लेजर रेखा आयाम (लेजर लाइनविड्थ): Difference between revisions

From Vigyanwiki
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 214: Line 214:


{{Lasers}}
{{Lasers}}
[[Category: लेसर विज्ञान | लाइनविड्थ]]


 
[[Category:Collapse templates]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 23/03/2023]]
[[Category:Created On 23/03/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia metatemplates]]
[[Category:लेसर विज्ञान| लाइनविड्थ]]

Latest revision as of 18:38, 20 April 2023

लेज़र रेखा आयाम एक लेज़र किरणपुंज की वर्णक्रमीय रेखा आयाम है।

लेजर उत्सर्जन की सबसे विशिष्ट विशेषताओं में से दो आकाशीय संसक्ति (भौतिकी) और वर्णक्रमीय संसक्ति (भौतिकी) हैं। जबकि आकाशीय संसक्ति लेजर के किरणपुंज अपसरण से संबंधित है, वर्णक्रमीय संसक्ति का मूल्यांकन लेजर विकिरण के रेखा आयाम को मापकर किया जाता है।

सिद्धांत

इतिहास: लेज़र रेखा आयाम की पहली व्युत्पत्ति

पहला मानव निर्मित संसक्त (भौतिकी) प्रकाश स्रोत एक मेसर था। मेसर का संक्षिप्त नाम "विकिरण के उत्तेजित उत्सर्जन द्वारा सूक्ष्म तरंग प्रवर्धन है। अधिक सटीक रूप से, यह 12.5 mm तरंग दैर्ध्य पर काम करने वाला अमोनिया मेसर था जिसे 1954 में जेम्स P. गॉर्डन, हर्बर्ट पॉइंटर और चार्ल्स H. टाउन्स द्वारा प्रदर्शित किया गया था।[1] एक साल बाद वही लेखकों ने[2] सैद्धांतिक रूप से अपने उपकरण की रेखा आयाम को उचित सन्निकटन करके निकाला कि उनका अमोनिया मेसर

  1. एक वास्तविक सतत-तरंग (CW) मेसर,[2]
  2. एक वास्तविक चार-स्तरीय मेसर,[2] और
  3. कोई आंतरिक अनुनादक हानि नहीं दिखाता है, लेकिन केवल नुकसान को कम करता है.[2]

विशेष रूप से, उनकी व्युत्पत्ति पूरी तरह से पुराप्रतिष्ठित थी,[2]अमोनिया अणुओं को फोटोन उत्सर्जक के रूप में वर्णित करना और प्राचीन विद्युत चुम्बकीय क्षेत्र (लेकिन कोई क्वांटित क्षेत्र या क्वान्टम उतार-चढ़ाव को न) मानते हुए, जो परिणामस्वरूप आधा-चौड़ाई-पर-आधा-अधिकतम (HWHM) मेसर रेखा आयाम होता है।[2]: एक तारांकन चिह्न द्वारा दर्शाया गया है और पूर्ण-चौड़ाई-पर-आधा-अधिकतम (FWHM) लेजर रेखा आयाम में परिवर्तित किया गया है . बोल्ट्जमैन स्थिरांक है, तापमान है, निर्गत शक्ति (भौतिकी) है, और और क्रमशः अंतर्निहित निष्क्रिय सूक्ष्म तरंग अनुनादक के HWHM और FWHM रेखा आयाम हैं।

1958 में, थिओडोर मैमन ने दो साल पहले लेजर (शुरुआत में एक प्रकाशिकी मेसर कहा जाता था) का प्रदर्शन किया था,[3] आर्थर लियोनार्ड शॉलो और चार्ल्स H. टाउनस ने[4] फोटोन ऊर्जा द्वारा तापीय ऊर्जा , को बदलकर मैसर रेखा आयाम को प्रकाशिकी व्यवस्था में स्थानांतरित कर दिया, जहाँ प्लैंक स्थिरांक है और लेज़र प्रकाश की आवृत्ति है, जिससे इसका अनुमान लगाया जाता है कि

iv. फोटोन-क्षय समय के बीच सहज उत्सर्जन द्वारा एक फोटोन को लेसरीकरण मोड में जोड़ा जाता है [5]

