवकलनीय है और सीमित समर्थन है।
व्युत्पत्ति
मान लीजिए हमारे पास एक वेक्टर फलन है जिनमें से हम कर्ल जानते है, , और विचलन, , सीमा पर डोमेन और क्षेत्र में होता है। प्रपत्र में डेल्टा फलन का उपयोग करके फलन है
जहाँ लाप्लास ऑपरेटर है, हमारे पास है
जहाँ हमने सदिश लाप्लासियन की परिभाषा का उपयोग किया है:
भेदभाव/एकीकरण के संबंध में द्वारा और अंतिम पंक्ति में, फलन तर्कों की रैखिकता:
एक -आयामी वेक्टर समष्टि के साथ , उचित ग्रीन के कार्य द्वारा प्रतिस्थापित किया जाना चाहिए लाप्लासियन के लिए ग्रीन के कार्य करता है
जहां इंडेक्स के लिए आइंस्टीन संकेतन का उपयोग किया जाता है . उदाहरण के लिए, 2डी।
ऊपर दिए गए चरणों का पालन करके हम लिख सकते है
जहाँ क्रोनकर डेल्टा है (और योग सम्मेलन फिर से उपयोग किया जाता है)। ऊपर प्रयुक्त वेक्टर लाप्लासियन की परिभाषा के स्थान पर, अब हम लेवी-सिविता प्रतीक के लिए एक पहचान का उपयोग करते है ,
ध्यान दें कि वेक्टर क्षमता को रैंक से बदल दिया जाता है- टेंसर इन आयाम है।
कई गुना अधिक सामान्यीकरण के लिए, हॉज अपघटन हेल्महोल्ट्ज़ अपघटन विभेदक रूपों की चर्चा देखें।
फूरियर रूपांतरण से एक अन्य व्युत्पत्ति
ध्यान दें कि यहां बताए गए सिद्धांत में हमने यह निश्चित किया है कि यदि एक बाध्य डोमेन पर परिभाषित नहीं है, तब से भी तेज क्षय होगा . इस प्रकार, का फूरियर रूपांतरण , रूप में दर्शाया गया है , के अधिपत्रित होने पर हम औपचारिक समझौता लागू करते है।
एक अदिश क्षेत्र का फूरियर रूपांतरण एक अदिश क्षेत्र है, और सदिश क्षेत्र का फूरियर रूपांतरण समान आयाम का एक सदिश क्षेत्र है।
अब निम्नलिखित अदिश और सदिश क्षेत्रों पर विचार करें:
इस तरह
निर्धारित विचलन और कर्ल के साथ क्षेत्र
शब्द "हेल्महोल्ट्ज़ सिद्धांत" निम्नलिखित का भी उल्लेख कर सकता है। मान लीजिए कि C एक परिनालिका सदिश क्षेत्र है और R3 पर एक अदिश क्षेत्र है जो पर्याप्त रूप से समतल है और जो अनंत पर 1/r2 से अधिक तेजी से लुप्त हो जाते है। फिर एक सदिश क्षेत्र F में सम्मलित होते है जैसे कि:
यदि अतिरिक्त सदिश क्षेत्र F के रूप में लुप्त हो जाता है r → ∞, तो F अद्वितीय हो जाते है।[12]
दूसरे शब्दों में, एक सदिश क्षेत्र निर्दिष्ट विचलन और निर्दिष्ट कर्ल दोनों के साथ बनाया जा सकता है, और यदि यह अनंत पर भी लुप्त हो जाता है, तो यह विशिष्ट रूप से इसके विचलन और कर्ल द्वारा निर्दिष्ट किया जाता है। स्थिर वैद्युत विक्षेप में इस सिद्धांत का बहुत महत्व है, क्योंकि स्थिर स्थितियों में विद्युत और चुंबकीय क्षेत्र के लिए मैक्सवेल के समीकरण ठीक इसी प्रकार के है।[12] प्रमाण रूप निर्माण द्वारा ऊपर दिए गए एक को सामान्य करता है: हम सेट करते है।
जहाँ न्यूटोनियन संभावित ऑपरेटर का प्रतिनिधित्व करता है। (जब सदिश क्षेत्र पर कार्य करते है, जैसे ∇ × F, तो इसे प्रत्येक घटक पर कार्य करने के लिए परिभाषित किया जाता है।)
इस समीकरण के प्रत्येक सदस्य का विचलन प्राप्त करने पर प्राप्त होता है
, इस तरह हार्मोनिक है।
इसके विपरीत, कोई हार्मोनिक फलन दिया गया है , के बाद से परिनालिकीय होता है
इस प्रकार, उपरोक्त खंड के अनुसार, एक सदिश क्षेत्र सम्मलित है ऐसा है कि .
