प्रवर संवहन समय व्युत्पन्न: Difference between revisions
(Created page with "निरंतर यांत्रिकी में, द्रव गतिकी सहित, एक ऊपरी-संवहित समय व्युत्पन...") |
No edit summary |
||
(14 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
द्रव गतिकी सहित सातत्य यांत्रिकी में जेम्स जी ओल्ड्रोयड के नाम पर एक ऊपरी- संवहित समय व्युत्पन्न या ओल्ड्रोयड व्युत्पन्न द्रव के एक छोटे से खंड की कुछ टेन्सर गुण के परिवर्तन की दर है जो द्रव के साथ घूर्णन और खिंचाव समन्वय प्रणाली में लिखा गया है। | |||
संचालक निम्न सूत्र द्वारा निर्दिष्ट किया गया है: | |||
:<math> \stackrel{\triangledown}{\mathbf{A}} = \frac{D}{Dt} \mathbf{A} - (\nabla \mathbf{v})^T \cdot \mathbf{A} - \mathbf{A} \cdot (\nabla \mathbf{v}) </math> | :<math> \stackrel{\triangledown}{\mathbf{A}} = \frac{D}{Dt} \mathbf{A} - (\nabla \mathbf{v})^T \cdot \mathbf{A} - \mathbf{A} \cdot (\nabla \mathbf{v}) </math> | ||
जहाँ : | |||
*<math> {\stackrel{\triangledown}{\mathbf A}}</math> टेंसर | *<math> {\stackrel{\triangledown}{\mathbf A}}</math> टेंसर क्षेत्र (भौतिकी) का ऊपरी-संवहित समय व्युत्पन्न है <math> \mathbf{A} </math> | ||
*<math>\frac{D}{Dt}</math> [[मूल व्युत्पन्न]] है | *<math>\frac{D}{Dt}</math> [[मूल व्युत्पन्न]] है | ||
*<math>\nabla \mathbf{v}=\frac {\partial v_j}{\partial x_i} </math> द्रव के लिए [[वेग]] | *<math>\nabla \mathbf{v}=\frac {\partial v_j}{\partial x_i} </math> द्रव के लिए [[वेग]] व्युत्पन्न का टेन्सर है। | ||
सूत्र को फिर से लिखा जा सकता है: | सूत्र को फिर से लिखा जा सकता है: | ||
:<math> {\stackrel{\triangledown}{A}}_{i,j} = \frac {\partial A_{i,j}} {\partial t} + v_k \frac {\partial A_{i,j}} {\partial x_k} - \frac {\partial v_i} {\partial x_k} A_{k,j} - \frac {\partial v_j} {\partial x_k} A_{i,k} </math> | :<math> {\stackrel{\triangledown}{A}}_{i,j} = \frac {\partial A_{i,j}} {\partial t} + v_k \frac {\partial A_{i,j}} {\partial x_k} - \frac {\partial v_i} {\partial x_k} A_{k,j} - \frac {\partial v_j} {\partial x_k} A_{i,k} </math> | ||
परिभाषा के अनुसार, [[फिंगर टेंसर]] का ऊपरी-संवहित समय व्युत्पन्न | परिभाषा के अनुसार, [[फिंगर टेंसर]] का ऊपरी-संवहित समय व्युत्पन्न सदैव शून्य होता है। | ||
यह दिखाया जा सकता है कि एक स्पेसलाइक वेक्टर | यह दिखाया जा सकता है कि एक स्पेसलाइक वेक्टर क्षेत्र का ऊपरी- संवहित समय व्युत्पन्न सातत्य के वेग क्षेत्र द्वारा इसका [[झूठ व्युत्पन्न|लाइ व्युत्पन्न]] है।<ref>{{cite journal|last1=Matolcsi|first1=Tamás|last2=Ván|first2=Péter|title=टाइम डेरिवेटिव्स की वस्तुनिष्ठता पर|journal=Atti della Accademia Peloritana dei Pericolanti - Classe di Scienze Fisiche, Matematiche e Naturali |date=2008|issue=1 |pages=1–13 |doi=10.1478/C1S0801015}}</ref> | ||
बड़े विकृतियों के तहत [[viscoelastic|श्यानप्रत्यास्थ]] तरल पदार्थ के व्यवहार के वर्णन के लिए ऊपरी- संवहनी व्युत्पन्न का व्यापक रूप से [[रियोलॉजी|बहुलक प्रवाहिकी]] में उपयोग किया जाता है। | |||
=== | === सममित टेन्सर A के लिए उदाहरण === | ||
=== सामान्य अपरुपण === | |||
सामान्य अपरुपण के स्थिति में: | |||
:<math> \nabla \mathbf{v} = \begin{pmatrix} 0 & 0 & 0 \\ {\dot \gamma} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} </math> | :<math> \nabla \mathbf{v} = \begin{pmatrix} 0 & 0 & 0 \\ {\dot \gamma} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} </math> | ||