जिसके परिणामस्वरूप लेज़र रेखा आयाम का मूल शॉलो-टाउन सन्निकटन हुआ:[4]:

साथ ही सूक्ष्म तरंग से प्रकाशिकी व्यवस्था में स्थानांतरण पूरी तरह से पुराप्रतिष्ठित था,[4]परिमाणित क्षेत्रों या क्वान्टम उतार-चढ़ाव को ग्रहण किए बिना। नतीजतन, मूल शॉलो-टाउनस समीकरण पूरी तरह से पुराप्रतिष्ठित भौतिकी पर आधारित है[2][4]और एक अधिक सामान्य लेज़र रेखा आयाम का चार गुना सन्निकटन है,[5]जो निम्नलिखित में प्राप्त होगा।

निष्क्रिय अनुनादक मोड: फोटोन-क्षय समय

हम [6] ज्यामितीय लंबाई , का दो-दर्पण फैब्री-पेरोट अनुनादक मानते हैं। अपवर्तनांक के एक सक्रिय लेजर माध्यम समान रूप से से भरा हुआ है। हम अनुनादक के लिए संदर्भ स्थिति, अर्थात् निष्क्रिय अनुनादक मोड को परिभाषित करते हैं, जिसका सक्रिय माध्यम पारदर्शी है, अर्थात, यह लाभ (लेजर) या अवशोषण (विद्युत चुम्बकीय विकिरण) का परिचय नहीं देता है।

गमनागमन काल अनुनादक में गति के साथ यात्रा करने वाले प्रकाश की , जहाँ निर्वात में प्रकाश की गति, और मुक्त वर्णक्रमीय श्रेणी द्वारा दिए गए हैं।[6][5]:

अनुदैर्ध्य अनुनादक मोड में प्रकाश qth अनुनाद आवृत्ति पर दोलन करता है[6][5]

घातांकीय क्षयसमय और संगत क्षय-दर स्थिरांक दो अनुनादक दर्पणों के Ri तीव्रता प्रतीबिंबों से संबंधित है द्वारा



[6]:

घातीय आंतरिक हानि समय और संगत क्षय-दर स्थिरांक आंतरिक गमनागमन नुकसान से संबंधित हैं द्वारा[5]:

घातीय फोटोन-क्षय समय और संगत क्षय-दर स्थिरांक निष्क्रिय अनुनादक के द्वारा दिया जाता है[5]:

सभी तीन घातीय क्षय समय गमनागमन समय [5]पर औसत होते हैं। निम्नलिखित में, हम मानते हैं , , , , और , इसलिए भी , , और आवृत्ति सीमा पर महत्वपूर्ण रूप से भिन्न नहीं होते हैं।

निष्क्रिय अनुनादक मोड: लोरेंट्ज़ियन रेखा आयाम, Q लक्षणांक, संबदधता समय और लंबाई

फोटोन-क्षय समय के अतिरिक्त , निष्क्रिय अनुनादक मोड के वर्णक्रमीय-संसक्त घटकों को निम्नलिखित मापदंडों द्वारा समान रूप से व्यक्त किया जा सकता है। FWHM लोरेंट्ज़ियन रेखा आयाम शाव्लो-टाउनस समीकरण में दिखाई देने वाले निष्क्रिय अनुनादक मोड का घातीय फोटोन-क्षय समय से लिया गया है । फूरियर रूपांतरण द्वारा,[6][5]:

Q लक्षणांक को ऊर्जा के रूप में परिभाषित किया गया है अनुनादक मोड में ऊर्जा पर संग्रहित प्रति दोलन चक्र खो गया,[5]:

जहाँ मोड में फोटोन की संख्या है। संबदधता का समय और संबदधता लंबाई मोड से उत्सर्जित प्रकाश द्वारा दिया जाता है[5]:



सक्रिय अनुनादक मोड: लाभ, फोटोन-क्षय समय, लोरेंट्ज़ियन रेखा आयाम, Q लक्षणांक, संबदधता समय और लंबाई

जनसंख्या घनत्व के साथ और क्रमशः ऊपरी और निचले लेजर स्तर और प्रभावी अनुप्रस्थ काट और अनुनाद आवृत्ति पर उत्तेजित उत्सर्जन और अवशोषण (विद्युत चुम्बकीय विकिरण) के क्रमशः, अनुनाद आवृत्ति पर सक्रिय लेजर माध्यम में प्रति इकाई लंबाई का लाभ द्वारा दिया गया है[5]:

प्रवर्धन को प्रेरित करता है, जबकि अनुनाद आवृत्ति पर प्रकाश के अवशोषण को प्रेरित करता है, जिसके परिणामस्वरूप क्रमशः सक्रिय अनुनादक मोड से बाहर फोटोनों का लंबा या छोटा फोटोन-क्षय समय , होता है

[5]:

सक्रिय अनुनादक मोड के अन्य चार वर्णक्रमीय-संबदधता गुण उसी तरह से प्राप्त किए जाते हैं जैसे निष्क्रिय अनुनादक मोड के लिए। लोरेंट्ज़ियन रेखा आयाम फूरियर रूपांतरण द्वारा प्राप्त किया गया है,

[5]:

का एक मान संकीर्णता प्राप्त करने की ओर ले जाता है, जबकि वर्णक्रमीय रेखा आयाम के अवशोषण को चौड़ा करने की ओर जाता है। Q लक्षणांक:

संबदधता समय और लंबाई हैं[5]



वर्णक्रमीय-संबदधता घटक

वह घटक जिसके द्वारा फोटोन-क्षय का समय लाभ से बढ़ जाता है या अवशोषण से छोटा हो जाता है, यहाँ वर्णक्रमीय-संबदधता घटक के रूप में प्रस्तुत किया जाता है :

[5]:


सभी पांच वर्णक्रमीय-संबदधता परिमाप फिर उसी वर्णक्रमीय-संबदधता घटक द्वारा मापे जाते हैं :[5]:


लेसरीकरण अनुनादक मोड: मूल सिद्धान्त लेज़र रेखा आयाम

लेसरीकरण अनुनादक मोड के अंदर प्रचारित फोटोनों की संख्या , के साथ उत्तेजित-उत्सर्जन और फोटोन-क्षय दर क्रमशः हैं,[5]:

वर्णक्रमीय-संसक्ति घटक तब बन जाता है

[5]:

लेसरीकरण अनुनादक मोड का फोटोन-क्षय समय है

[5]:

मौलिक लेजर रेखा आयाम है[5]:

यह मौलिक रेखा आयाम लेज़रों के लिए मान्य है, जो एक मनमाने ऊर्जा-स्तर पद्धति के साथ, नीचे, ऊपर या ऊपर की सीमा के साथ काम कर रहा है, जो नुकसान की तुलना में छोटा, बराबर या बड़ा होता है, और जो एक cw या एक क्षणिक लेसरीकरण व्यवस्था में होता है।[5]

इसकी व्युत्पत्ति से यह स्पष्ट हो जाता है कि मौलिक लेज़र रेखा आयाम पुराप्रतिष्ठित प्रभाव के कारण ही लाभ फोटोन-क्षय समय को बढ़ाता है।[5]

सतत-तरंग लेजर: लाभ नुकसान से छोटा है

लेसरीकरण अनुनादक मोड में सहज-उत्सर्जन दर द्वारा दिया जाता है[5]:

विशेष रूप से, हमेशा एक सकारात्मक दर होती है, क्योंकि लेसरीकरण मोड में एक परमाणु उत्तेजना एक फोटोन में परिवर्तित हो जाती है।[7][5]यह लेजर विकिरण का स्रोत शब्द है और इसे "शोर" के रूप में गलत नहीं समझा जाना चाहिए।[5] एकल लेसरीकरण मोड के लिए फोटोन-दर निम्न समीकरण देता है[5]:



एक Cw लेजर को लेसरीकरण मोड में अस्थायी रूप से निरंतर फोटोनों द्वारा परिभाषित किया जाता है, इसलिए . एक cW लेजर में उत्तेजित- और सहज-उत्सर्जन दर मिलकर फोटोन-क्षय दर की भरपाई करते हैं। फलस्वरूप,[5]:


उत्तेजित-उत्सर्जन दर फोटोन-क्षय दर से कम है या बोलचाल की भाषा में, "हानि की तुलना में लाभ कम है"।[5]यह तथ्य दशकों से जाना जाता है और अर्धचालक लेज़रों के सीमा व्यवहार को मापने के लिए इसका उपयोग किया जाता है।[8][9][10][11] लेज़र सीमा से बहुत ऊपर होने पर भी नुकसान की तुलना में लाभ अभी भी थोड़ा सा छोटा है। यह वही छोटा अंतर है जो CW लेजर के परिमित रेखा आयाम को प्रेरित करता है।[5]

इस व्युत्पत्ति से यह स्पष्ट हो जाता है कि मौलिक रूप से लेज़र सहज उत्सर्जन का एक प्रवर्धक है, और cw लेज़र रेखा आयाम पुराप्रतिष्ठित प्रभाव के कारण है कि लाभ हानियों से छोटा है।[5]लेजर रेखा आयाम के लिए फोटोन-प्रकाशिकी दृष्टिकोण में भी,[12] घनत्व-संचालक समीकरण के आधार पर, यह सत्यापित किया जा सकता है कि लाभ नुकसान से छोटा है।[5]


शॉलो-टाउनस सन्निकटन

जैसा कि ऊपर उल्लेख किया गया है, इसकी ऐतिहासिक व्युत्पत्ति से यह स्पष्ट है कि मूल शॉलो-टाउनस समीकरण मौलिक लेजर रेखा आयाम का चार गुना सन्निकटन है। मौलिक लेजर रेखा आयाम से शुरू ऊपर व्युत्पन्न, चार सन्निकटन i.-iv को लागू करके। एक तब मूल शॉलो-टाउन समीकरण प्राप्त करता है।

  1. It is a true CW laser, hence[5]
  2. It is a true four-level laser, hence[5]
  3. It has no intrinsic resonator losses, hence[5]
  4. One photon is coupled into the lasing mode by spontaneous emission during the photon-decay time , which would happen exactly at the unreachable point of an ideal four-level CW laser with infinite spectral-coherence factor , photon number , and output power , where the gain would equal the losses, hence[5]

यानी, उन्हीं चार सन्निकटनों को लागू करके i.-iv मौलिक लेजर रेखा आयाम के लिए जो पहली व्युत्पत्ति में लागू किए गए थे,[2][4]मूल शावलो-टाउनस समीकरण प्राप्त किया जाता है।[5]

इस प्रकार, मौलिक लेजर रेखा आयाम है[5]:

जबकि मूल शाव्लो-टाउनस समीकरण इस मौलिक लेजर रेखा आयाम का चार गुना सन्निकटन है और यह केवल ऐतिहासिक महत्व का है।

अतिरिक्त लाइनचौड़ाई चौड़ीकरण और संकुचन प्रभाव

1958 में इसके प्रकाशन के बाद,[4]मूल शाव्लो-टाउनस समीकरण को विभिन्न प्रकारों से विस्तारित किया गया था। ये विस्तारित समीकरण प्रायः एक ही नाम का अधिकार व्यापार करते हैं, शॉलो-टाउनस रेखा आयाम, जिससे लेजर रेखा आयाम पर उपलब्ध साहित्य में एक वास्तविक भ्रम पैदा होता है, क्योंकि यह प्रायः स्पष्ट नहीं होता है कि संबंधित लेखक मूल शॉलो-टाउन समीकरण के किस विशेष विस्तार का उल्लेख करते हैं।