अगर एक और ऐसा सदिश क्षेत्र है, तब पूरा , इस तरह कुछ अदिश क्षेत्र के लिए (और इसके विपरीत) होता है।
विभेदक रूप
हॉज अपघटन हेल्महोल्ट्ज़ अपघटन से निकटता से संबंधित है, R3 पर सदिश क्षेत्रों से सामान्यीकरण रीमैनियन कई गुना एम पर विभेदक रूपों के लिए होता है। हॉज अपघटन के अधिकांश योगों के लिए एम को कॉम्पैक्ट जगह होना आवश्यक है।[13] चूँकि यह R3 के लिए सत्य नहीं है, हॉज अपघटन सिद्धांत सख्ती से हेल्महोल्ट्ज़ सिद्धांत का सामान्यीकरण नहीं है। चूँकि, हॉज अपघटन के सामान्य निर्माण में कॉम्पैक्टनेस प्रतिबंध को हेल्महोल्ट्ज़ सिद्धांत का उचित सामान्यीकरण देते हुए, अंतर रूपों पर अनंत में उपयुक्त क्षय धारणाओं द्वारा प्रतिस्थापित किया जा सकता है।
कमजोर सूत्रीकरण
हेल्महोल्ट्ज़ अपघटन को भी नियमितता मान्यताओं (प्रबल व्युत्पन्न के अस्तित्व की आवश्यकता) को कम करके सामान्यीकृत किया जा सकता है। मान लीजिये Ω एक परिबद्ध, एक परिबद्ध, सरलता से समाहित हुआ होता है, लिपशिट्ज डोमेन है। प्रत्येक वर्ग-पूर्णांक सदिश क्षेत्र u ∈ (L2(Ω))3 में ओर्थोगोनालिटी अपघटन होता है:
जहाँ φ पर वर्ग- समाकलनीय फलन के सोबोलेफ समष्टि H1(Ω) जिसका आंशिक साधित वितरण सेंस में परिभाषित किया गया है, और A ∈ H(curl, Ω), वर्ग समाकलनीय कर्ल के साथ वर्ग समाकलनीय सदिश क्षेत्रों से युक्त सदिश क्षेत्रों का सोबोलेफ समष्टि होता है।
थोड़े समतल सदिश क्षेत्र के लिए u ∈ H(curl, Ω), एक समान अपघटन धारण करता है:
जहाँ φ ∈ H1(Ω), v ∈ (H1(Ω))d.
अनुदैर्ध्य और अनुप्रस्थ क्षेत्र
भौतिकी में अधिकांशतः उपयोग की जाने वाली शब्दावली सदिश क्षेत्र के कर्ल-मुक्त घटक को अनुदैर्ध्य घटक के रूप में और अपसरण-मुक्त घटक को अनुप्रस्थ घटक के रूप में संदर्भित करती है।[14] यह शब्दावली निम्नलिखित निर्माण से आती है: त्रि-आयामी फूरियर रूपांतरण की गणना करता है सदिश क्षेत्र का . फिर इस क्षेत्र को प्रत्येक बिंदु k पर दो घटकों में विघटित करता है, जिनमें से एक अनुदैर्ध्य रूप से बिंदु है, अर्थात k के समानांतर, दूसरा अनुप्रस्थ दिशा में इंगित करता है, अर्थात k के लंबवत होता है। जहाँ तक, हमारे पास है
अब हम इनमें से प्रत्येक घटक के लिए एक व्युत्क्रम फूरियर रूपांतरण लागू करते है। फूरियर रूपांतरण के गुणों का उपयोग करते हुए, हम प्राप्त करते है:
↑An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions. By William Woolsey Johnson. John Wiley & Sons, 1881. See also: Method of Fluxions.
H. Helmholtz (1858) "Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen" (On integrals of the hydrodynamic equations which correspond to vortex motions), Journal für die reine und angewandte Mathematik, 55: 25–55. On page 38, the components of the fluid's velocity (u, v, w) are expressed in terms of the gradient of a scalar potential P and the curl of a vector potential (L, M, N).
However, Helmholtz was largely anticipated by George Stokes in his paper: G. G. Stokes (presented: 1849; published: 1856) "On the dynamical theory of diffraction,"Transactions of the Cambridge Philosophical Society, vol. 9, part I, pages 1–62; see pages 9–10.
↑Cantarella, Jason; DeTurck, Dennis; Gluck, Herman (2002). "Vector Calculus and the Topology of Domains in 3-Space". The American Mathematical Monthly. 109 (5): 409–442. doi:10.2307/2695643. JSTOR2695643.
जॉर्ज बी. अरफकेन और हंस जे. वेबर, भौतिकविदों के लिए गणितीय तरीके, चौथा संस्करण, शैक्षणिक प्रेस: सैन डिएगो (1995) पीपी। 92-93
जॉर्ज बी. अरफकेन और हंस जे. वेबर, भौतिकविदों के लिए गणितीय तरीके - अंतर्राष्ट्रीय संस्करण, 6वां संस्करण, अकादमिक प्रेस: सैन डिएगो (2005) पीपी। 95-101
रदरफोर्ड एरिस, वैक्टर, टेन्सर, और द्रव यांत्रिकी के मूल समीकरण, प्रेंटिस-हॉल (1962), OCLC299650765, पीपी. 70–72
आर. डौत्रे और जे.-एल. शेर। वर्णक्रमीय सिद्धांत और अनुप्रयोग, गणितीय विश्लेषण का खंड 3 और विज्ञान और प्रौद्योगिकी के लिए संख्यात्मक तरीके। स्प्रिंगर-वेरलाग, 1990।
विवेट जिरॉल्ट | वी। जिराउल्ट और पी.ए. रैवार्ट। नेवियर-स्टोक्स समीकरणों के लिए परिमित तत्व विधियाँ: सिद्धांत और एल्गोरिदम। कम्प्यूटेशनल गणित में स्प्रिंगर सीरीज। स्प्रिंगर-वेरलाग, 1986।