इस प्रकार, | इस प्रकार, | ||
Line 26: | Line 27: | ||
=== असंपीड्य द्रव का एक अक्षीय विस्तार === | === असंपीड्य द्रव का एक अक्षीय विस्तार === | ||
इस | इस स्थिति में पदार्थ X दिशा में खींची जाती है और Y और Z दिशाओं में संकुचित होती है, जिससे आयतन स्थिर रहता है। | ||
वेग की प्रवणताएँ हैं: | वेग की प्रवणताएँ हैं: | ||
:<math> \nabla \mathbf{v} = \begin{pmatrix} \dot \epsilon & 0 & 0 \\ 0 & -\frac {\dot \epsilon} {2} & 0 \\ 0 & 0 & -\frac{\dot \epsilon} 2 \end{pmatrix} </math> | :<math> \nabla \mathbf{v} = \begin{pmatrix} \dot \epsilon & 0 & 0 \\ 0 & -\frac {\dot \epsilon} {2} & 0 \\ 0 & 0 & -\frac{\dot \epsilon} 2 \end{pmatrix} </math> | ||
इस प्रकार, | इस प्रकार, | ||
:<math> \stackrel{\triangledown}{\mathbf A} = \frac{D}{Dt} \mathbf{A}-\frac {\dot \epsilon} 2 \begin{pmatrix} 4A_{11} & A_{21} & A_{31} \\ A_{12} & -2A_{22} & -2A_{23} \\ A_{13} & -2A_{23} & -2A_{33} \end{pmatrix} </math> | :<math> \stackrel{\triangledown}{\mathbf A} = \frac{D}{Dt} \mathbf{A}-\frac {\dot \epsilon} 2 \begin{pmatrix} 4A_{11} & A_{21} & A_{31} \\ A_{12} & -2A_{22} & -2A_{23} \\ A_{13} & -2A_{23} & -2A_{33} \end{pmatrix} </math> | ||
Line 41: | Line 43: | ||
;Notes | ;Notes | ||
<references /> | <references /> | ||
[[Category:Created On 23/03/2023]] | [[Category:Created On 23/03/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:गैर-न्यूटोनियन तरल पदार्थ]] | |||
[[Category:द्रव गतिविज्ञान]] | |||
[[Category:बहुभिन्नरूपी कैलकुलस]] |
Latest revision as of 15:54, 27 April 2023
द्रव गतिकी सहित सातत्य यांत्रिकी में जेम्स जी ओल्ड्रोयड के नाम पर एक ऊपरी- संवहित समय व्युत्पन्न या ओल्ड्रोयड व्युत्पन्न द्रव के एक छोटे से खंड की कुछ टेन्सर गुण के परिवर्तन की दर है जो द्रव के साथ घूर्णन और खिंचाव समन्वय प्रणाली में लिखा गया है।
संचालक निम्न सूत्र द्वारा निर्दिष्ट किया गया है:
जहाँ :
- टेंसर क्षेत्र (भौतिकी) का ऊपरी-संवहित समय व्युत्पन्न है
- मूल व्युत्पन्न है
- द्रव के लिए वेग व्युत्पन्न का टेन्सर है।
सूत्र को फिर से लिखा जा सकता है:
परिभाषा के अनुसार, फिंगर टेंसर का ऊपरी-संवहित समय व्युत्पन्न सदैव शून्य होता है।
यह दिखाया जा सकता है कि एक स्पेसलाइक वेक्टर क्षेत्र का ऊपरी- संवहित समय व्युत्पन्न सातत्य के वेग क्षेत्र द्वारा इसका लाइ व्युत्पन्न है।[1]
बड़े विकृतियों के तहत श्यानप्रत्यास्थ तरल पदार्थ के व्यवहार के वर्णन के लिए ऊपरी- संवहनी व्युत्पन्न का व्यापक रूप से बहुलक प्रवाहिकी में उपयोग किया जाता है।
सममित टेन्सर A के लिए उदाहरण
सामान्य अपरुपण
सामान्य अपरुपण के स्थिति में:
इस प्रकार,
असंपीड्य द्रव का एक अक्षीय विस्तार
इस स्थिति में पदार्थ X दिशा में खींची जाती है और Y और Z दिशाओं में संकुचित होती है, जिससे आयतन स्थिर रहता है।
वेग की प्रवणताएँ हैं:
इस प्रकार,
यह भी देखें
संदर्भ
- Macosko, Christopher (1993). Rheology. Principles, Measurements and Applications. VCH Publisher. ISBN 978-1-56081-579-2.
- Notes
- ↑ Matolcsi, Tamás; Ván, Péter (2008). "टाइम डेरिवेटिव्स की वस्तुनिष्ठता पर". Atti della Accademia Peloritana dei Pericolanti - Classe di Scienze Fisiche, Matematiche e Naturali (1): 1–13. doi:10.1478/C1S0801015.