एक या कई सन्निकटन i.-iv को हटाने के उद्देश्य से कई पुराप्रतिष्ठित विस्तार, ऊपर वर्णित है, जिससे ऊपर व्युत्पन्न मौलिक लेजर रेखा आयाम की ओर कदम बढ़ रहे हैं।

निम्नलिखित विस्तारण मौलिक लेजर रेखा आयाम में जोड़े जा सकते हैं:

लेजर रेखा आयाम का मापन

लेसर के संसक्ति को मापने के लिए उपयोग की जाने वाली पहली विधियों में से एक प्रकाशिकी व्यतिकरणमिति थी।[13] लेजर रेखा आयाम को मापने के लिए एक विशिष्ट विधि स्व-हेटेरोडाइन व्यतिकरणमिति है।[14][15] एक वैकल्पिक दृष्टिकोण स्पेक्ट्रम विज्ञान का उपयोग है।[16]


निरंतर लेजर

अंतर्गुहा लाइन संकीर्ण प्रकाशिकी की अनुपस्थिति में, विशिष्ट एकल-अनुप्रस्थ मोड He–Ne लेज़र (632.8 nm के तरंग दैर्ध्य पर), 1 GHz के क्रम पर हो सकता है। रेयर-अर्थ-अपमिश्रित परावैद्युतिकी-आधारित या अर्धचालक-आधारित वितरित प्रतिपुष्टि लेज़रों में 1 kHz के क्रम में विशिष्ट रेखा आयाम होते हैं।[17][18] स्थिर निम्न-शक्ति सतत-तरंग लेज़रों से लेज़र रेखा आयाम बहुत संकीर्ण हो सकता है और 1 kHz से कम तक पहुँच सकती है।[19] देखे गए रेखा आयाम तकनीकी शोर (प्रकाशिकी स्पंदित शक्ति या स्पंदित करंट के अस्थायी उतार-चढ़ाव, यांत्रिक कंपन, अपवर्तक-सूचकांक और तापमान में उतार-चढ़ाव, आदि के कारण लंबाई में परिवर्तन) के कारण मौलिक लेजर रेखा आयाम से बड़े हैं।

स्पंदित लेजर

अंतर्गुहा रेखा संकीर्ण प्रकाशिकी की अनुपस्थिति में उच्च-शक्ति, उच्च-लाभ स्पंदित-लेजर से लेजर रेखा आयाम बहुत व्यापक हो सकते है और शक्तिशाली विस्तृत बैंड डाई लेजर की स्थिति में यह कुछ 10 nm जितना चौड़ा हो सकता है।[20] [16]

उच्च-शक्ति, उच्च-लाभ स्पंदित लेजर दोलकों से लेज़र रेखा आयाम, जिसमें रेखा संकोचन प्रकाशिकी समिलित हैं, लेजर कोटर की ज्यामितीय और फैलाने वाली विशेषताओं का एक कार्य है।[21] पहले सन्निकटन के लिए, एक अनुकूलित कोटर में लेज़र रेखा आयाम, उत्सर्जन के किरणपुंज अपसरण के समानुपाती होता है, जिसे समग्र अंतर्गुहा फैलाव के व्युत्क्रम द्वारा गुणा किया जाता है।[21]वह है,

इसे कोटर रेखा आयाम समीकरण के रूप में जाना जाता है जहाँ किरणपुंज अपसरण है और कोष्ठक में शब्द (-1 से ऊंचा) समग्र अंतर्गुहा फैलाव है। यह समीकरण मूल रूप से शास्त्रीय प्रकाशिकी से लिया गया था।[22] हालाँकि, 1992 में F. J. दुर्ट ने इस समीकरण को एन-स्लिट इंटरफेरोमेट्रिक समीकरण सिद्धांतों से प्राप्त किया,[23] इस प्रकार एक फोटोन अभिव्यक्ति को समग्र अंतर्गुहा कोणीय फैलाव के साथ जोड़ा जाता है।

एक अनुकूलित बहु-प्रिज्म झंझरी लेजर दोलक kW व्यवस्था में ≈ 350 मेगाहर्ट्ज (के बराबर) के एकल-अनुदैर्ध्य-मोड रेखा आयाम पर स्पंदित उत्सर्जन प्रदान कर सकता है। 590 nm के लेजर तरंग दैर्ध्य पर ≈ 0.0004 nm के बराबर )।[24] चूँकि इन दोलक से स्पंद की अवधि लगभग 3 ns है,[24]लेज़र रेखा आयाम प्रदर्शन हाइजेनबर्ग अनिश्चितता सिद्धांत द्वारा अनुमत सीमा के निकट है।

यह भी देखें

संदर्भ

  1. Gordon, J. P.; Zeiger, H. J.; Townes, C. H. (1954). "Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3". Physical Review. 95 (1): 282–284. Bibcode:1954PhRv...95..282G. doi:10.1103/PhysRev.95.282.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 Gordon, J. P.; Zeiger, H. J.; Townes, C. H. (1955). "The maser−New type of microwave amplifier, frequency standard, and spectrometer". Physical Review. 99 (4): 1264–1274. Bibcode:1955PhRv...99.1264G. doi:10.1103/PhysRev.99.1264.
  3. Maiman, T. H. (1960). "रूबी में उत्तेजित ऑप्टिकल विकिरण". Nature. 187 (4736): 493–494. Bibcode:1960Natur.187..493M. doi:10.1038/187493a0. S2CID 4224209.
  4. 4.0 4.1 4.2 4.3 4.4 4.5 Schawlow, A. L.; Townes, C. H. (1958). "इन्फ्रारेड और ऑप्टिकल मैसर". Physical Review. 112 (6): 1940–1949. Bibcode:1958PhRv..112.1940S. doi:10.1103/PhysRev.112.1940.
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.21 5.22 5.23 5.24 5.25 5.26 5.27 5.28 5.29 5.30 5.31 5.32 5.33 5.34 5.35 5.36 Pollnau, M.; Eichhorn, M. (2020). "Spectral coherence, Part I: Passive resonator linewidth, fundamental laser linewidth, and Schawlow–Townes approximation". Progress in Quantum Electronics. 72: 100255. Bibcode:2020PQE....7200255P. doi:10.1016/j.pquantelec.2020.100255.
  6. 6.0 6.1 6.2 6.3 6.4 Ismail, N.; Kores, C. C.; Geskus, D.; Pollnau, M. (2016). "Fabry–Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity" (PDF). Optics Express. 24 (15): 16366–16389. Bibcode:2016OExpr..2416366I. doi:10.1364/OE.24.016366. PMID 27464090.
  7. Pollnau, M. (2018). "फोटॉन उत्सर्जन और अवशोषण में चरण पहलू" (PDF). Optica. 5 (4): 465–474. Bibcode:2018Optic...5..465P. doi:10.1364/OPTICA.5.000465.
  8. Sommers, H. S. (1974). "सहज शक्ति और इंजेक्शन लेज़रों की सुसंगत अवस्था". Journal of Applied Physics. 45 (4): 1787–1793. Bibcode:1974JAP....45.1787S. doi:10.1063/1.1663491.
  9. Sommers, H. S. (1982). "Threshold and oscillation of injection lasers: a critical review of laser theory". Solid-State Electronics. 25 (1): 25–44. Bibcode:1982SSEle..25...25S. doi:10.1016/0038-1101(82)90091-0.
  10. Siegman, A. E. (1986) "Lasers", University Science Books, Mill Valley, California, ch. 13, pp. 510-524.
  11. Björk, G.; Yamamoto, Y. (1991). "दर समीकरणों का उपयोग करके सेमीकंडक्टर माइक्रोकैविटी लेज़रों का विश्लेषण". IEEE Journal of Quantum Electronics. 27 (11): 2386–2396. Bibcode:1991IJQE...27.2386B. doi:10.1109/3.100877.
  12. Sargent III, M.; Scully, M. O.; Lamb, Jr., W. E. (1993) "Laser Physics", 6th edition, Westview Press, Ch. 17.
  13. O. S. Heavens, Optical Masers (Wiley, New York, 1963).
  14. Okoshi, T.; Kikuchi, K.; Nakayama, A. (1980). "लेजर आउटपुट स्पेक्ट्रम के उच्च विभेदन मापन के लिए नवीन विधि". Electronics Letters. 16 (16): 630–631. Bibcode:1980ElL....16..630O. doi:10.1049/el:19800437.
  15. Dawson, J. W.; Park, N.; Vahala, K. J. (1992). "लिनिविड्थ मापन के लिए एक बेहतर विलंबित सेल्फ-हेटरोडाइन इंटरफेरोमीटर". IEEE Photonics Technology Letters. 4 (9): 1063–1066. Bibcode:1992IPTL....4.1063D. doi:10.1109/68.157150. S2CID 15033723.
  16. 16.0 16.1 Schäfer, Fritz P.; Schmidt, Werner; Volze, Jürgen (1966-10-15). "कार्बनिक डाई समाधान लेजर". Applied Physics Letters. AIP Publishing. 9 (8): 306–309. Bibcode:1966ApPhL...9..306S. doi:10.1063/1.1754762. ISSN 0003-6951.
  17. Bernhardi, E. H.; van Wolferen, H. A. G. M.; Agazzi, L.; Khan, M. R. H.; Roeloffzen, C. G. H.; Wörhoff, K.; Pollnau, M.; de Ridder, R. M. (2010). "Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon". Optics Letters. 35 (14): 2394–2396. Bibcode:2010OptL...35.2394B. doi:10.1364/OL.35.002394. PMID 20634841.
  18. Santis, C. T.; Steger, S. T.; Vilenchik, Y.; Vasilyev, A.; Yariv, A. (2014). "High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms". Proceedings of the National Academy of Sciences of the United States of America. 111 (8): 2879–2884. Bibcode:2014PNAS..111.2879S. doi:10.1073/pnas.1400184111. PMC 3939879. PMID 24516134.
  19. L. W. Hollberg, CW dye lasers, in Dye Laser Principles, F. J. Duarte and L. W. Hillman (eds.) (Academic, New York, 1990) Chapter 5.
  20. Spaeth, M. L.; Bortfeld, D. P. (1966). "पोलीमेथिन डाई से उत्तेजित उत्सर्जन". Applied Physics Letters. AIP Publishing. 9 (5): 179–181. Bibcode:1966ApPhL...9..179S. doi:10.1063/1.1754699. ISSN 0003-6951.
  21. 21.0 21.1 F. J. Duarte,Tunable Laser Optics, 2nd Edition (CRC, New York, 2015).
  22. J. K. Robertson, Introduction to Optics: Geometrical and Physical (Van Nostrand, New York, 1955).
  23. Duarte, F. J. (1992-11-20). "Cavity dispersion equation Δλ ≈ Δθ(∂θ/∂λ)−1: a note on its origin". Applied Optics. The Optical Society. 31 (33): 6979–82. doi:10.1364/ao.31.006979. ISSN 0003-6935. PMID 20802556.
  24. 24.0 24.1 Duarte, Francisco J. (1999-10-20). "Multiple-prism grating solid-state dye laser oscillator: optimized architecture". Applied Optics. The Optical Society. 38 (30): 6347–9. Bibcode:1999ApOpt..38.6347D. doi:10.1364/ao.38.006347. ISSN 0003-6935. PMID 18324163.